Carbon Nanotube-Based Sensor Platform for Bioelectronic Nose

  • Juhun Park
  • Hye Jun Jin
  • Hyungwoo Lee
  • Shashank Shekhar
  • Daesan Kim
  • Seunghun Hong
Chapter

Abstract

Since carbon nanotubes (CNTs) have an extremely large surface-to-volume ratio, the electrical properties of CNTs can be easily changed by the adsorption of small molecules. Due to this attribute, CNT-based sensors can detect small molecules with a high sensitivity. Recently, bioelectronic noses based on CNTs have been developed by immobilizing olfactory receptors or nanovesicles on the surface of CNTs. By taking advantages of CNT structures, these bioelectronic nose devices allowed one to detect target odorants with a high sensitivity. Furthermore, they exhibited highly selective responses to target odorants with a single-carbon-atomic resolution just like human olfactory systems. These bioelectronic nose devices based on CNTs can be utilized for various practical applications such as food screening, medical diagnostics, and the fabrication of artificial noses.

References

  1. 1.
    Reich S, Thomsen C, Maultzsch J (2004) Carbon nanotubes: basic concepts and physical properties. Wiley-VCH Weinheim, CambridgeGoogle Scholar
  2. 2.
    Deheer WA, Chatelain A, Ugarte D (1995) A carbon nanotube field-emission electron source. Science 270(5239):1179–1180CrossRefGoogle Scholar
  3. 3.
    Postma HWC, Teepen T, Yao Z, Grifoni M, Dekker C (2001) Carbon nanotube single-electron transistors at room temperature. Science 293(5527):76–79PubMedCrossRefGoogle Scholar
  4. 4.
    Kim JR, So HM, Kim JJ, Kim J (2002) Spin-dependent transport properties in a single-walled carbon nanotube with mesoscopic Co contacts. Phys Rev B 66(23):233–401Google Scholar
  5. 5.
    Lee M, Im J, Lee BY, Myung S, Kang J, Huang L, Kwon YK, Hong S (2006) Linker-free directed assembly of high-performance integrated devices based on nanotubes and nanowires. Nat Nanotechnol 1(1):66–71PubMedCrossRefGoogle Scholar
  6. 6.
    Dai HJ, Hafner JH, Rinzler AG, Colbert DT, Smalley RE (1996) Nanotubes as nanoprobes in scanning probe microscopy. Nature 384(6605):147–150CrossRefGoogle Scholar
  7. 7.
    Tans SJ, Devoret MH, Dai HJ, Thess A, Smalley RE, Geerligs LJ, Dekker C (1997) Individual single-wall carbon nanotubes as quantum wires. Nature 386(6624):474–477CrossRefGoogle Scholar
  8. 8.
    Bachtold A, Hadley P, Nakanishi T, Dekker C (2001) Logic circuits with carbon nanotube transistors. Science 294(5545):1317–1320PubMedCrossRefGoogle Scholar
  9. 9.
    Yu WJ, Chae SH, Lee SY, Duong DL, Lee YH (2011) Ultra-transparent, flexible single-walled carbon nanotube non-volatile memory device with an oxygen-decorated graphene electrode. Adv Mater 23(16):1889–1893PubMedCrossRefGoogle Scholar
  10. 10.
    Lee NS, Chung DS, Han IT, Kang JH, Choi YS, Kim HY, Park SH, Jin YW, Yi WK, Yun MJ, Jung JE, Lee CJ, You JH, Jo SH, Lee CG, Kim JM (2001) Application of carbon nanotubes to field emission displays. Diam Relat Mater 10(2):265–270CrossRefGoogle Scholar
  11. 11.
    Wu ZC, Chen ZH, Du X, Logan JM, Sippel J, Nikolou M, Kamaras K, Reynolds JR, Tanner DB, Hebard AF, Rinzler AG (2004) Transparent, conductive carbon nanotube films. Science 305(5688):1273–1276PubMedCrossRefGoogle Scholar
  12. 12.
    Baughman RH, Cui CX, Zakhidov AA, Iqbal Z, Barisci JN, Spinks GM, Wallace GG, Mazzoldi A, De Rossi D, Rinzler AG, Jaschinski O, Roth S, Kertesz M (1999) Carbon nanotube actuators. Science 284(5418):1340–1344PubMedCrossRefGoogle Scholar
  13. 13.
    Zhang DH, Ryu K, Liu XL, Polikarpov E, Ly J, Tompson ME, Zhou CW (2006) Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes. Nano Lett 6(9):1880–1886PubMedCrossRefGoogle Scholar
  14. 14.
    Allen BL, Kichambare PD, Star A (2007) Carbon nanotube field-effect-transistor-based biosensors. Adv Mater 19(11):1439–1451CrossRefGoogle Scholar
  15. 15.
    Li J, Lu YJ, Ye Q, Cinke M, Han J, Meyyappan M (2003) Carbon nanotube sensors for gas and organic vapor detection. Nano Lett 3(7):929–933CrossRefGoogle Scholar
  16. 16.
    Kong J, Soh HT, Cassell AM, Quate CF, Dai HJ (1998) Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 395(6705):878–881CrossRefGoogle Scholar
  17. 17.
    Huang Y, Duan XF, Wei QQ, Lieber CM (2001) Directed assembly of one-dimensional nanostructures into functional networks. Science 291(5504):630–633PubMedCrossRefGoogle Scholar
  18. 18.
    Li XL, Zhang L, Wang XR, Shimoyama I, Sun XM, Seo WS, Dai HJ (2007) Langmuir-Blodgett assembly of densely aligned single-walled carbon nanotubes from bulk materials. J Am Chem Soc 129(16):4890–4891PubMedCrossRefGoogle Scholar
  19. 19.
    Li YL, Kinloch IA, Windle AH (2004) Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 304(5668):276–278PubMedCrossRefGoogle Scholar
  20. 20.
    Yu GH, Cao AY, Lieber CM (2007) Large-area blown bubble films of aligned nanowires and carbon nanotubes. Nat Nanotechnol 2(6):372–377PubMedCrossRefGoogle Scholar
  21. 21.
    Wang YH, Maspoch D, Zou SL, Schatz GC, Smalley RE, Mirkin CA (2006) Controlling the shape, orientation, and linkage of carbon nanotube features with nano affinity templates. Proc Natl Acad Sci U S A 103(7):2026–2031PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Martin CA, Sandler JKW, Windle AH, Schwarz MK, Bauhofer W, Schulte K, Shaffer MSP (2005) Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites. Polymer 46(3):877–886CrossRefGoogle Scholar
  23. 23.
    Xia YN, Mrksich M, Kim E, Whitesides GM (1995) Microcontact printing of octadecylsiloxane on the surface of silicon dioxide and its application in microfabrication. J Am Chem Soc 117(37):9576–9577CrossRefGoogle Scholar
  24. 24.
    Hong S, Kim TH, Lee J, Byun KE, Koh J, Kim T, Myung S (2007) “Surface-programmed assembly” of nanotube/nanowire-based integrated devices. Nano 2(6):333–350CrossRefGoogle Scholar
  25. 25.
    Im J, Huang L, Kang J, Lee M, Lee DJ, Rao SG, Lee NK, Hong S (2006) “Sliding kinetics” of single-walled carbon nanotubes on self-assembled monolayer patterns: beyond random adsorption. J Chem Phys 124(22):224707PubMedCrossRefGoogle Scholar
  26. 26.
    Lee BY, Sung MG, Lee J, Baik KY, Kwon YK, Lee MS, Hong S (2011) Universal parameters for carbon nanotube network-based sensors: can nanotube sensors be reproducible? ACS Nano 5(6):4373–4379PubMedCrossRefGoogle Scholar
  27. 27.
    Maeng S, Moon S, Kim S, Lee HY, Park SJ, Kwak JH, Park KH, Park J, Choi Y, Udrea F, Milne WI, Lee BY, Lee M, Hong S (2008) Highly sensitive NO(2) sensor array based on undecorated single-walled carbon nanotube monolayer junctions. Appl Phys Lett 93(11):113111CrossRefGoogle Scholar
  28. 28.
    Kong J, Franklin NR, Zhou CW, Chapline MG, Peng S, Cho KJ, Dai HJ (2000) Nanotube molecular wires as chemical sensors. Science 287(5453):622–625PubMedCrossRefGoogle Scholar
  29. 29.
    Besteman K, Lee JO, Wiertz FGM, Heering HA, Dekker C (2003) Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Lett 3(6):727–730CrossRefGoogle Scholar
  30. 30.
    Kim TH, Lee J, Hong S (2009) Highly selective environmental nanosensors based on anomalous response of carbon nanotube conductance to mercury ions. J Phys Chem C 113(45):19393–19396CrossRefGoogle Scholar
  31. 31.
    Kim B, Lim D, Jin HJ, Lee HY, Namgung S, Ko Y, Park SB, Hong S (2012) Family-selective detection of antibiotics using antibody-functionalized carbon nanotube sensors. Sens Actuators B-Chem 166–167:193–199CrossRefGoogle Scholar
  32. 32.
    Lee J, Jo M, Kim TH, Ahn JY, Lee DK, Kim S, Hong S (2011) Aptamer sandwich-based carbon nanotube sensors for single-carbon-atomic-resolution detection of non-polar small molecular species. Lab Chip 11(1):52–56PubMedCrossRefGoogle Scholar
  33. 33.
    Kim TH, Lee SH, Lee J, Song HS, Oh EH, Park TH, Hong S (2009) Single-carbon-atomic-resolution detection of odorant molecules using a human olfactory receptor-based bioelectronic nose. Adv Mater 21(1):91–94CrossRefGoogle Scholar
  34. 34.
    Rubenstein LA, Lanzara RG (1998) Activation of G protein-coupled receptors entails cysteine modulation of agonist binding. J Mol Struc (Theochem) 430:57–71CrossRefGoogle Scholar
  35. 35.
    Rubenstein LA, Zauhar RJ, Lanzara RG (2006) Molecular dynamics of a biophysical model for beta(2)-adrenergic and G protein-coupled receptor activation. J Mol Graph Model 25(4):396–409PubMedCrossRefGoogle Scholar
  36. 36.
    Jin HJ, Lee SH, Kim TH, Park J, Song HS, Park TH, Hong S (2012) Nanovesicle-based bioelectronic nose platform mimicking human olfactory signal transduction. Biosens Bioelectron 35(1):335–341PubMedCrossRefGoogle Scholar
  37. 37.
    Park J, Lim JH, Jin HJ, Namgung S, Lee SH, Park TH, Hong S (2012) A bioelectronic sensor based on canine olfactory nanovesicle-carbon nanotube hybrid structures for the fast assessment of food quality. Analyst 137(14):3249–3254PubMedCrossRefGoogle Scholar
  38. 38.
    Kim TH, Song HS, Jin HJ, Lee SH, Namgung S, Kim UK, Park TH, Hong S (2011) “Bioelectronic super-taster” device based on taste receptor-carbon nanotube hybrid structures. Lab Chip 11(13):2262–2267PubMedCrossRefGoogle Scholar
  39. 39.
    Jin HJ, Ahn JM, Park J, Moon SJ, Hong S (2013) “Chemical-pain sensor” based on nanovesicle-carbon nanotube hybrid structures. Biosens Bioelectron 49(15):86–91PubMedCrossRefGoogle Scholar
  40. 40.
    Chou MZ, Mtui T, Gao YD, Kohler M, Middleton RE (2004) Resiniferatoxin binds to the capsaicin receptor (TRPV1) near the extracellular side of the S4 transmembrane domain. Biochemistry 43(9):2501–2511PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Juhun Park
    • 1
  • Hye Jun Jin
    • 1
  • Hyungwoo Lee
    • 1
  • Shashank Shekhar
    • 1
  • Daesan Kim
    • 2
  • Seunghun Hong
    • 2
  1. 1.Department of Physics and Astronomy, and Institute of Applied PhysicsSeoul National UniversitySeoulRepublic of Korea
  2. 2.Department of Biophysics and Chemical BiologySeoul National UniversitySeoulRepublic of Korea

Personalised recommendations