Introduction to Forestry Applications of Airborne Laser Scanning

  • Jari VauhkonenEmail author
  • Matti Maltamo
  • Ronald E. McRoberts
  • Erik Næsset
Part of the Managing Forest Ecosystems book series (MAFE, volume 27)


Airborne laser scanning (ALS) has emerged as one of the most promising remote sensing technologies to provide data for research and operational applications in a wide range of disciplines related to management of forest ecosystems. This chapter starts with a brief historical overview of the early forest-related research on airborne Light Detection and Ranging which was first mentioned in the literature in the mid-1960s. The early applications of ALS in the mid-1990s are also reviewed. The two fundamental approaches to use of ALS in forestry applications are presented – the area-based approach and the single-tree approach. Many of the remaining chapters rest upon this basic description of these two approaches. Finally, a brief introduction to the broad range of forestry applications of ALS is given and references are provided to individual chapters that treat the different topics in more depth. Most chapters include detailed reviews of previous research and the state-of-the-art in the various topic areas. Thus, this book provides a unique collection of in-depth reviews and overviews of the research and application of ALS in a broad range of forest-related disciplines.


Global Position System Forest Inventory Spatial Unit Inertial Navigation System Airborne Laser Scanning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aldred AH, Bonner GM (1985) Application of airborne lasers to forest surveys. Information report PI-X-51, Technical Information and Distribution Center, Petawawa National Forestry Institute, Chalk River, Ontario, Canada, 62 ppGoogle Scholar
  2. Andersen H-E, Breidenbach J (2007) Statistical properties of mean stand biomass estimators in a LIDAR-bases double sampling forest survey design. In: Proceedings of the ISPRS workshop laser scanning 2007 and SilviLaser 2007, Espoo, Finland, 12–14 Sept 2007, IAPRS, vol XXXVI, Part 3/W52, 2007, pp 8–13Google Scholar
  3. Andersen H-E, Strunk J, Temesgen H, Atwood D, Winterberger K (2011) Using multi-level remote sensing and ground data to estimate forest biomass resources in remote regions: a case study in the boreal forests of interior Alaska. Can J Remote Sens 37(6):596–611CrossRefGoogle Scholar
  4. Arp H, Griesbach JC, Burns JP (1982) Mapping in tropical forests: a new approach using laser APR. Photogramm Eng Remote Sens 48:91–100Google Scholar
  5. Asner GP, Mascaro J, Muller-Landau HC, Vieilledent G, Vaudry R, Rasamoelina M, Hall JS, van Breugel M (2012) A universal airborne LiDAR approach for tropical forest carbon mapping. Oecologia 168:1147–1160PubMedCrossRefGoogle Scholar
  6. Baltsavias EP (1999) Airborne laser scanning: basic relations and formulas. ISPRS J Photogramm Remote Sens 54:199–214CrossRefGoogle Scholar
  7. Bater CW, Coops NC, Gergel SE, LeMay V, Collins D (2009) Estimation of standing dead tree class distributions in northwest central forests using lidar remote sensing. Can J For Res 39:1080–1091CrossRefGoogle Scholar
  8. Brandtberg T (1999) Automatic individual tree-based analysis of high spatial resolution remotely sensed data. Doctoral thesis. Swedish University of Agricultural Sciences, Centre for Image Analysis, Uppsala, Sweden. Acta Uni Agric Suec Silv 118, 155 ppGoogle Scholar
  9. Breidenbach J, Kublin E (2009) Estimating timber volume using airborne laser scanning data based on Bayesian methods. In: Proceedings of the IUFRO Division 4 conference extending forest inventories over space and time, Quebec City, Canada, 19–22 May 2009Google Scholar
  10. Breidenbach J, Kublin E, McGaughey R, Andersen H-E, Reutebuch S (2008) Mixed-effects models for estimating stand volume by means of small footprint airborne laser scanner data. Photogramm J Finland 21:4–15Google Scholar
  11. Breidenbach J, Næsset E, Lien V, Gobakken T, Solberg S (2010) Prediction of species specific forest inventory attributes using a nonparametric semi-individual tree crown approach based on fused airborne laser scanning and multispectral data. Remote Sens Environ 114:911–924CrossRefGoogle Scholar
  12. Breidenbach J, Næsset E, Gobakken T (2012) Improving k-nearest neighbor predictions in forest inventories by combining high and low density airborne laser scanning data. Remote Sens Environ 117:358–365CrossRefGoogle Scholar
  13. Coops NC, Wulder MA, Culvenor DS, St-Onge B (2004) Comparison of forest attributes extracted from fine spatial resolution multispectral and lidar data. Can J Remote Sens 30:855–866CrossRefGoogle Scholar
  14. Ene L, Næsset E, Gobakken T (2012) Single tree detection in heterogeneous boreal forests using airborne laser scanning and area based stem number estimates. Int J Remote Sens 33:5171–5193CrossRefGoogle Scholar
  15. Gobakken T, Næsset E (2008) Assessing effects of laser point density, ground sampling intensity, and field sample plot size on biophysical stand properties derived from airborne laser scanner data. Can J For Res 38:1095–1109CrossRefGoogle Scholar
  16. Heinzel J, Weinacker H, Koch B (2011) Prior-knowledge-based single-tree extraction. Int J Remote Sens 32:4999–5020CrossRefGoogle Scholar
  17. Hill RA, Hinsley SA, Gaveau DLA, Bellamy PE (2004) Predicting habitat quality for Great Tits (Parus major) with airborne laser scanning data. Int J Remote Sens 25:4851–4855CrossRefGoogle Scholar
  18. Holmgren J (2004) Prediction of tree height, basal area and stem volume using airborne laser scanning. Scand J For Res 19:543–553CrossRefGoogle Scholar
  19. Holmgren J, Persson Å (2004) Identifying species of individual trees using airborne laser scanner. Remote Sens Environ 90:415–423CrossRefGoogle Scholar
  20. Hudak AT, Crookston NL, Evans JS, Hall DE, Falkowski MJ (2008) Nearest neighbor imputation of species-level, plot-scale forest structure attributes from LiDAR data. Remote Sens Environ 112:2232–2245. Corrigendum: Remote Sens Environ 113:289–290Google Scholar
  21. Hyyppä J, Inkinen M (1999) Detecting and estimating attributes for single trees using laser scanner. Photogramm J Finland 16:27–42Google Scholar
  22. Hyyppä J, Hyyppä H, Leckie D, Gougeon F, Yu X, Maltamo M (2008) Review of methods of small-footprint airborne laser scanning for extracting forest inventory data in boreal forests. Int J Remote Sens 29:1339–1366CrossRefGoogle Scholar
  23. Hyyppä J, Hyyppä H, Yu X, Kaartinen H, Kukko A, Holopainen M (2009) Forest inventory using small-footprint airborne LiDAR. In: Shan J, Toth CK (eds) Topographic laser ranging and scanning: principles and processing. CRC Press/Taylor & Francis Group, Boca Raton, pp 335–370Google Scholar
  24. Hyyppä J, Yu X, Hyyppä H, Vastaranta M, Holopainen M, Kukko A, Kaartinen H, Jaakkola A, Vaaja M, Koskinen J, Alho P (2012) Advances in forest inventory using airborne laser scanning. Remote Sens 4:1190–1207CrossRefGoogle Scholar
  25. Jensen JLR, Humes KS, Conner T, Williams CJ, DeGroot J (2006) Estimation of biophysical characteristics for highly variable mixed-conifer stands using small-footprint lidar. Can J For Res 36:1129–1138CrossRefGoogle Scholar
  26. Junttila V, Maltamo M, Kauranne T (2008) Sparse Bayesian estimation of forest stand characteristics from ALS. For Sci 54:543–552Google Scholar
  27. Kaartinen H, Hyyppä J, Yu X, Vastaranta M, Hyyppä H, Kukko A, Holopainen M, Heipke C, Hirschmugl M, Morsdorf F, Næsset E, Pitkänen J, Popescu S, Solberg S, Wolf BM, Wu J-C (2012) An international comparison of individual tree detection and extraction using airborne laser scanning. Remote Sens 4:950–974CrossRefGoogle Scholar
  28. Koch B (2010) Status and future of laser scanning, synthetic aperture radar and hyperspectral remote sensing data for forest biomass assessment. ISPRS J Photogramm Remote Sens 65:581–590CrossRefGoogle Scholar
  29. Koch B, Dees M, van Brusselen J, Eriksson L, Fransson J, Gallaun H, Leblon B, McRoberts RE, Nilsson M, Schardt M, Seitz R, Waser L (2008) Forestry applications. In: Li Z, Chen J, Baltsavias E (eds) Advances in photogrammetry, remote sensing and spatial information sciences: 2008 ISPRS congress book. Taylor & Francis Group, Boca Raton, pp 439–465CrossRefGoogle Scholar
  30. Korpela I (2004) Individual tree measurements by means of digital aerial photogrammetry. Doctoral thesis, University of Helsinki, Department of Forest Resource Management, Helsinki, Finland. Silva Fenn Monograph 3, 93 pGoogle Scholar
  31. Korpela I, Dahlin B, Schäfer H, Bruun E, Haapaniemi F, Honkasalo J, Ilvesniemi S, Kuutti V, Linkosalmi M, Mustonen J, Salo M, Suomi O, Virtanen H (2007) Single-tree forest inventory using lidar and aerial images for 3D treetop positioning, species recognition, height and crown width estimation. In: Proceedings of the ISPRS workshop laser scanning 2007 and SilviLaser 2007, Espoo, Finland, 12–14 Sept 2007, IAPRS, vol XXXVI, Part 3/W52, 2007, pp 227–233Google Scholar
  32. Lähivaara T, Seppänen A, Kaipio JP, Vauhkonen J, Korhonen L, Tokola T, Maltamo M (2014) Bayesian approach to tree detection based on airborne laser scanning data. IEEE Trans Geosci Remote Sens. doi: 10.1109/TGRS.2013.2264548 Google Scholar
  33. Latifi H, Nothdurft A, Koch B (2010) Non-parametric prediction and mapping of standing timber volume and biomass in a temperate forest: applications of multiple optical/LiDAR-derived predictors. Forestry 83:395–407CrossRefGoogle Scholar
  34. Lefsky MA, Cohen WB, Spies TA (2001) An evaluation of alternate remote sensing products for forest inventory, monitoring, and mapping of Douglas-fir forests in western Oregon. Can J For Res 31:78–87CrossRefGoogle Scholar
  35. Lefsky MA, Cohen WB, Harding DJ, Parker GG, Acker SA, Gower ST (2002) Lidar remote sensing of above-ground biomass in three biomes. Glob Ecol Biogeogr 11:393–399CrossRefGoogle Scholar
  36. Lim K, Treitz P, Wulder M, St-Onge B, Flood M (2003) LiDAR remote sensing of forest structure. Prog Phys Geogr 27:88–106CrossRefGoogle Scholar
  37. Lindberg E, Holmgren J, Olofsson K, Wallerman J, Olsson H (2010) Estimation of tree lists from airborne laser scanning by combining single-tree and area-based methods. Int J Remote Sens 31:1175–1192CrossRefGoogle Scholar
  38. Maclean GA, Krabill WB (1986) Gross-merchantable timber volume estimation using an airborne lidar system. Can J Remote Sens 12:7–18Google Scholar
  39. Maclean GA, Martin GL (1984) Merchantable timer volume estimation using cross-sectional photogrammetric and densitometric methods. Can J For Res 14:803–810CrossRefGoogle Scholar
  40. Magnussen S, Boudewyn P (1998) Derivations of stand heights from airborne laser scanner data with canopy-based quantile estimators. Can J For Res 28:1016–1031CrossRefGoogle Scholar
  41. Magnussen S, Eggermont P, LaRiccia VN (1999) Recovering tree heights from airborne laser scanner data. For Sci 45:407–422Google Scholar
  42. Magnussen S, Næsset E, Gobakken T (2013) Prediction of tree-size distributions and inventory variables from cumulants of canopy height distributions. Forestry 86:583–595. doi: 10.1093/forestry/cpt022 CrossRefGoogle Scholar
  43. Magnusson M, Fransson JES, Holmgren J (2007) Effects on estimation accuracy of forest variables using different pulse density of laser data. For Sci 53:619–626Google Scholar
  44. Mäkinen A, Korpela I, Tokola T, Kangas A (2006) Effects of imaging conditions on crown diameter measurements from high-resolution aerial images. Can J For Res 36:1206–1217CrossRefGoogle Scholar
  45. Maltamo M, Eerikäinen K, Pitkänen J, Hyyppä J, Vehmas M (2004) Estimation of timber volume and stem density based on scanning laser altimetry and expected tree size distribution functions. Remote Sens Environ 90:319–330CrossRefGoogle Scholar
  46. Maltamo M, Malinen J, Packalén P, Suvanto A, Kangas J (2006a) Nonparametric estimation of stem volume using airborne laser scanning, aerial photography, and stand-register data. Can J For Res 36:426–436CrossRefGoogle Scholar
  47. Maltamo M, Eerikäinen K, Packalén P, Hyyppä J (2006b) Estimation of stem volume using laser scanning based canopy height metrics. Forestry 79:217–229CrossRefGoogle Scholar
  48. Maltamo M, Packalén P, Peuhkurinen J, Suvanto A, Pesonen A, Hyyppä J (2007) Experiences and possibilities of ALS based forest inventory in Finland. In: Proceedings of the ISPRS workshop laser scanning 2007 and SilviLaser 2007, Espoo, Finland, 12–14 Sept 2007, IAPRS, vol XXXVI, Part 3/W52, 2007, pp 270–279Google Scholar
  49. Maltamo M, Peuhkurinen J, Malinen J, Vauhkonen J, Packalén P, Tokola T (2009) Predicting tree attributes and quality characteristics of Scots pine using airborne laser scanning data. Silva Fenn 43:507–521CrossRefGoogle Scholar
  50. Maltamo M, Bollandsås OM, Næsset E, Gobakken T, Packalén P (2011a) Different plot selection strategies for field training data in ALS-assisted forest inventory. Forestry 84:23–31CrossRefGoogle Scholar
  51. Maltamo M, Packalén P, Kallio E, Kangas J, Uuttera J, Heikkilä J (2011b) Airborne laser scanning based stand level management inventory in Finland. In: Proceedings of the SilviLaser 2011 – 11th international conference of LiDAR applications for assessing forest ecosystems, Hobart, Australia, 16–20 Oct 2011Google Scholar
  52. McRoberts RE, Cohen WB, Næsset E, Stehman SV, Tomppo EO (2010) Using remotely sensed data to construct and assess forest attribute maps and related spatial products. Scand J For Res 25:340–367CrossRefGoogle Scholar
  53. Means JE, Acker SA, Fitt BJ, Renslow M, Emerson L, Hendrix CJ (2000) Predicting forest stand characteristics with airborne scanning lidar. Photogramm Eng Remote Sens 66:1367–1371Google Scholar
  54. Mehtätalo L, Nyblom J (2012) A model-based approach for ALS inventory: application for square grid spatial pattern. For Sci 58:106–118Google Scholar
  55. Melin M, Packalén P, Matala J, Mehtätalo L, Pusenius J (2013) Assessing and modeling moose (Alces alces) habitats with airborne laser scanning data. Int J Appl Earth Obs Geoinfo 23:389–396CrossRefGoogle Scholar
  56. Müller J, Brandl R (2009) Assessing biodiversity by remote sensing and ground survey in mountainous terrain: the potential of LiDAR to predict forest beetle assemblages. J Appl Ecol 46:897–905CrossRefGoogle Scholar
  57. Næsset E (1997a) Determination of mean tree height of forest stands using airborne laser scanner data. ISPRS J Photogramm Remote Sens 52:49–56CrossRefGoogle Scholar
  58. Næsset E (1997b) Estimating timber volume of forest stands using airborne laser scanner data. Remote Sens Environ 51:246–253CrossRefGoogle Scholar
  59. Næsset E (2002) Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sens Environ 80:88–99CrossRefGoogle Scholar
  60. Næsset E (2004) Practical large-scale forest stand inventory using a small airborne scanning laser. Scand J For Res 19:164–179CrossRefGoogle Scholar
  61. Næsset E (2007) Airborne laser scanning as a method in operational forest inventory: status of accuracy assessments accomplished in Scandinavia. Scand J For Res 22:433–442CrossRefGoogle Scholar
  62. Næsset E (2009) Effects of different sensors, flying altitudes, and pulse repetition frequencies on forest canopy metrics and biophysical stand properties derived from small-footprint airborne laser data. Remote Sens Environ 113:148–159CrossRefGoogle Scholar
  63. Næsset E, Bjerknes K-O (2001) Estimating tree heights and number of stems in young forest stands using airborne laser scanner data. Remote Sens Environ 78:328–340CrossRefGoogle Scholar
  64. Næsset E, Gobakken T (2008) Estimation of above- and below-ground biomass across regions of the boreal forest zone using airborne laser. Remote Sens Environ 112:3079–3090CrossRefGoogle Scholar
  65. Næsset E, Gobakken T, Holmgren J, Hyyppä H, Hyyppä J, Maltamo M, Nilsson M, Olsson H, Persson Å, Söderman U (2004) Laser scanning of forest resources: the Nordic experience. Scand J For Res 19:482–499CrossRefGoogle Scholar
  66. Næsset E, Bollandsås OM, Gobakken T (2005) Comparing regression methods in estimation of biophysical properties of forest stands from two different inventories using laser scanner data. Remote Sens Environ 94:541–553CrossRefGoogle Scholar
  67. Nilsson M (1996) Estimation of tree heights and stand volume using an airborne lidar system. Remote Sens Environ 56:1–7CrossRefGoogle Scholar
  68. Nelson R (2013) How did we get here? An early history of forestry lidar. Can J Remote Sens 39:S6–S17. doi: 10.5589/m13-011 CrossRefGoogle Scholar
  69. Nelson R, Krabill W, Maclean G (1984) Determining forest canopy characteristics using airborne laser data. Remote Sens Environ 15:201–212CrossRefGoogle Scholar
  70. Nelson R, Krabill W, Tonelli J (1988) Estimating forest biomass and volume using airborne laser data. Remote Sens Environ 24:247–267CrossRefGoogle Scholar
  71. Nord-Larsen T, Riis-Nielsen T (2010) Developing an airborne laser scanning dominant height model from a countrywide scanning survey and national forest inventory data. Scand J For Res 25:262–272CrossRefGoogle Scholar
  72. Ørka HO, Dalponte M, Gobakken T, Næsset E, Ene LT (2013) Characterizing forest species composition using multiple remote sensing data sources and inventory approaches. Scand J For Res 28:677–688CrossRefGoogle Scholar
  73. Packalén P, Maltamo M (2006) Predicting the plot volume by tree species using airborne laser scanning and aerial photographs. For Sci 52:611–622Google Scholar
  74. Packalén P, Maltamo M, Tokola T (2008) Detailed assessment using remote sensing techniques. In: Gadow K, Pukkala T (eds) Designing green landscapes, vol 15, Managing forest ecosystems. Springer, Dordrecht, pp 51–77CrossRefGoogle Scholar
  75. Persson Å, Holmgren J, Söderman U (2002) Detecting and measuring individual trees using an airborne laser scanner. Photogramm Eng Remote Sens 68:925–932Google Scholar
  76. Pesonen A, Maltamo M, Kangas A (2010) The comparison of airborne laser scanning-based probability layers as auxiliary information for assessing coarse woody debris. Int J Remote Sens 31:1245–1259CrossRefGoogle Scholar
  77. Peuhkurinen J, Maltamo M, Malinen J, Pitkänen J, Packalén P (2007) Preharvest measurement of marked stands using airborne laser scanning. For Sci 53:653–661Google Scholar
  78. Peuhkurinen J, Mehtätalo L, Maltamo M (2011) Comparing individual tree detection and the area-based statistical approach for the retrieval of forest stand characteristics using airborne laser scanning in Scots pine stands. Can J For Res 41:583–598CrossRefGoogle Scholar
  79. Popescu SC, Wynne RH, Nelson RF (2003) Measuring individual tree crown diameter with lidar and assessing its influence on estimating forest volume and biomass. Can J Remote Sens 29:564–577CrossRefGoogle Scholar
  80. Reitberger J, Schnörr C, Krzystek P, Stilla U (2009) 3D segmentation of single trees exploiting full waveform LIDAR data. ISPRS J Photogramm Remote Sens 64:561–574CrossRefGoogle Scholar
  81. Rempel RC, Parker AK (1964) An information note on an airborne laser terrain profiler for micro-relief studies. In: Proceedings of the 3rd symposium on remote sensing of environment, University of Michigan Institute of, Science and Technology, pp 321–337Google Scholar
  82. Salas C, Ene L, Gregoire TG, Næsset E, Gobakken T (2010) Modelling tree diameter from airborne laser scanning derived variables: a comparison of spatial statistical models. Remote Sens Environ 114:1277–1285CrossRefGoogle Scholar
  83. Schreier H, Lougheed J, Tucker C, Leckie D (1985) Automated measurements of terrain reflection and height variations using airborne infrared laser system. Int J Remote Sens 6:101–113CrossRefGoogle Scholar
  84. Solodukhin VI, Zhukov AY, Mazhugin IN, Narkevich VI (1976) Metody Izuchenija Vertikal’nyh Sechenij Drevostoev (Method of study of vertical sections of forest stands). Leningrad Scientific Research Institute of Forestry, Leningrad, 55 pp (in Russian)Google Scholar
  85. Solodukhin VI, Mazhugin IN, Zhukov AY, Narkevich VI, Popov YV, Kulyasov AG, Marasin LE, Sokolov SA (1979) Lazernaya aeros’emka profilei lesa (Laser aerial profiling of forest). Lesnoe Khozyaistvo 10:43–45 (in Russian)Google Scholar
  86. Strunk J, Temesgen H, Andersen H-E, Flewelling JP, Madsen L (2012) Effects of pulse density and sample size on a model-assisted approach to estimate forest inventory variables. Can J For Res 38:644–654Google Scholar
  87. Takahashi T, Yamamoto K, Senda Y, Tsuzuku M (2005) Predicting individual stem volumes of sugi (Cryptomeria japonica D. Don) plantations in mountainous areas using small-footprint airborne LiDAR. J For Res 10:305–312CrossRefGoogle Scholar
  88. Tang S, Dong P, Buckles BP (2013) Three-dimensional surface reconstruction of tree canopy from lidar point clouds using a region-based level set method. Int J Remote Sens 34:1373–1385CrossRefGoogle Scholar
  89. Thomas V, Treitz P, McGaughey JH, Morisson I (2006) Mapping stand-level forest biophysical variables for a mixedwood boreal forest using lidar: an examination of scanning density. Can J For Res 36:34–47CrossRefGoogle Scholar
  90. Vastaranta M, Kankare V, Holopainen M, Yu X, Hyyppä J, Hyyppä H (2012) Combination of individual tree detection and area-based approach in imputation of forest variables using airborne laser data. ISPRS J Photogramm Remote Sens 67:73–79CrossRefGoogle Scholar
  91. Vauhkonen J, Korpela I, Maltamo M, Tokola T (2010) Imputation of single-tree attributes using airborne laser scanning-based height, intensity, and alpha shape metrics. Remote Sens Environ 114:1263–1276CrossRefGoogle Scholar
  92. Vauhkonen J, Mehtätalo L, Packalén P (2011) Combining tree height samples produced by airborne laser scanning and stand management records to estimate plot volume in Eucalyptus plantations. Can J For Res 41:1649–1658CrossRefGoogle Scholar
  93. Vauhkonen J, Ene L, Gupta S, Heinzel J, Holmgren J, Pitkänen J, Solberg S, Wang Y, Weinacker H, Hauglin KM, Lien V, Packalén P, Gobakken T, Koch B, Næsset E, Tokola T, Maltamo M (2012a) Comparative testing of single-tree detection algorithms under different types of forest. Forestry 85:27–40CrossRefGoogle Scholar
  94. Vauhkonen J, Seppänen A, Packalén P, Tokola T (2012b) Improving species-specific plot volume estimates based on airborne laser scanning and image data using alpha shape metrics and balanced field data. Remote Sens Environ 124:534–541CrossRefGoogle Scholar
  95. Vauhkonen J, Packalen P, Malinen J, Pitkänen J, Maltamo M (2014) Airborne laser scanning based decision support for wood procurement planning. Scand J For Res. doi: 10.1080/02827581.2013.813063 Google Scholar
  96. Wehr A, Lohr U (1999) Airborne laser scanning – an introduction and overview. ISPRS J Photogramm Remote Sens 54:68–82CrossRefGoogle Scholar
  97. Woods M, Pitt D, Penner M, Lim K, Nesbitt D, Etheridge D, Treitz P (2011) Operational implementation of a LiDAR inventory in Boreal Ontario. For Chron 87:512–528CrossRefGoogle Scholar
  98. Zhao K, Popescu S, Nelson R (2009) Lidar remote sensing of forest biomass: a scale-invariant estimation approach using airborne lasers. Remote Sens Environ 113:182–196CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Jari Vauhkonen
    • 1
    Email author
  • Matti Maltamo
    • 2
  • Ronald E. McRoberts
    • 3
  • Erik Næsset
    • 4
  1. 1.Department of Forest SciencesUniversity of HelsinkiHelsinkiFinland
  2. 2.School of Forest SciencesUniversity of Eastern FinlandJoensuuFinland
  3. 3.Northern Research StationU. S. Forest ServiceSaint PaulUSA
  4. 4.Department of Ecology and Natural Resource ManagementNorwegian University of Life SciencesÅsNorway

Personalised recommendations