The Extremely Thermophilic Genus Caldicellulosiruptor: Physiological and Genomic Characteristics for Complex Carbohydrate Conversion to Molecular Hydrogen

  • Jeffrey V. Zurawski
  • Sara E. Blumer-Schuette
  • Jonathan M. Conway
  • Robert M. KellyEmail author
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 38)


Extremely thermophilic, carbohydrate-utilizing bacteria from the genus Caldicellulosiruptor should be considered for biohydrogen production to take advantage of their broad growth substrate range and high substrate conversion efficiency. In fact, Caldicellulosiruptor species produce molecular hydrogen at yields approaching the Thauer limit of 4 mol H2/mol glucose equivalent. Caldicellulosiruptor species can utilize pentoses, hexoses, di/oligosaccharides, as well as complex polysaccharides, including crystalline cellulose. The broad appetite of these organisms relates to the natural environment of Caldicellulosiruptor, where they thrive at high temperatures (65–78 °C), utilizing the variable saccharide composition of lignocellulosic biomass as growth substrate. The ability to degrade recalcitrant plant biomass and utilize a wide variety of polysaccharides in their fermentation pathways sets Caldicellulosiruptor species apart from many other candidate biofuel-producing microorganisms. The conversion of lignocellulose to fuels in Caldicellulosiruptor is driven by an array of novel multi-domain glycoside hydrolases that work synergistically to degrade plant polysaccharides into oligo/monosaccharides that enter the cytoplasm via an array of carbohydrate specific ABC sugar transporters. These carbohydrates are then processed through a series of catabolic pathways, after which they enter the EMP pathway to produce reducing equivalents in the form of NADH and Fdred. The reducing equivalents are ultimately utilized by both cytoplasmic and membrane-bound hydrogenases to form molecular hydrogen. Recently completed genome sequences for a number of Caldicellulosiruptor species have revealed important details concerning how plant biomass is deconstructed enzymatically and shown significant diversity within the genus with respect to lignocellulose conversion strategies.


Hydrogen Production Glycoside Hydrolase Crystalline Cellulose Hydrogen Yield Glycoside Hydrolase Family 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



ATP binding cassette;


Alcohol dehydrogenase;


Carbohydrate-active enzyme;


Carbohydrate binding module;


Carbon catabolite repression;


Carbohydrate esterase;


Carbohydrate uptake;






Reduced ferredoxin;


Glycoside hydrolase;


Lactate dehydrogenase;




Polysaccharide lyase;


Pentose phosphate pathway;


Phosphoenolpyruvate-dependent phosphotransferase;


S-layer homology;


Tricarboxylic acid



This work was funded in part by the BioEnergy Science Center, a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science.


  1. Ahring BK (1995) Isolation and characterization of Caldicellulosiruptor lactoaceticus sp. nov., an extremely thermophilic, cellulolytic, anaerobic bacterium. Arch Microbiol 163:223–230CrossRefGoogle Scholar
  2. Andrews SR, Charnock SJ, Lakey JH, Davies GJ, Claeyssens M, Nerinckx W, Underwood M, Sinnott ML, Warren AJ, Gilbert HJ (2000) Substrate specificity in glycoside hydrolase family 10. J Biol Chem 275:23027–230333PubMedCrossRefGoogle Scholar
  3. Bayer EA, Kenig R, Lamed R (1983) Adherence of Clostridium thermocellum to cellulose. J Bacteriol 156:818–827PubMedCentralPubMedGoogle Scholar
  4. Bayer EA, Shimon LJW, Shoham Y, Lamed R (1998) Cellulosomes – structure and ultrastructure. J Struct Biol 124:221–234PubMedCrossRefGoogle Scholar
  5. Bielen AAM, Willquist K, Engman J, van der Oost J, van Niel EWJ, Kengen SWM (2010) Pyrophosphate as a central energy carrier in the hydrogen-producing extremely thermophilic Caldicellulosiruptor saccharolyticus. FEMS Microbiol Lett 307:48–54PubMedCrossRefGoogle Scholar
  6. Blumer-Schuette SE, Lewis DL, Kelly RM (2010) Phylogenetic, microbiological, and glycoside hydrolase diversities within the extremely thermophilic, plant biomass-degrading genus Caldicellulosiruptor. Appl Environ Microbiol 76:8084–8092PubMedCentralPubMedCrossRefGoogle Scholar
  7. Blumer-Schuette SE, Ozdemir I, Mistry D, Lucas S, Lapidus A, Cheng JF, Goodwin LA, Pitluck S, Land ML, Hauser LJ, Woyke T, Mikhailova N, Pati A, Kyrpides NC, Ivanova N, Detter JC, Walston-Davenport K, Han S, Adams MWW, Kelly RM (2011) Complete genome sequences for the anaerobic, extremely thermophilic plant biomass-degrading bacteria Caldicellulosiruptor hydrothermalis, Caldicellulosiruptor kristjanssonii, Caldicellulosiruptor kronotskyensis, Caldicellulosiruptor owensensis and Caldicellulo-siruptor lactoaceticus. J Bacteriol 193:1483–1484PubMedCentralPubMedCrossRefGoogle Scholar
  8. Blumer-Schuette SE, Giannone RJ, Zurawski JV, Ozdemir I, Ma Q, Yin Y, Xu Y, Kataeva I, Poole FL, Adams MWW, Hamilton-Brehm SD, Elkins JG, Larimer FW, Land ML, Hauser L, Cottingham RW, Hettich RL, Kelly RM (2012) Caldicellulosiruptor core and pan genomes reveal determinants for non-cellulosomal thermophilic deconstruction of plant biomass. J Bacteriol 194:4015–4028PubMedCentralPubMedCrossRefGoogle Scholar
  9. Bredholt S, Sonne-Hansen J, Nielsen P, Mathrani M, Ahring BK (1999) Caldicellulosiruptor kristjanssonii sp. nov., a cellulolytic, extremely thermophilic, anaerobic bacterium. Int J Syst Bacteriol 49:991–996PubMedCrossRefGoogle Scholar
  10. Brown SD, Guss AM, Karpinets TV, Parks JM, Smolin N, Yang S, Land ML, Klingeman DM, Bhandiwad A, Rodriguez M, Raman B, Shao X, Mielenz JR, Smith JC, Keller M, Lynd LR (2011) Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum. Proc Natl Acad Sci U S A 108:13752–13757PubMedCentralPubMedCrossRefGoogle Scholar
  11. Brückner R, Titgemeyer F (2002) Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization. FEMS Microbiol Lett 209:141–148PubMedCrossRefGoogle Scholar
  12. Burdette D, Zeikus JG (1994) Purification of acetaldehyde dehydrogenase and alcohol dehydrogenases from Thermoanaerobacter ethanolicus 39E and characterization of the secondary-alcohol dehydrogenase (2 degrees Adh) as a bifunctional alcohol dehydrogenase–acetyl-CoA reductive thioestesterase. Biochem J 302:163–170PubMedGoogle Scholar
  13. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 37:D233–D238PubMedCentralPubMedCrossRefGoogle Scholar
  14. Caufrier F, Martinou A, Dupont C, Bouriotis V (2003) Carbohydrate esterase family 4 enzymes: substrate specificity. Carbohydr Res 338:687–692PubMedCrossRefGoogle Scholar
  15. Chou CJ, Jenney FE, Adams MWW, Kelly RM (2008) Hydrogenesis in hyperthermophilic microorganisms: implications for biofuels. Metab Eng 10:394–404PubMedCrossRefGoogle Scholar
  16. Conners SB, Montero CI, Donald A, Shockley KR, Johnson MR, Chhabra R, Kelly RM (2005) An expression-driven approach to the prediction of carbohydrate transport and utilization regulons in the hyperthermophilic bacterium Thermotoga maritima. J Bacteriol 187:7267–7282PubMedCentralPubMedCrossRefGoogle Scholar
  17. Dam P, Kataeva I, Yang SJ, Zhou F, Yin Y, Chou W, Poole FL, Westpheling J, Hettich R, Giannone R, Lewis D, Kelly R, Gilbert HJ, Henrissat B, Xu Y, Adams MWW (2011) Insights into plant biomass conversion from the genome of the anaerobic thermophilic bacterium Caldicellulosiruptor bescii DSM 6725. Nucleic Acids Res 39:3240–3254PubMedCentralPubMedCrossRefGoogle Scholar
  18. de Vrije T, Mars AE, Budde MAW, Lai MH, Dijkema C, de Waard P, Claassen PAM (2007) Glycolytic pathway and hydrogen yield studies of the extreme thermophile Caldicellulosiruptor saccharolyticus. Appl Microbiol Biotechnol 74:1358–1367PubMedCrossRefGoogle Scholar
  19. de Vrije T, Bakker RR, Budde MAW, Lai MH, Mars AE, Claassen PA (2009) Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana. Biotechnol Biofuels 2:12–27PubMedCentralPubMedCrossRefGoogle Scholar
  20. Donnison AM, Brockelsby CM, Morgan HW (1986) Abstract, pp 14–15 (page 203). Microbe 86, XIV international congress of microbiology, Manchester, EnglandGoogle Scholar
  21. Elkins JG, Lochner A, Hamilton-Brehm SD, Davenport KW, Podar M, Brown SD, Land ML, Hauser L, Klingeman DM, Raman B, Goodwin LA, Tapia R, Meincke LJ, Detter JC, Bruce DC, Han CS, Palumbo AV, Cottingham RW, Keller M, Graham DE (2010) Complete genome sequence of the cellulolytic thermophile Caldicellulosiruptor obsidiansis OB47T. J Bacteriol 192:6099–6100PubMedCentralPubMedCrossRefGoogle Scholar
  22. Fardeau ML, Salinas MB, L’Haridon S, Jeanthon C, Verhé F, Cayol JL, Patel BKC, Garcia JL, Ollivier B (2004) Isolation from oil reservoirs of novel thermophilic anaerobes phylogenetically related to Thermoanaerobacter subterraneus: reassignment of T. subterraneus, Thermoanearobacter yonseiensis, Thermoanaerobacter tengcongensis and Carboxydibrachium pacificum to Caldanaerobacter subterraneus gen. nov., sp. nov., comb. nov as four novel species. Int J Syst Evol Microbiol 54:467–474PubMedCrossRefGoogle Scholar
  23. Fontes CMGA, Gilbert HJ (2010) Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates. Annu Rev Biochem 79:655–681PubMedCrossRefGoogle Scholar
  24. Gancedo JM (1998) Yeast carbon catabolite repression. Microbiol Mol Biol R62:334–361Google Scholar
  25. Hallenbeck PC, Benemann JR (2002) Biological hydrogen production; fundamentals and limiting processes. Int J Hydrogen Energ 27:1185–1193CrossRefGoogle Scholar
  26. Hamilton-Brehm SD, Mosher JJ, Vishnivetskaya T, Podar M, Carroll S, Allman S, Phelps TJ, Keller M, Elkins J (2010) Caldicellulosiruptor obsidiansis sp. nov., an anaerobic, extremely thermophilic, cellulolytic bacterium isolated from Obsidian Pool, Yellowstone National Park. Appl Environ Microbiol 76:1014–1020PubMedCentralPubMedCrossRefGoogle Scholar
  27. Heinonen JK (2001) Biological role of inorganic pyrophosphate. Kluwer, NorwellCrossRefGoogle Scholar
  28. Hemme CL, Fields MW, He Q, Deng Y, Lin L, Tu Q, Mouttaki H, Zhou A, Feng X, Zuo Z, Ramsay BD, He Z, Wu L, Van Nostrand J, Xu J, Tang YJ, Wiegel J, Phelps T, Zhou J (2011) Correlation of genomic and physiological traits of Thermoanaerobacter species with biofuel yields. Appl Environ Microbiol 77:7998–8008PubMedCentralPubMedCrossRefGoogle Scholar
  29. Hisamatsu M, Impallomeni G, York WS, Albersheim P, Darvill AG (1991) A new undecasaccharide subunit of xyloglucans with two alpha-L-fucosyl residues. Carbohydr Res 211:117–129PubMedCrossRefGoogle Scholar
  30. Holden HM, Rayment I, Thoden JB (2003) Structure and function of enzymes of the Leloir pathway for galactose metabolism. J Biol Chem 278:43885–43888PubMedCrossRefGoogle Scholar
  31. Huang C, Patel BK, Mah RA, Baresi L (1998) Caldicellulosiruptor owensensis sp. nov., an anaerobic, extremely thermophilic, xylanolytic bacterium. Int J Syst Bacteriol 48:91–97PubMedCrossRefGoogle Scholar
  32. Ivanova G, Rákhely G, Kovács KL (2009) Thermophilic biohydrogen production from energy plants by Caldicellulosiruptor saccharolyticus and comparison with related studies. Int J Hydrog Energy 34:3659–3670CrossRefGoogle Scholar
  33. Janecek S (1997) Alpha-amylase family: molecular biology and evolution. Prog Biophys Mol Biol 67:67–97PubMedCrossRefGoogle Scholar
  34. Kádár Z, de Vrije T, van Noorden GE, Budde MAW, Szengyel Z, Réczey K, Claassen PAM (2004) Yields from glucose, xylose, and paper sludge hydrolysate during hydrogen production by the extreme thermophile Caldicellulosiruptor saccharolyticus. Appl Biochem Biotechnol 113–116:497–508PubMedCrossRefGoogle Scholar
  35. Kataeva IA, Yang SJ, Dam P, Poole FL, Yin Y, Zhou F, Chou W, Xu Y, Goodwin L, Sims DR, Detter JC, Hauser LJ, Westpheling J, Adams MWW (2009) Genome sequence of the anaerobic, thermophilic, and cellulolytic bacterium Anaerocellum thermophilum DSM 6725. J Bacteriol 191:3760–3761PubMedCentralPubMedCrossRefGoogle Scholar
  36. Komalavilas P, Mort AJ (1989) The acetylation at O-3 of galacturonic acid in the rhamnose-rich portion of pectins. Carbohydr Res 189:261–272CrossRefGoogle Scholar
  37. Koning SM, Albers SV, Konings WN, Driessen AJM (2002) Sugar transport in (hyper)thermophilic archaea. Res Microbiol 153:61–67PubMedCrossRefGoogle Scholar
  38. Kotrba P, Inui M, Yukawa H (2001) Bacterial phosphotransferase system (PTS) in carbohydrate uptake and control of carbon metabolism. J Biosci Bioeng 92:502–517PubMedCrossRefGoogle Scholar
  39. Kruger NJ, von Schaewen A (2003) The oxidative pentose phosphate pathway: structure and organisation. Curr Opin Plant Biol 6:236–246PubMedCrossRefGoogle Scholar
  40. Ljunggren M, Willquist K, Zacchi G, van Niel EW (2011) A kinetic model for quantitative evaluation of the effect of hydrogen and osmolarity on hydrogen production by Caldicellulosiruptor saccharolyticus. Biotechnol Biofuels 4:31–46PubMedCentralPubMedCrossRefGoogle Scholar
  41. Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D, Danchin EDJ, Grigoriev IV, Harris P, Jackson M, Kubicek CP, Han CS, Ho I, Larrondo LF, de Leon AL, Magnuson JK, Merino S, Misra M, Nelson B, Putnam N, Robbertse B, Salamov AA, Schmoll M, Terry A, Thayer N, Westerholm-Parvinen A, Schoch CL, Yao J, Barabote R, Barbote R, Nelson MA, Detter C, Bruce D, Kuske CR, Xie G, Richardson P, Rokhsar DS, Lucas SM, Rubin EM, Dunn-Coleman N, Ward M, Brettin TS (2008) Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol 26:553–560PubMedCrossRefGoogle Scholar
  42. Mertens E (1991) Pyrophosphate-dependent phosphofructokinase, an anaerobic glycolytic enzyme? FEBS Lett 285:1–5PubMedCrossRefGoogle Scholar
  43. Miroshnichenko ML, Kublanov IV, Kostrikina NA, Tourova TP, Kolganova TV, Birkeland NK, Bonch-Osmolovskaya EA (2008) Caldicellulosiruptor kronotskyensis sp. nov. and Caldicellulosiruptor hydrothermalis sp. nov., two extremely thermophilic, cellulolytic, anaerobic bacteria from Kamchatka thermal springs. Int J Syst Evol Microbiol 58:1492–1496PubMedCrossRefGoogle Scholar
  44. Navarre WW, Schneewind O (1999) Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 63:174–229PubMedCentralPubMedGoogle Scholar
  45. Ozdemir I, Blumer-Schuette SE, Kelly RM (2012) S-layer homology domain proteins Csac_0678 and Csac_2722 are implicated in plant polysaccharide deconstruction by the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus. Appl Environ Microbiol 78:768–777PubMedCentralPubMedCrossRefGoogle Scholar
  46. Pérez J, Muñoz-Dorado J, de la Rubia T, Martínez J (2002) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol 5:53–63PubMedCrossRefGoogle Scholar
  47. Rainey FA, Donnison AM, Janssen PH, Saul D, Rodrigo A, Bergquist PL, Daniel RM, Stackenbrandt E, Morgan HW (1994) Description of Caldicellulosiruptor saccharolyticus gen. nov., sp. nov: an obligately anaerobic, extremely thermophilic, cellulolytic bacterium. FEMS Microbiol Lett 120:263–266PubMedCrossRefGoogle Scholar
  48. Reddy N, Yang Y (2005) Biofibers from agricultural byproducts for industrial applications. Trends Biotechnol 23:22–27PubMedCrossRefGoogle Scholar
  49. Ridley B, O’Neill M (2001) Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 57:929–967PubMedCrossRefGoogle Scholar
  50. Rubin EM (2008) Genomics of cellulosic biofuels. Nature 454:841–845PubMedCrossRefGoogle Scholar
  51. Sára M, Sleytr UB (2000) S-layer proteins. J Bacteriol 182:859–868PubMedCentralPubMedCrossRefGoogle Scholar
  52. Schneider E (2001) ABC transporters catalyzing carbohydrate uptake. Res Microbiol 152:303–310PubMedCrossRefGoogle Scholar
  53. Schut GJ, Adams MWW (2009) The iron-hydrogenase of Thermotoga maritima utilizes ferredoxin and NADH synergistically: a new perspective on anaerobic hydrogen production. J Bacteriol 191:4451–4457PubMedCentralPubMedCrossRefGoogle Scholar
  54. Shoseyov O, Shani Z, Levy I (2006) Carbohydrate binding modules: biochemical properties and novel applications. Microbiol Mol Biol Rev 70:283–295PubMedCentralPubMedCrossRefGoogle Scholar
  55. Soboh B, Linder D, Hedderich R (2004) A multisubunit membrane-bound [NiFe] hydrogenase and an NADH-dependent Fe-only hydrogenase in the fermenting bacterium Thermoanaerobacter tengcongensis. Microbiology 150:2451–2463PubMedCrossRefGoogle Scholar
  56. Stulke J, Hillen W (2000) Regulation of carbon catabolism in Bacillus species. Annu Rev Microbiol 54:849–880PubMedCrossRefGoogle Scholar
  57. Te’o VS, Saul DJ, Bergquist P (1995) celA, another gene encoding for a multidomain cellulase from the extreme thermophile Caldocellum saccharolyticum. Appl Microbiol Biotechnol 43:291–296PubMedCrossRefGoogle Scholar
  58. Thauer RK, Jungermann K, Decker K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180PubMedCentralPubMedGoogle Scholar
  59. van de Werken HJG, Verhaart MRA, VanFossen AL, Willquist K, Lewis DL, Nichols JD, Goorissen HP, Mongodin EF, Nelson KE, van Niel EWJ, Stams AJM, Ward DE, de Vos WM, van der Oost J, Kelly RM, Kengen SWM (2008) Hydrogenomics of the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus. Appl Environ Microbiol 74:6720–6729PubMedCentralPubMedCrossRefGoogle Scholar
  60. van Groenestijn JW, Geelhoed JS, Goorissen HP, Meesters KPM, Stams AJM, Claassen PAM (2009) Performance and population analysis of a non-sterile trickle bed reactor inoculated with Caldicellulosiruptor saccharolyticus, a thermophilic hydrogen producer. Biotechnol Bioeng 102:1361–1367PubMedCrossRefGoogle Scholar
  61. van Niel EWJ, Budde MAW, de Haas GG, van der Wal FJ, Claassen PAM, Stams AJM (2002) Distinctive properties of high hydrogen producing extreme thermophiles, Caldicellulosiruptor saccharolyticus and Thermotoga elfii. Int J Hydrog Energy 27:1391–1398CrossRefGoogle Scholar
  62. van Niel EWJ, Claassen PAM, Stams AJM (2003) Substrate and product inhibition of hydrogen production by the extreme thermophile, Caldicellulosiruptor saccharolyticus. Biotechnol Bioeng 81:255–262PubMedCrossRefGoogle Scholar
  63. van Wyk JPH (2001) Biotechnology and the utilization of biowaste as a resource for bioproduct development. Trends Biotechnol 19:172–177PubMedCrossRefGoogle Scholar
  64. Vanfossen AL, Verhaart MRA, Kengen SMW, Kelly RM (2009) Carbohydrate utilization patterns for the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus reveal broad growth substrate preferences. Appl Environ Microbiol 75:7718–7724PubMedCentralPubMedCrossRefGoogle Scholar
  65. VanFossen AL, Ozdemir I, Zelin SL, Kelly RM (2011) Glycoside hydrolase inventory drives plant polysaccharide deconstruction by the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus. Biotechnol Bioeng 108:1559–1569PubMedCrossRefGoogle Scholar
  66. Verhaart MRA, Bielen AAM, van der Oost J, Stams AJM, Kengen SWM (2010) Hydrogen production by hyperthermophilic and extremely thermophilic bacteria and archaea: mechanisms for reductant disposal. Environ Technol 31:993–1003PubMedCrossRefGoogle Scholar
  67. Warner JB, Lolkema JS, Warner JB, Lolkema JS (2003) CcpA-dependent carbon catabolite repression in bacteria. Microbiol Mol Biol R67:475–490CrossRefGoogle Scholar
  68. Willquist K, van Niel EWJ (2010) Lactate formation in Caldicellulosiruptor saccharolyticus is regulated by the energy carriers pyrophosphate and ATP. Metab Eng 12:282–290PubMedCrossRefGoogle Scholar
  69. Willquist K, van Niel EWJ (2012) Growth and hydrogen production characteristics of Caldicellulosiruptor saccharolyticus on chemically defined minimal media. Int J Hydrog Energy 37:4925–4929CrossRefGoogle Scholar
  70. Willquist K, Claassen PAM, van Niel EWJ (2009) Evaluation of the influence of CO2 on hydrogen production by Caldicellulosiruptor saccharolyticus. Int J Hydrog Energy 34:4718–4726CrossRefGoogle Scholar
  71. Willquist K, Pawar SS, Niel EWJ (2011) Reassessment of hydrogen tolerance in Caldicellulosiruptor saccharolyticus. Microb Cell Fact 10:111–122PubMedCentralPubMedCrossRefGoogle Scholar
  72. Woodward J, Mattingly S (1996) In vitro hydrogen production by glucose dehydrogenase and hydrogenase. Nat Biotechnol 14:872–874PubMedCrossRefGoogle Scholar
  73. Yang SJ, Kataeva I, Wiegel J, Yin Y, Dam P, Xu Y, Westpheling J, Adams MWW (2010) Classification of “Anaerocellum thermophilum” strain DSM 6725 as Caldicellulosiruptor bescii sp. nov. Int J Syst Evol Microbiol 60:2011–2015PubMedCrossRefGoogle Scholar
  74. Zeidan AA, van Niel EWJ (2009) Developing a thermophilic hydrogen-producing co-culture for efficient utilization of mixed sugars. Int J Hydrog Energy 34:4524–4528CrossRefGoogle Scholar
  75. Zeidan AA, van Niel EWJ (2010) A quantitative analysis of hydrogen production efficiency of the extreme thermophile Caldicellulosiruptor owensensis OLT. Int J Hydrog Energy 35:1128–1137CrossRefGoogle Scholar
  76. Zeidan AA, Rådström P, van Niel EWJ (2010) Stable coexistence of two Caldicellulosiruptor species in a de novo constructed hydrogen-producing co-culture. Microb Cell Fact 9:102–115PubMedCentralPubMedCrossRefGoogle Scholar
  77. Zverlov V, Mahr IS, Riedel K, Bronnenmeier K (1998) Properties and gene structure of a bifunctional cellulolytic enzyme (CelA) from the extreme with separate glycosyl hydrolase family 9 and 48 catalytic domains. Microbiology 144:457–465PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Jeffrey V. Zurawski
    • 1
  • Sara E. Blumer-Schuette
    • 1
  • Jonathan M. Conway
    • 1
  • Robert M. Kelly
    • 1
    Email author
  1. 1.Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleighUSA

Personalised recommendations