Assessing the Impact of Windfarms in Subtidal, Exposed Marine Areas

  • Thomas G. DahlgrenEmail author
  • Marie-Lise Schläppy
  • Aleksej Šaškov
  • Mathias H. Andersson
  • Yuri Rzhanov
  • Ilker Fer
Part of the Humanity and the Sea book series (HUMSEA)


Marine renewable energy conversion typically takes place at locations characterized by harsh physical parameters that challenge monitoring of the marine environment. These challenges are caused both by the lack of experience on what to expect in terms of impact, but also by a general lack of methods proven suitable for the monitoring of high-energy subtidal marine habitats. Here, the first offshore windfarm to be built in Norwegian waters, a project called Havsul I, is used as a model to provide (i) an overview contrasting the known effects and monitoring methods used at more sheltered offshore windfarms with those expected at a rocky, high energy site; (ii) a description and short assessment of the physical environment (bathymetry, current, wave and wind data) and marine assemblages at the site, (iii) an assessment of five methods used during the baseline study at Havsul I, including sediment grabs, sampling of assemblages from kelp stipes, video mosaics for rocky bottom benthic assemblages, traditional fishing gear for fish community evaluation, and C-PODs for harbour porpoise presence.


Kelp Marine renewable energy Monitoring Rocky seabed Video mosaic 



The work was conducted within Work Package 5 of the Norwegian Centre for Offshore Wind Energy (NORCOWE). We acknowledge the support at marine operations provided by Halvor Mohn, Argus AS and the backing of Vestavind Offshore AS and their representative Dag Breistein. Svein Winther, Sergei Olenin and Erling Heggøy initiated parts of the project, and the captain and crew of RV “Hakon Mosby” provided encouragement and support throughout the physical oceanography cruises.


  1. Axenroth T, Didrikas T, Danielsson C, Hansson S (2004) Diel patterns in pelagic fish behaviour and distribution observed from a stationary, bottom-mounted, and upward-facing transducer. ICES J Mar Sci 61:1100–1104CrossRefGoogle Scholar
  2. Bergström L, Kautsky L, Malm T, Ohlsson H, Wahlberg M, Rosenberg R, Åstrand Capetillo N (2012a) Vindkraftens effekter på marint liv—en syntesrapport. Naturvårdsverket Rapport 6488, 94 pp. ISBN 978-91-620-6488-4 (in Swedish with English summary)Google Scholar
  3. Bergström L, Sundqvist F, Bergström U (2012b) Effekter av en havsbaserad vindkraftpark på fördelningen av bottennära fisk. En studie vid Lillgrunds vindkraftpark i Öresund. Vindval. Naturvårdsverket Rapport 6485, 37 pp. ISBN 978-91-620-6485-3 (in Swedish with English summary)Google Scholar
  4. Bjørge A, Bekkby T, Bakkestuen V, Framstad E (2002) Interactions between harbour seals, Phoca vitulina, and fisheries in complex coastal waters explored by combined Geographic Information System (GIS) and energetics modelling. ICES J Mar Sci 59:29–42CrossRefGoogle Scholar
  5. Bjørge A, Godøy H, Skern-Mauritzen M (2011) Estimated bycatch of harbour porpoise Phocoena phocoena in two coastal gillnet fisheries in Norway. Report of the International Whaling Commission, IWC SC63/SM18Google Scholar
  6. Bjørge A, Øien N (1995) Distribution and abundance of harbour porpoise, Phocoena phocoena, in Norwegian waters. Reports of the International Whaling Commission, Special Issue 16:89–98Google Scholar
  7. Bjørge A, Øien N, Fagerheim KA (2007) Abundance of harbour seals (Phoca vitulina) in Norway based on aerial surveys and photographic documentation of hauled-out seals during the moulting season, 1996 to 1999. Aquat Mamm 33:269–275CrossRefGoogle Scholar
  8. Broström G (2008) On the influence of large wind farms on the upper ocean circulation. J Mar Syst 74:585–591CrossRefGoogle Scholar
  9. Buck BH, Krause G, Michler-Cieluch T, Brenner M, Buchholz CM, Busch JA, Fisch R et al (2008) Meeting the quest for spatial efficiency: progress and prospects of extensive aquaculture within offshore wind farms. Helgoland Mar Res 62:269–281CrossRefGoogle Scholar
  10. Burkhard B, Opitz S, Lenhart H, Ahrendt K, Garthe S, Mendel B, Windhorst W (2011) Ecosystem based modeling and indication of ecological integrity in the German North Sea—case study offshore wind parks. Ecol Indic 11:168–174CrossRefGoogle Scholar
  11. Carleton JH, Done TJ (1995) Quantitative video sampling of coral reef benthos: large-scale application. Coral Reefs 14:35–46CrossRefGoogle Scholar
  12. Christie H, Fredriksen S, Rinde E (1998) Regrowth of kelp and colonization of epiphyte and fauna community after kelp trawling at the coast of Norway. Hydrobiologia 375:49–58CrossRefGoogle Scholar
  13. Christie H, Jorgensen NM, Norderhaug KM, Waage-Nielsen E (2003) Species distribution and habitat exploitation of fauna associated with kelp (Laminaria hyperborea) along the Norwegian coast. J Mar Biol Assoc UK 83:687–699CrossRefGoogle Scholar
  14. Degrær S, Brabant R, Rumes B (2011) Offshore wind farms in the Belgian part of the North Sea. Royal Belgian Institute of Natural Sciences Management. Unit of the North Sea Mathematical Models, Marine Ecosystem Management SectionGoogle Scholar
  15. Dvorak MJ, Archer CL, Jacobson MZ (2010) California offshore wind energy potential. Renew Energy 35:1244–1254CrossRefGoogle Scholar
  16. Esteban MD, Diez JJ, López JS, Negro V (2011) Why offshore wind energy? Renew Energy 36:444–450CrossRefGoogle Scholar
  17. EWEA (2012) The European offshore wind industry—key 2011 trends and statistics. A report by the European Wind Energy Association. Accessed 5 Dec 2012
  18. Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND et al (2011) Solutions for a cultivated planet. Nature 478:337–342CrossRefGoogle Scholar
  19. Gill A (2005) Offshore renewable energy: ecological implications of generating electricity in the coastal zone. J Appl Ecol 42:605–615CrossRefGoogle Scholar
  20. Glover AG, Higgs ND, Bagley PM, Carlsson R, Davies AJ, Kemp KM, Last KS et al (2010) A live video observatory reveals temporal processes at a shelf-depth whale-fall. Cahiers Biologie Mar 51:375–381Google Scholar
  21. Golmen LG (2007) Potensiale for havenergiproduksjon i Møre og Romsdal. Runde Miljøsenter, Rapport 04/2007, 53 ppGoogle Scholar
  22. Gray JS (1997) Marine biodiversity: patterns, threats and conservation needs. Biodivers Conserv 6:153–175CrossRefGoogle Scholar
  23. Hammond PS, Berggren P, Benke H, Borchers DL, Collet A, Heide-Jørgensen MP, Heimlich S et al (2002) Abundance of harbour porpoise and other cetaceans in the North Sea and adjacent waters. J Appl Ecol 39:361–376CrossRefGoogle Scholar
  24. Harvey ES, Cappo M, Butler JJ, Hall N, Kendrick GA (2007) Bait attraction affects the performance of remote underwater video stations in assessment of demersal fish community structure. Mar Ecol Prog Ser 350:245–254CrossRefGoogle Scholar
  25. Jones DOB, Hudson IR, Bett BJ (2006) Effects of physical disturbance on the cold-water megafaunal communities of the Faroe–Shetland Channel. Mar Ecol Prog Ser 319:43–54CrossRefGoogle Scholar
  26. Kain JM, Jones NS (1964) Aspects of the biology of Laminaria hyperborea. 3. Survival and growth of gametophytes. J Mar Biol Assoc UK 44:415–433CrossRefGoogle Scholar
  27. Kingston PF (1992) Impact of offshore oil production installations on the benthos of the North Sea. ICES J Mar Sci 49:45–53CrossRefGoogle Scholar
  28. Kongsrud JA (2000) Flora og fauna tilknyttet stortarestipes (Laminaria hyperborea (Gunnerus) Foslie) ved Færøyene. Hovedfagsoppgave i marinbiologi. Institutt for fiskeri- og marinbiologi, Universitetet i Bergen (in Norwegian)Google Scholar
  29. Koschinsky S, Culik BM, Henriksen OD, Tregenza N, Ellis G, Jansen C, Kathe G (2003) Behavioural reactions of free-ranging porpoises and seals to the noise of simulated 2 MW windpower generator. Mar Ecol Prog Ser 265:263–273CrossRefGoogle Scholar
  30. Langhamer O, Wilhelmsson D (2009) Colonisation of fish and crabs of wave energy foundations and the effects of manufactured holes—a field experiment. Mar Environ Res 68:151–157CrossRefGoogle Scholar
  31. Leeney RH, Berrow S, McGrath D, O’Brien J, Cosgrove R, Godley BJ (2007) Effects of pingers on the behaviour of bottlenose dolphins. J Mar Biol Assoc UK 87:129–133CrossRefGoogle Scholar
  32. Lindeboom H, Kouwenhoven H, Bergman M, Bouma S, Brasseur S, Daan R, Fijn R et al (2011) Short-term ecological effects of an offshore wind farm in the Dutch coastal zone; a compilation. Environ Res Lett 6:1–13CrossRefGoogle Scholar
  33. Lorentsen S-H, Sjøtun K, Grémillet D (2010) Multi-trophic consequences of kelp harvest. Biol Conserv 143:2054–2062CrossRefGoogle Scholar
  34. MacLennan DN, Simmonds EJ (1992) Fisheries acoustics. Chapman and Hall, LondonGoogle Scholar
  35. Mann KH (1972) Ecological energetics of the sea-weed zone in a marine bay on the Atlantic coast of Canada. 2. Productivity of the seaweeds. Mar Biol 14:199–209Google Scholar
  36. Moore PG (1973) The kelp fauna of northeast Britain. 2. Multivariate classification: turbidity as an ecological factor. J Exp Mar Biol Ecol 13:127–154CrossRefGoogle Scholar
  37. Norsk Standard (2005) NS-EN ISO 16665. Vannundersøkelse—Retningslinjer for kvantitativ prøvetaking og bearbeiding av marin bløtbunnsfauna (ISO 16665:2005)Google Scholar
  38. Paine RT (1966) Food web complexity and species diversity. Am Nat 100:65–75CrossRefGoogle Scholar
  39. Petersen JK, Malm T (2006) Offshore windmill farms: threats to or possibilities for the marine environment. Ambio 35:75–80CrossRefGoogle Scholar
  40. Piola RF, Johnston EL (2008) Pollution reduces native diversity and increases invader dominance in marine hard-substrate communities. Divers Distrib 14:329–342CrossRefGoogle Scholar
  41. Ryan WBF, Carbotte SM, Coplan JO, O’Hara S, Melkonian A, Arko R, Weissel RA et al (2009) Global multi-resolution topography synthesis. Geochem Geophy Geosys 10:Q03014. doi:10.1029/2008GC002332Google Scholar
  42. Rzhanov Y, Mayer L, Fornari D (2004) Deep-sea image processing. Proceedings of Oceans’04, Kobe, pp 647–652Google Scholar
  43. Scheidat M, Tougaard J, Brasseur S, Carstensen J, Van Polanen Petel T, Teilmann J, Reijnders P (2011) Harbour porpoises (Phocoena phocoena) and wind farms: a case study in the Dutch North Sea. Environ Res Lett 6:1–10CrossRefGoogle Scholar
  44. Sheehan EV, Stevens TF, Attrill MJ (2010) A quantitative, non-destructive methodology for habitat characterisation and benthic monitoring at offshore renewable energy developments. PLoS ONE 5(12):e14461. doi:10.1371/journal.pone.0014461CrossRefGoogle Scholar
  45. Shields MA, Dillon LJ, Woolf DK, Ford AT (2009) Strategic priorities for assessing ecological impacts of marine renewable energy devices in the Pentland Firth (Scotland, UK). Mar Policy 33:635–642CrossRefGoogle Scholar
  46. Shields MA, Woolf DK, Grist EPM, Kerr SA, Jackson AC, Harris RE, Bell MC et al (2011) Marine renewable energy: the ecological implications of altering the hydrodynamics of the marine environment. Ocean Coast Manag 54:2–9CrossRefGoogle Scholar
  47. Sisson JD, Shimeta J, Zimmer CA, Traykovski P (2002) Mapping epibenthic assemblages and their relations to sedimentary features in shallow-water, high-energy environments. Cont Shelf Res 22:565–583CrossRefGoogle Scholar
  48. Starr RM, Fox DS, Hixon MA, Tissot BN, Johnson GE, Barss WH (1996) Comparison of submersible-survey and hydroacoustic-survey estimates of fish density on a rocky bank. Fish B-NOAA 94:113–123Google Scholar
  49. Stenberg C, van Deurs M, Støttrup J, Mosegaard H, Grome T, Dinesen G, Christensen A et al (2011) Effect of the Horns Rev 1 offshore wind farm on fish communities—Follow-up seven years after construction. In: Leonard SB, Stenberg C, Støttrup J (eds). DTU Aqua Report, 246-2011, 99 ppGoogle Scholar
  50. Steneck RS, Graham MH, Bourque BJ, Corbett D, Erlandson JM, Estes JA, Tegner MJ (2002) Kelp forest ecosystems: biodiversity, stability, resilience and future. Env Conserv 29:1–24CrossRefGoogle Scholar
  51. Tougaard J, Carstensen J, Wisz MS, Teilmann J, Bech NI, Skov H (2006) Harbour porpoises on Horns Reef—effects of the Horns Reef Wind Farm. Final report to Elsam Engineering A/S. NERI Technical Report, Roskilde, DenmarkGoogle Scholar
  52. Tougaard J, Ebbesen I, Tougaard S, Jensen T, Teilmann J (2003) Satellite tracking of harbour seals on Horns Reef. Use of the Horns Reef wind farm area and the North Sea. National Environmental Research Institute, Roskilde, Denmark, 43 ppGoogle Scholar
  53. Vea J, Ask E (2011) Creating a sustainable commercial harvest of Laminaria hyperborea, in Norway. J Appl Phycol 23:489–494CrossRefGoogle Scholar
  54. Wilhelmsson D, Malm T (2008) Fouling assemblages on offshore wind power plants and adjacent substrata. Estuar Coast Shelf Sci 79:459–466CrossRefGoogle Scholar
  55. Wilhelmsson D, Malm T, Öhman M (2006) The influence of offshore windpower on demersal fish. ICES J Mar Sci 63:775–784CrossRefGoogle Scholar
  56. Wilhelmsson D, Malm T, Thompson R, Tchou J, Sarantakos G, McCormick N, Luitjens S et al (2010) Greening blue energy. identifying and managing the biodiversity risks and opportunities of offshore renewable energy. IUCN, Gland, Switzerland, 102 ppGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Thomas G. Dahlgren
    • 2
    Email author
  • Marie-Lise Schläppy
    • 1
    • 2
  • Aleksej Šaškov
    • 3
  • Mathias H. Andersson
    • 4
  • Yuri Rzhanov
    • 5
  • Ilker Fer
    • 6
  1. 1.EPFLLausanneSwitzerland
  2. 2.Uni ResearchBergenNorway
  3. 3.Coastal Research and Planning InstituteKlaipeda UniversityKlaipedaLithuania
  4. 4.Department of Underwater ResearchSwedish Defence Research AgencyStockholmSweden
  5. 5.Chase Ocean Engineering LaboratoryCenter for Coastal and Ocean Mapping Joint Hydrographic CenterDurhamUSA
  6. 6.Geophysical InstituteUniversity of BergenBergenNorway

Personalised recommendations