Species-Specific Management Inventory in Finland

  • Matti MaltamoEmail author
  • Petteri Packalen
Part of the Managing Forest Ecosystems book series (MAFE, volume 27)


A new remote sensing based stand management inventory system was developed and adopted to operational forestry in Finland during the years 2005–2010. The inventory is based on wall-to-wall mapping of the inventory area. The outcome of the inventory is species-specific stand attributes which are estimated with the help of ALS, aerial images and field sample plots. The new inventory system has been successful and within a few years all the actors of the practical forestry have updated their inventory and planning systems to support the new method. The new inventory system is now applied for almost 3,000,000 ha annually. This chapter presents the main properties of the system.


Forest Owner Forest Inventory Aerial Image Private Forest National Forest Inventory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ahokas E, Kaartinen H, Hyyppä J (2008) On the quality checking of the airborne laser scanning-based nationwide elevation model in Finland. 21st ISPRS Congress Beijing 2008. Int Arch Photogramm Remote Sens Spat Inf Sci 37(B1/I):267–270Google Scholar
  2. Breidenbach J, Næsset E, Lien V, Gobakken T, Solberg S (2010) Prediction of species specific forest inventory attributes using a nonparametric semi-individual tree crown approach based on fused airborne laser scanning and multispectral data. Remote Sens Environ 114:911–924CrossRefGoogle Scholar
  3. Cajander AK (1909) Ueber die Waldtypen. Acta For Fenn 1:1–175Google Scholar
  4. Gobakken T, Næsset E (2009) Assessing effects of positioning errors and sample plot size on biophysical stand properties derived from airborne laser scanner data. Can J For Res 39:1036–1052CrossRefGoogle Scholar
  5. Haara A, Korhonen KT (2004) Kuvioittaisen arvioinnin luotettavuus. Metsätieteen aikakauskirja 4/2004:489–508 (in Finnish)Google Scholar
  6. Hollaus M, Wagner W, Maier B, Schadauer K (2007) Airborne laser scanning of forest stem volume in a mountainous environment. Sensors 7:1559–1577PubMedCentralCrossRefGoogle Scholar
  7. Holmgren J (2004) Prediction of tree height, basal area and stem volume using airborne laser scanning. Scand J For Res 19:543–553CrossRefGoogle Scholar
  8. Hudak AT, Crookston NL, Evans JS, Falkowski MJ, Smith AMS, Gessler PE, Morgan P (2006) Regression modeling and mapping of coniferous forest basal area and tree density from discrete-return lidar and multispectral satellite data. Can J Remote Sens 32:126–138CrossRefGoogle Scholar
  9. Hyyppä J, Inkinen M (1999) Detecting and estimating attributes for single trees using laser scanner. Photogramm J Finl 16:27–42Google Scholar
  10. Hyyppä J, Hyyppä H, Inkinen M, Engdahl M, Linko S, Zhu YH (2000) Accuracy comparison of various remote sensing data sources in the retrieval of forest stand attributes. For Ecol Manage 128:109–120CrossRefGoogle Scholar
  11. Jensen JLR, Humes KS, Conner T, Williams CJ, DeGroot J (2006) Estimation of biophysical characteristics for highly variable mixed-conifer stands using small-footprint lidar. Can J For Res 36:1129–1138CrossRefGoogle Scholar
  12. Junttila V, Maltamo M, Kauranne T (2008) Sparse Bayesian estimation of forest stand characteristics from ALS. For Sci 54:543–552Google Scholar
  13. Kangas A, Heikkinen E, Maltamo M (2004) Accuracy of partially visually assessed stand characteristics – a case study of Finnish forest inventory by compartments. Can J For Res 34:916–930CrossRefGoogle Scholar
  14. Kilkki P, Päivinen R (1986) Weibull function in the estimation of the basal area DBH-distribution. Silva Fenn 20:149–156CrossRefGoogle Scholar
  15. Koivuniemi J, Korhonen KT (2006) Inventory by compartments. In: Kangas A, Maltamo M (eds) Forest inventory. Methodology and applications, vol 10, Managing forest ecosystems. Springer, DordrechtGoogle Scholar
  16. Korhonen L, Pippuri I, Packalen P, Heikkinen V, Maltamo M, Heikkilä J (2013) Detection of the need for seedling stand tending using high-resolution remote sensing data. Silva Fenn 47. Article 952. Scholar
  17. Latifi H, Nothdurft A, Koch B (2010) Non-parametric prediction and mapping of standing timber volume and biomass in a temperate forest: application of multiple optical/LiDAR-derived predictors. Forestry 83:395–407CrossRefGoogle Scholar
  18. Maltamo M, Eerikäinen K, Pitkänen J, Hyyppä J, Vehmas M (2004) Estimation of timber volume and stem density based on scanning laser altimetry and expected tree size distribution functions. Remote Sens Environ 90:319–330CrossRefGoogle Scholar
  19. Maltamo M, Eerikäinen K, Packalén P, Hyyppä J (2006) Estimation of stem volume using laser scanning based canopy height metrics. Forestry 79:217–229CrossRefGoogle Scholar
  20. Maltamo M, Packalén P, Suvanto A, Korhonen KT, Mehtätalo L, Hyvönen P (2009) Combining ALS and NFI training data for forest management planning – a case study in Kuortane, Western Finland. Eur J For Res 128:305–317CrossRefGoogle Scholar
  21. Mustonen J, Packalén P, Kangas A (2008) Automatic segmentation of forest stands using canopy height model and aerial photography. Scand J For Res 23:534–545CrossRefGoogle Scholar
  22. Næsset E (1997) Estimating timber volume of forest stands using airborne laser scanner data. Remote Sens Environ 51:246–253CrossRefGoogle Scholar
  23. Næsset E (2002) Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sens Environ 80:88–99CrossRefGoogle Scholar
  24. Næsset E (2004) Practical large-scale forest stand inventory using a small airborne scanning laser. Scand J For Res 19:164–179CrossRefGoogle Scholar
  25. Næsset E (2005) Assessing sensor effects and effects of leaf-off and leaf-on canopy conditions on biophysical stand properties derived from small-footprint airborne laser data. Remote Sens Environ 98:356–370CrossRefGoogle Scholar
  26. Næsset E (2007) Airborne laser scanning as a method in operational forest inventory: status of accuracy assessments accomplished in Scandinavia. Scand J For Res 22:433–442CrossRefGoogle Scholar
  27. Næsset E (2009) Effects of different sensors, flying altitudes, and pulse repetition frequencies on forest canopy metrics and biophysical stand properties derived from small-footprint airborne laser data. Remote Sens Environ 113:148–159CrossRefGoogle Scholar
  28. Packalén P, Maltamo M (2006) Predicting the volume by tree species using airborne laser scanning and aerial photographs. For Sci 52:611–622Google Scholar
  29. Packalén P, Maltamo M (2007) The k-MSN method in the prediction of species specific stand attributes using airborne laser scanning and aerial photographs. Remote Sens Environ 109:328–341CrossRefGoogle Scholar
  30. Packalén P, Maltamo M (2008) The estimation of species-specific diameter distributions using airborne laser scanning and aerial photographs. Can J For Res 38:1750–1760CrossRefGoogle Scholar
  31. Packalén P, Suvanto A, Maltamo M (2009) A two stage method to estimate species-specific growing stock by combining ALS data and aerial photographs of known orientation parameters. Photogramm Eng Remote Sens 75:1451–1460CrossRefGoogle Scholar
  32. Päivinen R, Pussinen R, Tomppo E (1993) Assessment of boreal forest stands using field assessment and remote sensing. In: Operalization of remote sensing. Proceedings of Earsel 1993 Conference, 19–23 April 1993. ITC Enshedene, the Netherlands, 8 pGoogle Scholar
  33. Poso S (1994) Metsätalouden suunnittelu uusiin puihin. Voidaanko silmävaraisesta kuvioittaisesta arvioinnista luopua? Metsätieteeen Aikakauskirja 1/1994:85–89 (in Finnish)Google Scholar
  34. Rombouts J, Ferguson IS, Leech JW (2008) Variability of LiDAR volume prediction models for productivity assessment of radiata pine plantations in South Australia. In: Hill R, Rosette J, Suárez J (eds) Proceedings of SilviLaser 2008, 8th international conference on LiDAR applications in forest assessment and inventory, 17–19 September 2008. Heriot-Watt University, Edinburgh, UK, pp 39–49Google Scholar
  35. Suvanto A, Maltamo M, Packalén P, Kangas J (2005) Kuviokohtaisten puustotunnusten ennustaminen laserkeilauksella. Metsätieteen aikakauskirja 4/2005:413–428 (in Finnish)Google Scholar
  36. Tomppo E (2006) The Finnish multi-source National Forest Inventory – small area estimation and map production. In: Kangas A, Maltamo M (eds) Forest inventory. Methodology and applications, vol 10, Managing forest ecosystems. Springer, DordrechtGoogle Scholar
  37. Uuttera J, Hiltunen J, Rissanen P, Anttila P, Hyvönen P (2002) Uudet kuvioittaisen arvioinnin menetelmät – arvio soveltuvuudesta yksityismaiden metsäsuunnitteluun. Metsätieteen aikakauskirja 3/2002:523–531 (in Finnish)Google Scholar
  38. Uuttera J, Anttila P, Suvanto A, Maltamo M (2006) Yksityismetsien metsävaratiedon keruuseen soveltuvilla kaukokartoitusmenetelmillä estimoitujen puustotunnusten luotettavuus. Metsätieteen aikakauskirja 4/2006:507–519 (in Finnish)Google Scholar
  39. Varjo J (2002) Metsäsuunnittelun tietohuollon järjestäminen tulevaisuudessa. Metsätieteen aikakauskirja 3/2002:537–540 (in Finnish)Google Scholar
  40. Villikka M, Packalén P, Maltamo M (2012) The suitability of leaf-off airborne laser scanner data for forest inventory. Silva Fenn 46:99–110CrossRefGoogle Scholar
  41. Wallenius T, Laamanen R, Peuhkurinen J, Mehtätalo L, Kangas A (2012) Analysing the agreement between an airborne laser scanning based forest inventory and a control inventory – a case study in the state owned forests in Finland. Silva Fenn 46:111–129CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.School of Forest SciencesUniversity of Eastern FinlandJoensuuFinland

Personalised recommendations