Current Status and Future Challenges in Cephalopod Culture

  • Roger VillanuevaEmail author
  • António V. Sykes
  • Erica A.G. Vidal
  • Carlos Rosas
  • Jaruwat Nabhitabhata
  • Lidia Fuentes
  • José Iglesias


This chapter presents an overall perspective on the current status of cephalopod culture, its bottlenecks and future challenges. It focuses on the species that have received more research effort and consequently accumulated more scientific literature during the present century, namely Sepia officinalis, Sepioteuthis lessoniana, Octopus maya and Octopus vulgaris. Knowledge regarding physiology, metabolism and nutrition of different species is still lacking. Two main challenges are identified: the development of a sustainable artificial diet and the control of reproduction. Understanding cephalopod physiology and nutrition will probably be the biggest challenge in developing the large-scale culture of this group of molluscs on a medium to long term. In addition, zootechnical parameters need future research and improvement. The performance of an ethical experimentation with cephalopods is strongly encouraged and any zootechnical development should be performed and adapted accordingly. The potential of cephalopod culture extends far beyond its use for research and human consumption and probably it will be translated in a remarkable production in the coming years.


Artificial feed development Sustainable aquaculture Cephalopod culture bottlenecks Control of reproduction Embryo Hatchling Paralarvae Juvenile Subadult and adult life phases Metabolism and nutrition 



RV was funded by the research project CALOCEAN-2 (AGL2012-39077) from the Ministry of Economy and Competitiveness of Spain (MINECO). AS was funded by a Post-Doc grant (SFRH/BPD/36100/2007) and projects SEPIAMETA (PTDC/MAR/102348/2008), SEPIABREED (PTDC/MAR/120876/2010), SEPIATECH (31-03-05-FEP-2) and ASSEMBLE (227799 FP7) from the Fundação para a Ciência e a Tecnologia and DGPA PROMAR Programme of the Portuguese Government as well as from the European FP7 Infrastructure Programme. EAGV was funded by the Brazilian National Research Council (CNPq- Pro 307204/2011-1). CR was funded by DGAPA-UNAM project IN212012 and CONACYT- CB201001 project No. 150810, México. LF was funded by the Subprogram of Technical Support Staff (PTA2010-3326-T) and JI by the research project OCTOPHYS (AGL2010-22120-CO3-01), both from MINECO, Spain.


  1. Andrews PLR, Darmaillacq AS, Dennison N, Gleadall IG, Hawkins P, Messenger JB, Osorio D, Smith VJ, Smith JA (2013) The identification and management of pain, suffering and distress in cephalopods, including anaesthesia, analgesia and humane killing. J Exp Mar Biol Ecol 447:46–64CrossRefGoogle Scholar
  2. Benedito-Palos L, Navarro JC, Sitjà-Bobadilla A, Bell G, Kaushik S, Pérez-Sánchez J (2008) High levels of vegetable oils in plant protein-rich diets fed to gilthead sea bream (Sparus aurata L.): growth performance, muscle fatty acid profiles and histological alterations of target tissues. Br J Nutr 100:992–1003CrossRefGoogle Scholar
  3. Benkendorff K (2010) Molluscan biological and chemical diversity: secondary metabolites and medicinal resources produced by marine molluscs. Biol Rev 85:757–775Google Scholar
  4. Boal JG, Golden DK (1999) Distance chemoreception in the common cuttlefish, Sepia officinalis (Mollusca, Cephalopoda). J Exp Mar Biol Ecol 235:307–317CrossRefGoogle Scholar
  5. Boal JG, Marsh SE (1998) Social recognition using chemical cues in cuttlefish (Sepia officinalis Linnaeus, 1758). J Exp Mar Biol Ecol 230:183–192CrossRefGoogle Scholar
  6. Boal JG, Prosser KN, Holm JB, Simmons TL, Haas RE, Nagle GT (2010) Sexually mature cuttlefish are attracted to the eggs of conspecifics. J Chem Ecol 36:834–836CrossRefGoogle Scholar
  7. Budelmann BU (1995) The cephalopod nervous system: what evolutions has made of the molluscan design. In: Breidbach O, Kutsuch W (eds) The nervous system of invertebrates. An evolutionary and comparative approach. Birkhauser Verlag, Basel, pp 115–138CrossRefGoogle Scholar
  8. Byern J, Klepal W (2006) Adhesive mechanisms in cephalopods: a review. Biofouling 22:329–338CrossRefGoogle Scholar
  9. Cadman J, Zhou S, Chen Y, Li Q (2012) Cuttlebone: characterisation, application and development of biomimetic materials. J Bionic Eng 9:367–376CrossRefGoogle Scholar
  10. Cerezo-Valverde J, Martínez-Llorens S, Vidal A, Jover M, Rodríguez C, Estefanell J, Gairín J, Domingues P, Rodríguez C, García B (2013) Amino acids composition and protein quality evaluation of marine species and meals for feed formulations in cephalopods. Aquac Int 21:413–433CrossRefGoogle Scholar
  11. Ceulemans S, Coutteau P, Robles-Arozarena R (2003) Fishmeal, fish oil replacements in sea bream, sea bass diets need nutritional compensation. Global Aquac Advocate 6:46–51Google Scholar
  12. Chen SG, Wang JF, Xue CH, Li H, Sun BB, Xue Y, Chai WG (2010) Sulfation of a squid ink polysaccharide and its inhibitory effect on tumor cell metastasis. Carbohydr Polym 81:560–566CrossRefGoogle Scholar
  13. Cyran N, Klinger L, Scott R, Griffiths C, Schwaha T, Zheden V, Ploszczanski L, Byern J (2010) Characterization of the adhesive systems in cephalopods. In: Byern J, Grunwald I (eds) Biological adhesive systems. Springer, Vienna, pp 53–86CrossRefGoogle Scholar
  14. Darmaillacq AS, Lesimple C, Dickel L (2008) Embryonic visual learning in the cuttlefish, Sepia officinalis. Anim Behav 76:131–134CrossRefGoogle Scholar
  15. Dias J, Yúfera M, Valente LMP, Rema P (2010) Feed transit and apparent protein, phosphorus and energy digestibility of practical feed ingredients by Senegalese sole (Solea senegalensis). Aquaculture 302:94–99CrossRefGoogle Scholar
  16. Díaz-López M, Pérez MJ, Acosta NG, Tocher DR, Jerez S, Lorenzo A, Rodriguez C (2009) Effect of dietary substitution of fish oil by Echium oil on growth, plasma parameters and body lipid composition in gilthead seabream (Sparus aurata L.). Aquac Nutr 15:500–512CrossRefGoogle Scholar
  17. Dorey N, Melzner F, Martin S, Oberhänsli F, Teyssié JL, Bustamante P, Gattuso JP, Lacoue-Labarthe T (2013) Ocean acidification and temperature rise: effects on calcification during early development of the cuttlefish Sepia officinalis. Mar Biol 160:2007–2022CrossRefGoogle Scholar
  18. Enault J, Zatylny-Gaudin C, Bernay B, Lefranc B, Leprince J, Baudy-Floc’h M, Henry J (2012) A complex set of sex pheromones identified in the cuttlefish Sepia officinalis. PLoS ONE 7(10):e46531CrossRefGoogle Scholar
  19. Enes P, Peres H, Couto A, Oliva-Teles A (2010) Growth performance and metabolic utilization of diets including starch, dextrin, maltose or glucose as carbohydrate source by gilthead sea bream (Sparus aurata) juveniles. Fish Physiol Biochem 36:903–910CrossRefGoogle Scholar
  20. Feral JP (1978) Regeneration of arms of cuttlefish Sepia officinalis L (Cephalopoda, Sepioidea): 1—Morphological study. Cahiers Biol Marine 19:355–361Google Scholar
  21. Feral JP (1979) Regeneration of the arms of Sepia officinalis L (Cephalopoda, Sepioidea): 2—Histologic and cytologic study. Cahiers Biol Marine 20:29–42Google Scholar
  22. Feral JP (1988) Wound-healing after arm amputation in Sepia officinalis (Cephalopoda, Sepioidea). J Invert Pathol 52:380–388CrossRefGoogle Scholar
  23. Forsythe JW, Derusha RH, Hanlon RT (1994) Growth, reproduction and life-span of Sepia officinalis (Cephalopoda, Mollusca) cultured through 7 consecutive generations. J Zool 233:175–192CrossRefGoogle Scholar
  24. Gherardi F, Aquiloni L, Tricarico E (2012) Revisiting social recognition systems in invertebrates. Anim Cognit 15:745–762CrossRefGoogle Scholar
  25. Gomathi P, Nair JR, Sherief PM (2010) Antibacterial activity in the accessory nidamental gland extracts of the Indian squid, Loligo duvauceli Orbigny. Indian J Mar Sci 39:100–104Google Scholar
  26. Guinot D, Monroig O, Navarro JC, Varó I, Amat F, Hontoria F (2013) Enrichment of Artemia metanauplii in phospholipids and essential fatty acids as a diet for common octopus (Octopus vulgaris) paralarvae. Aquac Nutr 19:837–844CrossRefGoogle Scholar
  27. Gutowska M, Melzner F, Pörtner H, Meier S (2010) Cuttlebone calcification increases during exposure to elevated seawater pCO2 in the cephalopod Sepia officinalis. Mar Biol 157:1653–1663CrossRefGoogle Scholar
  28. Hanlon RT, Messenger JB (1996) Cephalopod behaviour. Cambridge University Press, New YorkGoogle Scholar
  29. Hansen AC, Rosenlund G, Karlsen O, Koppe W, Hemre GI, Karlsen Ø (2007) Total replacement of fish meal with plant proteins in diets for Atlantic cod (Gadus morhua L.) I. Effects on growth and protein retention. Aquaculture 272:599–611CrossRefGoogle Scholar
  30. Iglesias J, Sánchez FJ, Bersano JGF, Carrasco JF, Dhont J, Fuentes L, Linares F, Muñoz JL, Okumura S, Roo J, van der Meeren T, Vidal EAG, Villanueva R (2007) Rearing of Octopus vulgaris paralarvae: Present status, bottlenecks and trends. Aquaculture 266:1–15CrossRefGoogle Scholar
  31. Kannan S, Rocha JHG, Agathopoulos S, Ferreira JMF (2007) Fluorine-substituted hydroxyapatite scaffolds hydrothermally grown from aragonitic cuttlefish bones. Acta Biomater 3:243–249CrossRefGoogle Scholar
  32. Kim B-S, Kim JS, Sung H-M, You H-K, Lee J (2012) Cellular attachment and osteoblast differentiation of mesenchymal stem cells on natural cuttlefish bone. J Biomed Mater Res A 100A:1673–1679CrossRefGoogle Scholar
  33. Laschi C, Cianchetti M, Mazzolai B, Margheri L, Follador M, Dario P (2012) Soft robotic arm inspired by the octopus. Advanced Robotics 26:709–727CrossRefGoogle Scholar
  34. Le Bihan E, Zatylny C, Perrin A, Koueta N (2006) Post-mortem changes in viscera of cuttlefish Sepia officinalis L. during storage at two different temperatures. Food Chem 98:39–51CrossRefGoogle Scholar
  35. Le Bihan E, Perrin A, Koueta N (2007) Effect of different treatments on the quality of cuttlefish (Sepia officinalis L.) viscera. Food Chem 104:345–352CrossRefGoogle Scholar
  36. Lee PG (1994) Nutrition of cephalopods: fueling the system. Mar Fresh Behav Physiol 25:35–51CrossRefGoogle Scholar
  37. Lee PG, Turk PE, Yang WT, Hanlon RT (1994) Biological characteristics and biomedical applications of the squid Sepioteuthis lessoniana cultured through multiple generations. Biol Bull 186:328–341CrossRefGoogle Scholar
  38. Legall S, Feral C (1985) Neuroendocrine metabolism of reproduction in a marine invertebrate, Sepia officinalis—functional analogy with the hypothalmo-hypophyseal axis of vertebrates. Ann Endocrinol-Paris 46:N22–N22Google Scholar
  39. Liu CH, Li XD, Li YH, Feng Y, Zhou S, Wang FS (2008) Structural characterisation and antimutagenic activity of a novel polysaccharide isolated from Sepiella maindroni ink. Food Chem 110:807–813CrossRefGoogle Scholar
  40. Liu H, Luo P, Chen S, Shang J (2011) Effects of squid ink on growth performance, antioxidant functions and immunity in growing broiler chickens. Asian-Australasian J Anim Sci 24:1752–1756CrossRefGoogle Scholar
  41. Martínez R, Santos R, Álvarez A, Cuzon G, Arena L, Mascaró M, Pascual C, Rosas C (2011) Partial characterization of hepatopancreatic and extracellular digestive proteinases of wild and cultivated Octopus maya. Aquac Int 19:445–457CrossRefGoogle Scholar
  42. Mather JA, Anderson RC (2007) Ethics and invertebrates: a cephalopod perspective. Dis Aquat Org 75:119–129CrossRefGoogle Scholar
  43. Mochizuki A (1979) An antiseptic effect of cuttlefish ink. Bull Jap Soc Sci Fish 45:1401–1403CrossRefGoogle Scholar
  44. Mohanraju R, Marri DB, Karthick P, Narayana K, Murthy KN, Ramesh Ch (2013) Antibacterial activity of certain cephalopods from Andamans, India. Indian J Phar Biol Sci 3:450–455Google Scholar
  45. Moltschaniwskyj NA, Hall K, Marian J, Nishiguchi M, Sakai M, Shulman DJ, Sinclair B, Sinn DL, Staudinger M, Van Gelderen R, Villanueva R, Warnke K (2007) Ethical and welfare considerations when using cephalopods as experimental animals. Rev Fish Biol Fish 17:455–476CrossRefGoogle Scholar
  46. Morillo-Velarde PS, Cerezo-Valverde J, Serra Llinares RM, Garcia BG (2011) Energetic contribution of carbohydrates during starvation in common octopus (Octopus vulgaris). J Mollusc Stud 77:318–320CrossRefGoogle Scholar
  47. Nabhitabhata J, Nilaphat P, Promboon P, Jaroongpattananon C, Nilaphat G, Reunreng A (2005) Performance of simple large-scale cephalopod culture system in Thailand. Phuket Mar Biol Cent Res Bull 66:337–350Google Scholar
  48. Nithya M, Ambikapathy V, Panneerselvam A (2011) Effect of pharaoh’s cuttlefish ink against bacterial pathogens. Asian J Plant Sci Res 4:49–55Google Scholar
  49. Noyola J, Mascaró M, Caamal C, Noreña-Barroso E, Díaz F, Re AD, Sanchez A, Rosas C (2013) Effect of temperature on energetic balance and fatty acid composition of early juveniles of Octopus maya. J Exp Mar Biol Ecol 445:156–165CrossRefGoogle Scholar
  50. Pörtner HO, Farrell AP (2008) Physiology and climate change. Science 322:690–692CrossRefGoogle Scholar
  51. Pratoomyot J, Bell JG, Tocher DR, Bendiksen E (2010) Effects of increasing replacement of dietary fishmeal with plant protein sources on growth performance and body lipid composition of Atlantic salmon (Salmo salar L.). Aquaculture 305:124–132CrossRefGoogle Scholar
  52. Richard A (1971) Contribuition à l’étude expérimentale de la croissance et de la maturation sexuelle de Sepia officinalis L. (Mollusque, Céphalopode). Université de Lille, Lille, p 264Google Scholar
  53. Rocha JHG, Lemos AF, Agathopoulos S et al (2005) Scaffolds for bone restoration from cuttlefish. Bone 37:850–857CrossRefGoogle Scholar
  54. Rohrbach B, Schmidtberg H (2006) Sepia arms and tentacles: Model systems for studying the regeneration of brachial appendages. Vie Milieu 56:175–190Google Scholar
  55. Rosas C, Tut J, Baeza J, Sánchez A, Sosa V, Pascual C, Arena L, Domingues P, Cuzon G (2008) Effect of type of binder on growth, digestibility, and energetic balance of Octopus maya. Aquaculture 275:291–297CrossRefGoogle Scholar
  56. Rosas C, Valero A, Caamal-Monsreal C, Uriarte I, Farias A, Gallardo P, Sánchez A, Domingues P (2013) Effects of dietary protein sources on growth, survival and digestive capacity of Octopus maya juveniles (Mollusca: Cephalopoda). Aquac Res 44:1029–1044CrossRefGoogle Scholar
  57. Senan VP, Sherief PM, Nair JR (2013) Cytotoxic effect of ink extracts of cuttlefish and squid on chick embryo fibroblasts’. Int J Phar Sci Res 4:1893–1896Google Scholar
  58. Sio FD (2011) Leviathan and the soft animal: Medical humanism and the invertebrate models for higher nervous functions, 1950s–90s. Med Hist 55:369–374CrossRefGoogle Scholar
  59. Strugnell JM, Cherel Y, Cooke IR, Gleadall IG, Hochberg FG, Ibáñez CM, Jorgensen E, Laptikhovsky VV, Linse K, Norman M, Vecchione M, Voight JR, Allcock AL (2011) The Southern Ocean: Source and sink? Deep Sea Res Part 2 Tropical Stud Oceanogr 58:196–204CrossRefGoogle Scholar
  60. Sundaram S (2009) The various uses of cephalopods. Fish Chimes 29:23–25Google Scholar
  61. Sykes AV, Domingues PM, Andrade JP (2006) Effects of using live grass shrimp (Palaemonetes varians) as the only source of food for the culture of cuttlefish, Sepia officinalis (Linnaeus, 1758). Aquac Int 14:551–568CrossRefGoogle Scholar
  62. Sykes AV, Gonçalves RA, Andrade JP (2013) Early weaning of cuttlefish (Sepia officinalis) with frozen grass shrimp (Palaemonetes varians) from the first day after hatching. Aquac Res 44:1815–1823 doi:10.1111/j.1365-2109.2012.03186.xGoogle Scholar
  63. Tricarico E, Borrelli L, Gherardi F, Fiorito G (2011) I know my neighbour: Individual recognition in Octopus vulgaris. Plos One 6(4):e18710CrossRefGoogle Scholar
  64. Uriarte I, Espinoza V, Herrera M, Zúñiga O, Olivares A, Carbonell P, Pino S, Farias A, Rosas C (2012) Effect of temperature on embryonic development of Octopus mimus under controlled conditions. J Exp Mar Biol Ecol 416-417:168–175CrossRefGoogle Scholar
  65. Villanueva R (1994) Decapod crab zoeae as food for rearing cephalopod paralarvae. Aquaculture 128:143–152CrossRefGoogle Scholar
  66. Villanueva R, Norman MD (2008) Biology of the planktonic stages of benthic octopuses. Oceanogr Mar Biol Ann Rev 46:105–202Google Scholar
  67. Walsh LS, Turk PE, Forsythe JW, Lee PG (2002) Mariculture of the loliginid squid Sepioteuthis lessoniana through seven successive generations. Aquaculture 212:245–262CrossRefGoogle Scholar
  68. Wells MJ (1978) Octopus—physiology and behaviour of an advanced invertebrate. Chapman & Hall, LondonGoogle Scholar
  69. Williamson R, Chrachri A (2004) Cephalopod neural networks. Neurosignals 13:87–98CrossRefGoogle Scholar
  70. Zúñiga O, Olivares A, Rojo M, Chimal ME, Díaz F, Uriarte I, Rosas C (2013) Thermoregulatory behavior and oxygen consumption of Octopus mimus paralarvae: the effect of age. J Therm Biol 38:86–91CrossRefGoogle Scholar
  71. Zúñiga OR, Olivares AP, Ossadón LR (1995) Influencia de la luz en la maduración sexual de hembras Octopus mimus. Estudios Oceanol 14:75–76Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Roger Villanueva
    • 1
    Email author
  • António V. Sykes
    • 2
  • Erica A.G. Vidal
    • 3
  • Carlos Rosas
    • 4
  • Jaruwat Nabhitabhata
    • 5
  • Lidia Fuentes
    • 6
  • José Iglesias
    • 6
  1. 1.Institut de Ciències del Mar (CSIC)BarcelonaSpain
  2. 2.CCMAR-CIMAR L.A., Centro de Ciências do Mar do AlgarveUniversidade do Algarve, Campus de GambelasFaroPortugal
  3. 3.Centro de Estudos do Mar (CEM)Universidade Federal do Paraná (UFPR), Cx. P. 61, Pontal do Paraná PR83255-976Brazil
  4. 4.Unidad Multidisciplinaria de Docencia e Investigación, Facultad de CienciasUniversidad Nacional Autónoma de México (UNAM)YucatánMexico
  5. 5.Excellence Centre for Biodiversity of Peninsular Thailand (CBIPT), Faculty of SciencePrince of Songkla UniversityHatyaiThailand
  6. 6.Oceanographic Center of VigoInstituto Español de Oceanografía (IEO)VigoSpain

Personalised recommendations