Observing the Agulhas Current With Sea Surface Temperature and Altimetry Data: Challenges and Perspectives

  • Marjolaine KrugEmail author
  • Paolo Cipollini
  • Francois Dufois


The Agulhas Current is a challenging region for satellite remote sensing observations. Strong evaporation rates above the current core and the Retroflection reduce the number of cloud-free observations from Infra-Red sensors, while microwave radiometers and altimeters measurements suffer from the proximity of the current to the coast in the northern region. Infra-Red observations of the Agulhas Current significantly improved with the launch of the Meteosat Second Generation satellite, but Infra-Red Sea Surface Temperature datasets still suffer from inadequate cloud masking algorithms, particularly in regions of strong temperature gradient. Despite both Sea Surface Height and Sea Surface Temperature observations being severely compromised in the northern Agulhas current, a synergetic use of merged altimetry and high frequency Infra-Red Sea Surface Temperature imagery provides a means to track deep-sea eddies, document their influence on the Agulhas Current and helps us improve our understanding of the Agulhas Current variability.


Advance Very High Resolution Radiometer Advance Very High Resolution Radiometer Anticyclonic Eddy Microwave Radiometer Mean Dynamic Topography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Beal LM, de Ruijter WPM, Biastoch A, Zahn R (2011) On the role of the Agulhas system in ocean circulation and climate. Nature 472(7344):429–436. 09983CrossRefGoogle Scholar
  2. Biastoch A, Reason CJC, Lutjeharms JRE, Boebel O (1999) The importance of flow in the Mozambique channel to seasonality in the greater Agulhas current system. Geophys Res Lett 26(21):3321–3324. Scholar
  3. Bryden HL, Beal LM, Duncan LM (2005) Structure and transport of the Agulhas current and its temporal variability. J Oceanogr 61:479–492CrossRefGoogle Scholar
  4. Byrne DA, McClean JL (2008) Sea level anomaly signals in the Agulhas Current region. Geophys Res Lett 35(13):L13601. Scholar
  5. Casal TGD, Beal LM, Lumpkin R, Johns WE (2009) Structure and downstream evolution of the Agulhas current system during a quasi-synoptic survey in february—march 2003. J Geophys Res 114:C03001. doi:10.1029/2008JC004954Google Scholar
  6. Casey KS, Brandon TB, Cornillon P, Evans R (2010) The past, present, and future of the AVHRR pathfinder SST program. In: Barale V, Gower J, Alberotanza (eds) Oceanography from space: revisited. Springer, pp 273–287.
  7. Chelton DB, Schlax MG, Samelson RM (2011) Global observations of nonlinear mesoscale eddies. Progrogr Oceanogr 91(2):167–216. doi:10.1016/j.pocean.2011.01.002CrossRefGoogle Scholar
  8. Chelton DB, Walsh EJ, MacArthur JL (1989) Pulse compression and sea level tracking in satellite altimetry. J Atmos Oceanic Technol 6:407–438CrossRefGoogle Scholar
  9. Collard F, Mouche A, Chapron B, Danilo C, Johannessen JA (2008) Routine high resolution observation of selected major surface currents from space. Proceedings of the Workshop SEASAR 2008, ESA SP-656Google Scholar
  10. de Ruijter WPM, Ridderinkhof H, Lutjeharms JRE, Schouten MW, Veth C (2002) Observations of the flow in the Mozambique channel. Geophys Res Lett 29:1401–1403CrossRefGoogle Scholar
  11. de Ruijter WPM, van Aken HM, Beier EJ, Lutjeharms JRE, Matano RP, Schouten MW (2004) Eddies and dipoles around South Madagascar: formation, pathways and large-scale impact. Deep-Sea Res Part I 51(3):383–400. doi:10.1016/j.dsr.2003.10.011CrossRefGoogle Scholar
  12. Dufois F, Penven P, Whittle C, Veitch, J (2012) On the warm nearshore bias in Pathfinder monthly SST products over Eastern Boundary Upwelling Systems. Ocean Modelling, 47:13–118.Google Scholar
  13. Emery WJ (2001) Estimating sea surface temperature from infrared satellite and in Situ temperature data. B Am Meteorol Soc 82(12):2773–2786CrossRefGoogle Scholar
  14. Goschen WS, Schumann EH (1990) Agulhas current variability and inshore structures off the Cape Province, South Africa. J Geophys Res 95:667–678CrossRefGoogle Scholar
  15. Gründlingh ML (1983) On the course of the Agulhas Current. S Afr Geogr J 65(1):49–57CrossRefGoogle Scholar
  16. Heidinger AK, Anne VR, Dean C (2002). Using MODIS to estimate cloud contamination of the AVHRR data record. J Atmos Ocean Tech 19(5):586–601. doi:10.1175/1520–0426 (2002) 019 <0586:UMTECC> 2.0.CO;2CrossRefGoogle Scholar
  17. Hickox R, Belkin I, Cornillon P, Shan Z (2000) Climatology and seasonal variability of ocean fronts in the East China, Yellow and Bohai seas from satellite SST data. Geophys Res Lett 27(18):2945. doi:10.1029/1999GL011223CrossRefGoogle Scholar
  18. Hutchings L, van der Lingen CD, Shannon LJ, Crawford RJM, Verheye HMS, Bartholomae CH, van der Plas AK, Louw D, Kreiner A, Ostrowski M, Fidel Q, Barlow RG, Lamont T, Coetzee J, Shillington F, Veitch J, Currie JC, Monteiro PMS (2009) The Benguela current: an ecosystem of four components. Prog Oceanogr 83(1–4):15–32. doi:10.1016/j.pocean.2009.07.046CrossRefGoogle Scholar
  19. Janjić T, Schröter J, Savcenko R, Bosch W, Albertella A, Rummel R, Klatt O (2012) Impact of combining GRACE and GOCE gravity data on ocean circulation estimates. Ocean Sci 8:65–79. doi:10.5194/os-8–65-2012CrossRefGoogle Scholar
  20. Johannessen JA, Chapron B, Collard F, Kudryavtsev V, Mouche A, Akimov D, Dagestad KF (2008) Direct ocean surface velocity measurements from space: improved quantitative interpretation of Envisat ASAR observations. Geophys Res Lett 35:L22608. doi: 10.1029/2008GL035709CrossRefGoogle Scholar
  21. Kilpatrick KA, Podesta GP, Evans R (2001) Overview of the NOAA/NASA Advanced very high resolution radiometer pathfinder algorithm for sea surface temperature and associated matchup database. J Geophys Res 106(C5):9179–9197. doi:10.1029/1999JC000065CrossRefGoogle Scholar
  22. Le Borgne P, Legendre G, Marsouin A (2006) Operational SST retrieval from MSG/SEVIRI data. 2006 EUMETSAT Meteorological Satellite Conference.Google Scholar
  23. Le Traon PY, Dibarboure G (2002) Velocity mapping capabilities of present and future altimeter missions: The role of high-frequency signals. J Atmos Ocean Tech 19(12):2077–2087. doi: abs/10.1175/1520–0426 (2002) 019 <2077:VMCOPA> 2.0.CO;2CrossRefGoogle Scholar
  24. Lutjeharms JRE (2006) The Agulhas current. Springer, BerlinGoogle Scholar
  25. Lutjeharms JRE, Roberts HR (1988) The natal pulse: an extreme transient on the Agulhas current. J Geophys Res 93:631–645CrossRefGoogle Scholar
  26. Minnett PJ, Evans RH, Kearns EJ, Brown OB (2002) Sea-surface temperature measured by the Moderate Resolution Imaging Spectrometer (MODIS). Proceedings IGARSS 1177–1179Google Scholar
  27. Pascual A, Faugère Y, Larnicol G, Le Traon P-Y (2006) Improved description of the ocean mesoscale variability by combining four satellite altimeters. Geophys Res Lett 33(2):L02611. doi:10.1029/2005GL024633Google Scholar
  28. Quartly GD, Srokosz MA (2002) SST observations of the Agulhas and East Madagascar retroflections by the TRMM microwave imager. J Phys Oceanogr 32(5):1585–1592CrossRefGoogle Scholar
  29. Ridderinkhof H, van der Werf PM, Ullgren JE, van Aken HM, van Leeuwen PJ, de Ruijter WPM (2010) Seasonal and interannual variability in the Mozambique channel from moored current observations. J Geophys Res 115:C06010. doi:10.1029/2009JC005619Google Scholar
  30. Rio MH, Hernandez F (2004) A mean dynamic topography computed over the world ocean from altimetry, in situ measurements, and a geoid model. J Geophys Res 109:C12032CrossRefGoogle Scholar
  31. Rio MH, Guinehut S, Larnicol G (2011) New CNES-CLS09 global mean dynamic topography computed from the combination of GRACE data, altimetry, and in situ measurements. J Geophys Res 116(C7):C07018. doi:10.1029/2010JC006505Google Scholar
  32. Robinson IS (2004). Measuring the oceans from space: The principles and methods of satellite oceanography. Springer-Praxis books in geophysical science. Springer-VerlagGoogle Scholar
  33. Rouault M, Lee-Thorp AM, Lutjeharms JRE (2000) Observations of the atmospheric boundary layer above the Agulhas current during along-current winds. J Phys Oceanogr 30:70–85CrossRefGoogle Scholar
  34. Rouault MJ, Mouche A, Collard F, Johannessen JA, Chapron B (2010) Mapping the Agulhas current from space: an assessment of ASAR surface current velocities. J Geophys Res 115:C10026. doi:10.1029/2009JC006050CrossRefGoogle Scholar
  35. Rouault MJ, Penven P (2011) New perspectives on natal pulses from satellite observations. J Geophys Res 116:C07013. doi:10.1029/2010JC006866Google Scholar
  36. Schouten MW, de Ruijter WP, van Leeuwen PJ (2002) Upstream control of Agulhas Ring shedding. J Geophys Res, 107(C8):3109Google Scholar
  37. Schouten MW, de Ruijter WPM, van Leeuwen PJ, Ridderinkhof H (2003) Eddies and variability in the Mozambique channel. Deep-Sea Res II: Topical Studies in Oceanography 50(12–13):1987–2003CrossRefGoogle Scholar
  38. Siedler G, Rouault M, Lutjeharms JRE (2006) Structure and origin of the subtropical South Indian Ocean countercurrent. Geophys Res Lett 33:L24609CrossRefGoogle Scholar
  39. Thomas SM, Heidinger AK, Pavolonis MJ (2004) Comparison of NOAA’s operational AVHRR-derived cloud amount to other satellite-derived cloud climatologies. J Climate 17(24):4805–4822. doi:10.1175/JCLI-3242.1CrossRefGoogle Scholar
  40. Tsugawa M, Hasumi H (2010) Generation and growth mechanism of the natal pulse. J Phys Oceanogr 40(7):1597–1612. Scholar
  41. van der Werf PM, van Leeuwen PJ, Ridderinkhof H, de Ruijter WPM (2010) Comparison between observations and models of the Mozambique Channel transport: seasonal cycle and eddy frequencies. J Geophys Res 115:C02002. doi:10.1029/2009JC005633Google Scholar
  42. van Sebille E, Beal LM, Biastoch A (2010) Sea surface slope as a proxy for Agulhas current strength. Geophys Res Lett 37(9) L09610 doi:10.1029/2010GL042847Google Scholar
  43. Vignudelli S, Kostianoy AG, Cipollini P, Benveniste J, eds (2011) Coastal Altimetry. Springer.doi:10.1007/978-3-642-12796-0Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Marjolaine Krug
    • 1
    • 4
    Email author
  • Paolo Cipollini
    • 2
  • Francois Dufois
    • 3
    • 5
  1. 1.Ecosystem Earth ObservationsCouncil for Scientific and Industrial ResearchCape TownSouth Africa
  2. 2.Marine Physics and Ocean ClimateNational Oceanography CentreSouthamptonUK
  3. 3.Oceanography DepartmentMare Institute, University of Cape TownCape TownSouth Africa
  4. 4.Also at: Nansen-Tutu Center for Marine Environmental Research, Oceanography DepartmentUniversity of Cape TownCape TownSouth Africa
  5. 5.CSIRO Marine and Atmospheric ResearchFloreatAustralia

Personalised recommendations