Advertisement

Ocean Colour Remote Sensing of Harmful Algal Blooms in the Benguela System

  • Stewart BernardEmail author
  • Grant Pitcher
  • Hayley Evers-King
  • Lisl Robertson
  • Mark Matthews
  • Andy Rabagliati
  • Christelle Balt
Chapter

Abstract

The Benguela, as a highly productive upwelling system, suffers from the occurrence of a variety of harmful algal blooms, most of which are associated with elevated biomass; a feature common to the shelf environment of upwelling systems. Most harmful blooms have in the past been attributed to one or another dinoflagellate species, but more recently harmful impacts have also been ascribed to other groups of phytoplankton, including diatom and autotrophic ciliate species. Typical bloom assemblages, forcing mechanisms and harmful impacts are outlined, and bloom types most amenable to detection with ocean colour radiometry are identified. Inherent and apparent optical properties of these algal assemblage types are described, and a preliminary evaluation is made of the suitability of available ocean colour data and algorithms. The evolution of several bloom events is described using various algorithms applied to ocean colour data from the Medium Resolution Imaging Spectrometer (MERIS), and recommendations are made about optimal ocean colour usage for high biomass algal blooms in coastal zones.

Keywords

Effective Diameter Ocean Colour Domoic Acid Paralytic Shellfish Poisoning Inherent Optical Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alvain S, Loisel H, Dessailly D (2012) Theoretical analysis of ocean color radiances anomalies and implications for phytoplankton groups detection in case 1 waters. Opt Express 20(2):1070–1083CrossRefGoogle Scholar
  2. Barlow R, Sessions H, Balarin M, Weeks S, Whittle C, Hutchings L (2005) Seasonal variation in phytoplankton in the southern Benguela: pigment indices and ocean colour. Afr J Mar Sci 27:275–287CrossRefGoogle Scholar
  3. Barlow RG (1982) Phytoplankton ecology in the southern Benguela Current. I. Biochemical composition. J Exp Mar Biol Ecol 63(3):209–227CrossRefGoogle Scholar
  4. Behrenfeld MJ, Westberry TK, Boss ES, O’Malley RT, Siegel DA, Wiggert JD, Franz BA, McClain CR, Feldman GC, Doney SC, Moore JK, Dall’Olmo G, Milligan AJ, Lima I, Mahowald N (2009) Satellite-detected Fluorescence reveals global physiology of Ocean Phytoplankton. Biogeosciences 6:779–794CrossRefGoogle Scholar
  5. Bernard S (2005). The bio-optical detection of harmful algal blooms. PhD Thesis. University of Cape TownGoogle Scholar
  6. Bernard S, Kudela R, Franks P, Fennel W, Kemp A, Fawcett A, Pitcher G (2006) The requirements for forecasting harmful algal blooms in the Benguela. In: Shannon V, Hempel G, Malanotte-Rizzoli P, Moloney C, Woods J (eds) Benguela: predicting a large marine ecosystem. Elsevier 14:273–294Google Scholar
  7. Bernard S, Probyn TA, Quirantes A (2009) Simulating the optical properties of phytoplankton cells using a two-layered spherical geometry. Biogeosci Discuss 6(1):1497–1563CrossRefGoogle Scholar
  8. Bidigare RR, Ondrusek ME, Morrow JH, Kiefer DA (1990) In vivo absorption properties of algal pigments. In: Spinrad RW (ed) Ocean optics X. Proc Soc Photo-Opt Instrum Eng 1302:90–302Google Scholar
  9. Botes L, Sym SD, Pitcher GC (2003) Karenia cristata sp. Nov. and Karenia bicuneiformis sp. Nov. (Gymnodiniales, Dinophyceae): two new Karenia species from the South African coast. Phycologia 42:563–571CrossRefGoogle Scholar
  10. Bracher A, Vountas M, Dinter T, Burrows JP, Röttgers R, Peeken I (2009) Quantitative observation of cyanobacteria and diatoms from space using PhytoDOAS on SCIAMACHY data. Biogeosciences 6:751–764. doi:10.5194/bg-6–751-2009.CrossRefGoogle Scholar
  11. Brown PC, Hutchings L (1987) The development and decline of phytoplankton blooms in the southern Benguela upwelling system. 1. Drogue movements, hydrography and bloom development. In: Payne AL, Gulland A, Brink KH (eds) The Benguela and comparable ecosystems. S Afr J Marine Sci 5:357–391Google Scholar
  12. Ciotti AM, Bricaud A (2006) Retrievals of a size parameter for phytoplankton and spectral light absorption by Colored Detrital Matter from water-leaving radiances at SeaWiFS channels in a continental shelf region off Brazil. Limnol Oceanogr Method 4:237–253CrossRefGoogle Scholar
  13. Cockcroft AC, Schoeman DS, Pitcher GC, Bailey GW, van Zyl DC (2000) A mass stranding, or “walkout” of west coast rock lobster Jasus lalandii in Elands Bay, South Africa: causes, results and implications. In: Von Kaupel Klein JC, Schram FR (eds) The biodiversity crises and crustacea. Crustacean Issues 11:362–688Google Scholar
  14. Copenhagen WJ (1953) The periodic mortality of fish in the Walvis region: a phenomenon within the Benguela Current. Division of Fisheries Investigational Report 14, p 35Google Scholar
  15. Dierssen H, Kudela RM, Ryan JP, Zimerman RC (2006) Red and black tides: Quantitative analysis of water-leaving radiance and perceived color for phytoplankton, colored dissolved organic matter, and suspended sediments. Limnol Oceanogr 51(6):2646–2659CrossRefGoogle Scholar
  16. Dupouy C, Benielli-Gary D, Neveux J, Dandonneau Y, Westberry TK (2011) An algorithm for detecting Trichodesmium surface blooms in the South Western Tropical Pacific. Biogeosciences 8:3631–3647. doi:10.5194/bg-8–3631-2011CrossRefGoogle Scholar
  17. Fawcett A, Pitcher GC, Bernard S, Cembella AD, Kudela RM (2007) Contrasting wind patterns and toxigenic phytoplankton in the southern Benguela upwelling system. Mar Ecol Prog Ser 348:19–31CrossRefGoogle Scholar
  18. Franks P (1992) Sink or swim: accumulation of biomass at fronts. Mar Ecol Prog Ser 82:1–12CrossRefGoogle Scholar
  19. Gordon HR, Wang M (1994) Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm. Appl Optics 33(3):443–452CrossRefGoogle Scholar
  20. Gower JFR, Doerffer R, Borstad GA (1999) Interpretation of the 685 nm peak in water-leaving radiance spectra in terms of fuorescence, absorption and scattering, and its observation by MERIS. Int J Remote Sens 20(9):1771–1786CrossRefGoogle Scholar
  21. Gregg WW, Carder KL (1990) A simple spectral solar Irradiance model for cloudless maritime atmospheres. Limnol Oceanogr 35(8):1657–1675CrossRefGoogle Scholar
  22. Henderiks J, Winter A, Elbrächter M, Feistel R, van der Plas A, Nausch G, Barlow R (2012) Environmental controls on Emiliania huxleyi morphotypes in the Benguela coastal upwelling system (SE Atlantic). Mar Ecol Prog Ser 448:51–66CrossRefGoogle Scholar
  23. Hubbart B, Pitcher GC, Krock B, Cembella AD (2012) Toxigenic phytoplankton and concomitant toxicity in the mussel Choromytilus meridionalis off the west coast of South Africa. Harmful Algae 20:30–41CrossRefGoogle Scholar
  24. IOCCG (2006) Remote sensing of inherent optical properties: Fundamentals, tests of algorithms, and applications. IOCCG, Dartmouth, pp 1–126Google Scholar
  25. Jackson T, Bouman HA, Sathyendranath S, Devred E (2011) Regional-scale changes in diatom distribution in the Humboldt upwelling system as revealed by remote sensing: implications for fisheries. ICES J Mar Sci 68(4):729–738CrossRefGoogle Scholar
  26. Johnsen G, Samset O, Granskog L, Sakshaug E (1994) In-vivo absorption characteristics in 10 classes of bloom-forming phytoplankton: taxonomic characteristics and responses to photoadaptation by means of discriminant and HPLC analysis. Mar Ecol Prog Ser 105(1/2):149–157CrossRefGoogle Scholar
  27. Kahru M, Kudela R, Manzano-Sarabia M, Mitchell BG (2009) Trends in primary production in the California Current detected with satellite data. J Geophys Res 114(CO2004):7Google Scholar
  28. Kostadinov TS, Siegel DA, Maritorena S (2010) Global variability of phytoplankton functional types from space: assessment via the particle size distribution. Biogeosciences 7:3239–3257CrossRefGoogle Scholar
  29. Krock B, Alpermann T, Tillmann U, Pitcher GC, Cembella AD (2008) Yessotoxin profiles of the marine dinoflagellates Protoceratium reticulatum and Gonyaulax spinifera. In: Moestrup O et al (eds) Proceedings of the 12th International Conference on Harmful Algae. International Society for the Study of Harmful Algae and Intergovernmental Oceanographic Commission of UNESCO, CopenhagenGoogle Scholar
  30. Kudela R, Pitcher G, Probyn T, Figueiras F, Moita T, Trainer V (2005) Harmful algal blooms in coastal upwelling systems. Oceanography 18:84–197CrossRefGoogle Scholar
  31. Kudela RM, Garfield N, Bruland KW (2006) Bio-optical signatures and biogeochemistry from intense upwelling and relaxation in coastal California. Deep-Sea Res Part II 53(25–26):2999–3022CrossRefGoogle Scholar
  32. Kudela RM, Seeyave S, Cochlan W (2010) The role of nutrients in regulation and promotion of harmful algal blooms in upwelling systems. Prog Oceanogr 85:122–135CrossRefGoogle Scholar
  33. Kyewalyanga M, Sathyendranath S, Platt T (2002) Effect of Mesodinium rubrum (= Myrionecta rubra) on the action and absorption spectra of phytoplankton in a coastal marine inlet. J Plankton Res 24(7):687–702CrossRefGoogle Scholar
  34. Lavaud J, Rousseau B, van Gorkom HJ, Etienne AL (2002) Influence of the diadinoxanthin pool size on photoprotection in the marine planktonic diatom Phaeodactylum tricornutum. Plant Physiol 129:1398–1406CrossRefGoogle Scholar
  35. Lohrenz SE, Weidemann AD, Tuel M (2003) Phytoplankton spectral absorption as influenced by community size structure and pigment composition. J Plankton Res 25(1):33–61CrossRefGoogle Scholar
  36. MacIntyre HL, Lawrenz E, Richardson TL (2010) Taxonomic discrimination of phytoplankton by spectral fluorescence. In: Suggett DJ et al (eds) Chlorophyll a fluorescence in aquatic sciences: methods and applications. Developments in Applied Phycology 4, Springer, p 129Google Scholar
  37. Margalef R (1978) Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanol Acta 1:193–509Google Scholar
  38. Matthews MW, Bernard S, Robertson L (2012) An algorithm for detecting trophic status (chlorophyll-a), cyanobacterial-dominance, surface scums and floating vegetation in inland and coastal waters. Remote Sens Environ 124:637–652CrossRefGoogle Scholar
  39. McGillicuddy DJ Jr, Anderson DM, Solow AR, Townsend DW (2005). Interannual variability of Alexandrium fundyense abundance and shellfish toxicity in the Gulf of Maine. Deep Sea Res Part II 52(19–21):2843–2855CrossRefGoogle Scholar
  40. McKinna LIW, Furnas MJ, Ridd PV (2011) A simple, binary classification algorithm for the detection of Trichodesmium spp. within the Great Barrier Reef using MODIS imagery. Limnol Oceanogr Methods 9:50–66Google Scholar
  41. Mitchell-Innes BA, Walker DR (1991) Short-term variability during an Anchor Station study in the southern Benguela upwelling system. Phytoplankton production and biomass in relation to species changes. Prog Oceanogr 28(1–2):65–89CrossRefGoogle Scholar
  42. Moore G, Lavender S (2011) Algorithm identification: Case II. S Bright pixel atmospheric correction MERIS ATBD Plymouth Marine Laboratory, Issue 5.0Google Scholar
  43. Morel A, Bricaud A (1981) Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton. Deep-Sea Res 28A(11):1375–1393CrossRefGoogle Scholar
  44. Morel A, Prieur L (1977) Analysis of variations in ocean color. Limnol Oceanogr 22(4):709–722CrossRefGoogle Scholar
  45. Morel A, Claustre H, Antoine D, Gentili B (2007) Natural variability of bio-optical properties in Case 1 waters: attenuation and reflectance within the visible and near-UV spectral domains, as observed in South Pacific and Mediterranean waters. Biogeosciences 4:913–925CrossRefGoogle Scholar
  46. Nelder JA, Mead R (1965) A Simplex Method for Function Minimization. Comp J 7:308–313CrossRefGoogle Scholar
  47. Nymark M, Valle KC, Brembu T, Hancke K, Winge P et al (2009) An integrated analysis of molecular acclimation to high light in the marine diatom Phaeodactylum tricornutum. PLoS ONE 4(11):e7743CrossRefGoogle Scholar
  48. Pitcher GC, Calder D (2000) Harmful Algal Blooms of the southern Benguela current: a review and appraisal of monitoring from 1989–1997. S Afr J Mar Sci 22:255–271CrossRefGoogle Scholar
  49. Pitcher GC, Probyn TA (2011) Anoxia in southern Benguela during the autumn of 2009 and its linkage to a bloom of the dinoflagellate Ceratium balechii. Harmful Algae 11:23–32CrossRefGoogle Scholar
  50. Pitcher GC, Weeks SJ (2006) The variability and potential for prediction of Harmful Algal Blooms in the southern Benguela ecosystem. In: Shannon, V, Hempel G, Malanotte-Rizzoli P, Moloney C, Woods J (eds) Benguela: Predicting a large marine ecosystem. Elsevier 14:125–146Google Scholar
  51. Pitcher GC, Bernard S, Fawcett A (2008a) Real-time coastal observing systems for ecosystem dynamics and harmful algal blooms: the needs and expectations of users. In: Babin M, Roesler CS, Cullen JJ (eds) Real-time coastal observing systems for marine ecosystem dynamics and harmful algal blooms. UNESCO, Paris, FranceGoogle Scholar
  52. Pitcher GC, Bernard S, Ntuli J (2008b) Contrasting bays and red tides in the southern Benguela upwelling system. Oceanography 21(3):82–91CrossRefGoogle Scholar
  53. Pitcher GC, Krock B, Cembella AD (2011) Accumulation of diarrhetic shellfish poisoning toxins in the oyster Crassostrea gigas and the mussel Choromytilus meridionalis in the southern Benguela ecosystem. Afr J Mar Sci 33:273–281CrossRefGoogle Scholar
  54. Probyn TA, Pitcher GC, Pienaar RN, Nuzzi R (2001) Brown tides and mariculture in Saldanha Bay, South Africa. Mar Pollut Bull 42(5):405–408CrossRefGoogle Scholar
  55. Probyn TA, Bernard S, Pitcher GC, Pienaar RN (2010) Ecophysiological studies on Aureococcus anophagefferens blooms in Saldanha Bay, South Africa. Harmful Algae 9:123–133CrossRefGoogle Scholar
  56. Quirantes A, Bernard S (2006) Light-scattering methods for modelling algal particles as a collection of coated and/or nonspherical scatterers. J Quant Spectrosc Radiat Transfer 100(1–3):315–324CrossRefGoogle Scholar
  57. Roesler CS, Boss E (2003) Spectral beam attenuation coefficient retrieved from ocean color inversion. Geophys Res Lett 30(9):1–4CrossRefGoogle Scholar
  58. Roy S, Sathyendranath S, Platt T (2011) Retrieval of phytoplankton size from bio-optical measurements: theory and applications. Journal of the Royal Society Interface 8(58):650–660CrossRefGoogle Scholar
  59. Schiller H, Doerffer R (1999) Neural network for emulation of an inverse model operational derivation of Case II water properties from MERIS data. Int J Remote Sens 20(9):1735–1746CrossRefGoogle Scholar
  60. Schiller H, Doerffer R (2005) Improved determination of coastal water constituent concentrations from MERIS data. IEEE Trans Geosci Remote Sens 43(7):1585–1591CrossRefGoogle Scholar
  61. Smayda TJ (1997) What is a bloom? A commentary. Limnol Oceanogr 42:1132–1136CrossRefGoogle Scholar
  62. Smayda TJ (2002) Turbulence, watermass stratification and harmful algal blooms: an alternative view and frontal zones as “pelagic seed banks”. Harmful Algae 1:95–112CrossRefGoogle Scholar
  63. Tomlinson MC, Wynne TT, Stumpf RP (2009) An evaluation of remote sensing techniques for enhanced detection of the toxic dinoflagellate, Karenia brevis. Remote Sens Environ 113(3):598–609CrossRefGoogle Scholar
  64. Trainer VL, Pitcher GC, Reguera B, Smayda TJ (2010) The distribution and impacts of harmful algal bloom species in eastern boundary upwelling systems. Prog Oceanogr 85:33–52CrossRefGoogle Scholar
  65. Van derLCD, Freón P, Hutchings L, Roy C, Bailey GW, Bartholomae C, Cockcroft AC, Field JG, Peard KR, Van derPAK (2006) Forecasting shelf processes of relevance to living marine resources in the BCLME. In: Shannon, V, Hempel G, Malanotte-Rizzoli P, Moloney C, Woods J (eds) Benguela: Predicting a large marine ecosystem. Elsevier 14:309–347Google Scholar
  66. Volten AH, Haan JFD, Hovenier JW, Schreurs R, Vassen W, Dekker AG, Hoogenboom J et al (1998) Laboratory measurements of angular distributions of light scattered by Phytoplankton and Silt. Limnol Oceanogr 43(6):1180–1197CrossRefGoogle Scholar
  67. Wang M (2006) Aerosol polarization effects on atmospheric correction and aerosol retrievals in ocean color remote sensing. Appl Optics 45(35):8951–8963CrossRefGoogle Scholar
  68. Weeks SJ, Pitcher GC, Bernard S (2004) Satellite monitoring of the evolution of a coccolithophorid bloom in the southern Benguela ecosystem. Oceanography 17:83–89CrossRefGoogle Scholar
  69. Weeks SJ, Barlow R, Roy C, Shillington FA (2006) Remotely sensed variability of temperature and chlorophyll in the southern Benguela: upwelling frequency and phytoplankton response. Afr J Mar Sci 28:493–509CrossRefGoogle Scholar
  70. Whitmire AL, Pegau WS, Karp-boss L, Boss E, Cowles TJ (2010) Spectral backscattering properties of marine phytoplankton cultures. Opt Express 18(14):1680–1690CrossRefGoogle Scholar
  71. Zhou W, Wang G, Sun Z, Cao W, Xu Z, Hu S, Zhao J (2012) Variations in the optical scattering properties of phytoplankton cultures. Opt Express 20:11189–11206CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Stewart Bernard
    • 1
    • 2
    Email author
  • Grant Pitcher
    • 3
  • Hayley Evers-King
    • 2
  • Lisl Robertson
    • 2
  • Mark Matthews
    • 2
    • 5
  • Andy Rabagliati
    • 2
  • Christelle Balt
    • 4
  1. 1.Council for Scientific and Industrial ResearchNatural Resources and EcosystemsCape TownSouth Africa
  2. 2.Department of OceanographyUniversity of Cape TownCape TownSouth Africa
  3. 3.Fisheries Research and Development, Department of AgricultureForestry and FisheriesCape TownSouth Africa
  4. 4.Graduate School of OceanographyUniversity of Rhode IslandNarragansettUSA
  5. 5.Also at: University of Cape TownCape TownSouth Africa

Personalised recommendations