Input–Output and Hybrid LCA

Part of the LCA Compendium – The Complete World of Life Cycle Assessment book series (LCAC)


Known as hybrid LCA, integrated use of economic input–output (IO) analysis and process-based LCA (PLCA) has become a major tool of LCA inventory analysis. Proceeding from the basics of IO, this chapter discusses the issues of monetary versus physical data, multiregional extension, end-of-life phase with waste management and recycling, cost and price (with implications for life cycle costing), technology choices, and substitution. Besides the strengths of hybrid LCA, several often-cited “weaknesses” are also addressed.


CES functions CGE Database Computable general equilibrium (CGE) LCC Life cycle assessment (LCA) Life cycle costing (LCC) Linear programming (LP) LP Monetary and physical tables MRIO Multiregional input–output (MRIO) Productive conditions Recycling Supply and use tables Waste input–output 



Computable general equilibrium


Environmentally extended IO


End of life


Extended producer responsibility


Externality data and input–output tools for policy analysis


Gross domestic product


General equilibrium model


International comparison program


IO table


Monetary IO table


Multiregional input–output table


Physical IOT


Process-based LCA


Purchasing power parity


Rest of the world


Waste input–output material flow analysis



We would like to thank Tomy Wiedmann, Manfred Lenzen, Edgar Hertwich, Sangwon Suh, and Klaus Hubacek for providing us with the latest information about their research and Yosuke Shigetomi for the preparation of the extensive list of references for case studies. We are also grateful to Nigel Harle of Gronsveld, the Netherlands, for his careful revision of our English.


  1. Acquaye AA, Wiedmann T, Feng K, Crawford RH, Barrett J, Kuylenstierna J, Duffy AP, Koh SL, McQueen-Mason S (2011) Identification of carbon hot-spots and quantification of GHG intensities in the biodiesel supply chain using hybrid LCA and structural path analysis. Environ Sci Technol 45(6):2471–2478CrossRefGoogle Scholar
  2. Alsamawi A, Murray J, Lenzen M (2014) The employment footprints of nations. J Ind Ecol 18(1):59–70CrossRefGoogle Scholar
  3. Alvarez-Gaitan PJ, Peters MG, Rowley VH, Moore S, Short DM (2013) A hybrid life cycle assessment of water treatment chemicals: an Australian experience. Int J Life Cycle Assess 18:1291–1301CrossRefGoogle Scholar
  4. Arvesen A, Hertwich GE (2011) Corrigendum: environmental implications of large-scale adoption of wind power: a scenario-based life cycle assessment. Environ Res Lett 6:1–3CrossRefGoogle Scholar
  5. Arvesen A, Birkeland C, Hertwich GE (2013) The importance of ships and spare parts in lcas of offshore wind power. Environ Sci Technol 47:2948–2956CrossRefGoogle Scholar
  6. Aurangzeb Q, Al-Qadi LI, Ozer H, Yang R (2014) Hybrid life cycle assessment for asphalt mixtures with high rap content. Resour Conserv Recycl 83:77–86CrossRefGoogle Scholar
  7. Baboulet O, Lenzen M (2010) Evaluating the environmental performance of a university. J Clean Prod 18:1134–1141CrossRefGoogle Scholar
  8. Baral A, Bakshi RB, Smith LR (2012) Assessing resource intensity and renewability of cellulosic ethanol technologies using eco-lca. Environ Sci Technol 46:2436–2444CrossRefGoogle Scholar
  9. Berners-Lee M, Howard CD, Moss J, Kaivanto K, Scott AW (2011) Greenhouse gas footprinting for small business -the use of input-output data. Sci Total Environ 409:883–891CrossRefGoogle Scholar
  10. Boyd S, Horvath A, Dornfeld D (2009) Life-cycle energy demand and global warming potential of computational logic. Environ Sci Technol 43:7303–7309CrossRefGoogle Scholar
  11. Bullard C, Herendeen R (1975) The energy cost of goods and services. Energy Policy 3:268–278CrossRefGoogle Scholar
  12. Bureau of Economic Analyses. Concepts and Methods of the U.S. Input-Output Accounts, 2009. URL
  13. Caves DW, Christensen LR, Diewert WE (1982) The economic theory of index numbers and the measurement of input, output, and productivity. Econometrica (J Econ Soc) 50:1393–1414CrossRefGoogle Scholar
  14. Chang Y, Ries JR, Lei JR (2012) The embodied energy and emissions of a high-rise education building: a quantification using process-based hybrid life cycle inventory model. Energy Build 55:790–798CrossRefGoogle Scholar
  15. Cooney G, Hawkins RT, Marriott J (2013) Life cycle assessment of diesel and electric public transportation buses. J Ind Ecol 17(5):689–699Google Scholar
  16. Crawford HR (2008) Validation of a hybrid life-cycle inventory analysis method. J Environ Manage 88:496–506CrossRefGoogle Scholar
  17. Crawford HR (2009) Greenhouse gas emissions embodied in reinforced concrete and timber railway sleepers. Environ Sci Technol 47(3):3885–3890CrossRefGoogle Scholar
  18. Davis SJ, Caldeira K (2010) Consumption-based accounting of CO2 emissions. Proc Natl Acad Sci U S A 107:5687–5692CrossRefGoogle Scholar
  19. Defourny J, Thorbecke E (1984) Structural path-analysis and multiplier decomposition within a social accounting matrix framework. Econ J 94(373):111–136CrossRefGoogle Scholar
  20. Deng L, Babbitt WC, Williams DE (2011) Economic-balance hybrid LCA extended with uncertainty analysis: case study of a laptop computer. J Clean Prod 19:1198–1206CrossRefGoogle Scholar
  21. Dietzenbacher E, Los B (1998) Structural decomposition techniques: sense and sensitivity. Econ Syst Res 10(4):307–324CrossRefGoogle Scholar
  22. Dong H, Geng Y, Xi F, Fujita T (2013) Carbon footprint evaluation at industrial park level: a hybrid life cycle assessment approach. Energy Policy 57:298–307CrossRefGoogle Scholar
  23. Dorfman R, Samuelson P, Solow R (1958) Linear programming & economic analysis. McGraw Hill, New YorkGoogle Scholar
  24. Duchin F (1990) The conversion of biological materials and wastes to useful products. Struct Chang Econ Dyn 1:243–261CrossRefGoogle Scholar
  25. Duchin F (2005) A world trade model based on comparative advantage with m regions, n goods, and k factors. Econ Syst Res 17(2):141–162CrossRefGoogle Scholar
  26. Earles JM, Halog A (2011) Consequential life cycle assessment: a review. Int J Life Cycle Assess 16:445–453CrossRefGoogle Scholar
  27. Eora MRIO Database.
  28. Ewing A, Thabrew L, Perrone D, Abkowitz M, Hornberger G (2011) Insights on the use of hybrid life cycle assessment for environmental footprinting -a case study of an inland marine freight transportation company. J Ind Ecol 15(6):937–950CrossRefGoogle Scholar
  29. Facanha C, Horvath A (2007) Evaluation of life-cycle air emission factors of freight transportation. Environ Sci Technol 41:7138–7144CrossRefGoogle Scholar
  30. Forrest N, Williams E (2010) Life cycle environmental implications of residential swimming pools. Environ Sci Technol 44:5601–5607CrossRefGoogle Scholar
  31. Frischknecht R, Althaus H-J, Bauer C, Doka G, Heck T, Jungbluth N, Kellenberger D, Nemecek T (2007) The environmental relevance of capital goods in life cycle assessments of products and services. Int J Life Cycle Assess 7(Special Issue 1):7–17Google Scholar
  32. Gallagher MP, Spatari S, Cucura J (2013) Hybrid life cycle assessment comparison of colloidal silica and cement grouted soil barrier remediation technologies. J Hazard Mater 250–251, 421–430Google Scholar
  33. Gavankar S, Suh S, Keller AA (2014) The role of scale and technology maturity in life cycle assessment of emerging technologies: a case study on carbon nanotubes. J Ind Ecol 19(1):51–60CrossRefGoogle Scholar
  34. Harto C, Meyers R, Williams E (2010) Life cycle water use of low-carbon transport fuels. Energy Policy 28:4933–4944CrossRefGoogle Scholar
  35. Heijungs R, Suh S (2002) The computational structure of life cycle assessment. Kluwer, DordrechtCrossRefGoogle Scholar
  36. Heijungs R, Settanni E, Guinée J (2013) Toward a computational structure for life cycle sustainability analysis: unifying LCA and LCC. Int J Life Cycle Assess 18(9):1722–1733CrossRefGoogle Scholar
  37. Heinone J, Junnila S (2011) A carbon consumption comparison of rural and urban lifestyles. Sustainability 3:1234–1249CrossRefGoogle Scholar
  38. Heinone J, Saynajoki J-A, Kurornen M, Junnila S (2012) Are the greenhouse gas implications of new residential developments understood wrongly? Energies 5:2874–2893CrossRefGoogle Scholar
  39. Heinonen J, Junnila S (2011) Case study on the carbon consumption of two metropolitan cities. Int J Life Cycle Assess 16:569–579CrossRefGoogle Scholar
  40. Hertwich EG (2005) Consumption and the rebound effect: an industrial ecology perspective. J Ind Ecol 9(1–2):85–98Google Scholar
  41. Hertwich E, Peters G (2009) Carbon footprint of nations: a global, trade-linked analysis. Environ Sci Technol 43:6414–6420CrossRefGoogle Scholar
  42. Hertwich EG, Peters GP (2010) Multiregional input-output database. Technical report, OPEN: EU technical document.
  43. Hillman T, Ramaswami A (2010) Greenhouse gas emission footprints and energy use benchmarks for eight U.S. cities. Environ Sci Technol 44:1902–1910CrossRefGoogle Scholar
  44. Horowitz KJ, Planting MA (2009) Concepts and methods of the U.S. input-output accounts. Bureau of Economic Analysis, U.S. Dept of Commerce (BEA).
  45. Hubacek K, Feng K, Minx JC, Pfister S, Zhou N (2014) Teleconnecting consumption to environmental impacts at multiple spatial scales. J Ind Ecol 18(1):7–9CrossRefGoogle Scholar
  46. Huppes G, De Koning A, Suh S, Heijungs R, Van Oers L, Nielsen P, Guinée J (2006) Environmental impacts of consumption in the European Union – high-resolution input-output tables with detailed environmental extensions. J Ind Ecol 10(3):129–146CrossRefGoogle Scholar
  47. Inaba R, Nansai K, Fujii M, Hashimoto S (2010) Hybrid life-cycle assessment (LCA) of CO2 emission with management alternatives for household food wastes in Japan. Waste Manag Res 28:496–507CrossRefGoogle Scholar
  48. Jiang M, Hendrickson TC (2014) Life cycle water consumption and wastewater generation impacts of a Marcellus shale gas well. Environ Sci Technol 48:1911–1920CrossRefGoogle Scholar
  49. Jorgenson DW (1988) Productivity and postwar U.S. economic growth productivity and postwar U.S. economic growth. J Econ Perspect 2(4):23–41CrossRefGoogle Scholar
  50. Joshi S (1999) Product environmental life-cycle assessment using input-output techniques. J Ind Ecol 2–3:95–120CrossRefGoogle Scholar
  51. Junnila S (2008) Life cycle management of energy-consuming products in companies using io-lca. Int J Life Cycle Assess 13:432–439CrossRefGoogle Scholar
  52. Klijn JA, Vullings L, Van den Berg M, Van Meijl H, Van Lammeren R, Van Rheenen T, Veldkamp A, Verburg P, Westhoek H, Eickhout B, Tabeau AA (2005) The eururalis study: technical document. Technical report.
  53. Klöpffer W (1996) Allocation rule for open-loop recycling in life cycle assessment. Int J Life Cycle Assess 1(1):27–31CrossRefGoogle Scholar
  54. Kofoworola FO, Gheewala S (2008) Environmental life cycle assessment building in Thailand. Int J Life Cycle Assess 13:498–511CrossRefGoogle Scholar
  55. Kondo Y, Nakamura S (2004) Evaluating alternative life-cycle strategies for electrical appliances by the waste input-output model. Int J Life Cycle Assess 9(4):236–246CrossRefGoogle Scholar
  56. Koopmans TC (ed) (1951) Activity analysis of production and allocation. Wiley, New YorkGoogle Scholar
  57. Krishnan N, Boyd S, Somani A, Raoux S, Clark D, Dornfeld D (2008) A hybrid life cycle inventory of nano-scale semiconductor manufacturing. Environ Sci Technol 42:3069–3075CrossRefGoogle Scholar
  58. Kucukvar M, Tatari O (2012) Ecologically based hybrid life cycle analysis of continuously reinforced concrete and hot-mix asphalt pavements. Transp Res D 17:86–90CrossRefGoogle Scholar
  59. Lankey LR, McMichael CF (2000) Life-cycle methods for comparing primary and rechargeable batteries. Environ Sci Technol 34:2299–2304CrossRefGoogle Scholar
  60. Larsen NH, Hertwich EG (2009) The case for consumption-based accounting of greenhouse gas emissions to promote local climate action. Environ Sci Policy 12:791–798CrossRefGoogle Scholar
  61. Lave L, Maclean H, Hendrickson C, Lankey R (2000) Life-cycle analysis of alternative automobile fuel/propulsion technologies. Environ Sci Technol 34:3598–3605CrossRefGoogle Scholar
  62. Lee HC, Ma WH (2013) Improving the integrated hybrid lca in the upstream scope 3 emissions inventory analysis. Int J Life Cycle Assess 18:17–23CrossRefGoogle Scholar
  63. Lee YD, Thomas MV, Brown AM (2013) Electric urban delivery trucks: energy use, greenhouse gas emissions, and cost-effectiveness. Environ Sci Technol 47:8022–8030CrossRefGoogle Scholar
  64. Lenzen M (2009) Dealing with double-counting in tiered hybrid life-cycle inventories: a few comments. J Clean Prod 17:1382–13848CrossRefGoogle Scholar
  65. Lenzen M (2013) An outlook into a possible future of footprint research. J Ind Ecol 18(1):4–6CrossRefGoogle Scholar
  66. Lenzen M, Crawford R (2009) The path exchange method for hybrid lca. Environ Sci Technol 43:8251–8256CrossRefGoogle Scholar
  67. Lenzen M, Reynolds JC (2014) A supply-use approach to waste input-output analysis. J Ind Ecol 18(2):212–226CrossRefGoogle Scholar
  68. Lenzen M, Treloar G (2002) Embodied energy in buildings: wood versus concrete – reply to Börjesson and Gustavsson. Energy Policy 30:249–255CrossRefGoogle Scholar
  69. Lenzen M, Treloar G (2005) Endogenising capital: a comparison of two methods. J Appl Input-Output Anal 10:1–11Google Scholar
  70. Lenzen M, Wachsmann U (2004) Wind turbines in Brazil and Germany: an example of geographical variability in life-cycle assessment. Appl Energy 77:119–130CrossRefGoogle Scholar
  71. Lenzen M, Murray AS, Korte B, Dey JC (2003) Environmental impact assessment including indirect effects -a case study using input-output analysis. Impact Assess Rev 23:263–282CrossRefGoogle Scholar
  72. Lenzen M, Kanemoto K, Moran D, Geschke A (2012a) Mapping the structure of the world economy. Environ Sci Technol 46(15):8374–8381CrossRefGoogle Scholar
  73. Lenzen M, Moran D, Kanemoto K, Foran B, Lobefaro L, Geschke A (2012b) International trade drives biodiversity threats in developing nations. Nature 486:109–112CrossRefGoogle Scholar
  74. Lenzen M, Moran D, Kanemoto K, Geschke A (2013) Building eora: a global multi-region input-output database at high country and sector resolution. Econ Syst Res 25:20–49CrossRefGoogle Scholar
  75. Leontief W (1947) A note on the interrelation of subsets of independent variables of a continuous function with continuous first derivatives. Bull Am Math Soc 53:343–350CrossRefGoogle Scholar
  76. Leontief W (1970) Environmental repercussions and the economics structure: an input-output approach. Rev Econ Stat 52:262–271CrossRefGoogle Scholar
  77. Li X, Feng K, Siu LY, Hubacek K (2012) Energy-water nexus of wind power in China: the balancing act between CO2 emissions and water consumption. Energy Policy 45:440–448CrossRefGoogle Scholar
  78. Lin C (2009) Hybrid input-output analysis of wastewater treatment and environmental impacts: a case study for the tokyo metropolis. Ecol Econ 68:2096–2105CrossRefGoogle Scholar
  79. Lin C (2011) Identifying lowest-emission choices and environmental pareto frontiers for wastewater treatment wastewater treatment input-output model based linear programming. J Ind Ecol 15(3):367–380CrossRefGoogle Scholar
  80. Lu W, Zhang T (2010) Life-cycle implications of using crop residues for various energy demands in china. Environ Sci Technol 44:4026–4032CrossRefGoogle Scholar
  81. Maclean L, Lave BL (2003) Life cycle assessment of automobile/fuel options. Environ Sci Technol 37:5445–5452CrossRefGoogle Scholar
  82. Matsuhashi R, Kudoh Y, Yoshida Y, Ishitani H, Yoshioka M, Yoshioka K (2000) Life cycle of CO2-emissions from electric vehicles and gasoline vehicles utilizing a process-relational model. Int J Life Cycle Assess 5(5):306–312CrossRefGoogle Scholar
  83. Mattila JT, Pakarinen S, Sokka L (2010) Quantifying the total environmental impacts of an industrial symbiosis – a comparison of process-, hybrid and input-output life cycle assessment. Environ Sci Technol 44:4309–4314CrossRefGoogle Scholar
  84. McKenzie CE, Durango-Cohen LP (2010) An input-output approach for the efficient design of sustainable goods and services. Int J Life Cycle Assess 15:946–961CrossRefGoogle Scholar
  85. Meier T, Christen O (2013) Environmental impacts of dietary recommendations and dietary styles: Germany as an example. Environ Sci Technol 47:877–888CrossRefGoogle Scholar
  86. Miller RE, Blair PD (2009) Input-output analysis: foundations and extensions. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  87. Minx J, Wiedmann T, Barrett J, Suh S (2008) Methods review to support the PAS process for the calculation of the greenhouse gas emissions embodied in goods and services. Technical report, Dept for Environment, Food and Rural AffairsGoogle Scholar
  88. Mo W, Nasiri F, Eckelman JM, Zhang Q, Zimmerman BJ (2010) Measuring the embodied energy in drinking water supply systems: a case study in the great lakes region. Environ Sci Technol 44:9516–9521CrossRefGoogle Scholar
  89. Moriguchi Y, Kondo Y, Shimizu H (1993) Analysing the life cycle impacts of cars: the case of CO2. Ind Environ 16:42–45Google Scholar
  90. Moses L (1955) The stability of interregional trading patterns and input-output analysis. Am Econ Rev 45:803–826Google Scholar
  91. Nakajima K, Ohno H, Kondo Y, Matsubae K, Takeda O, Miki T, Nakamura S, Nagasaka T (2013) Simultaneous MFA of nickel, chromium and molybdenum used in alloy steel by means of input-output analysis. Environ Sci Technol 47:4563–4660CrossRefGoogle Scholar
  92. Nakamura S (1999) Input-output analysis of waste cycles. In: Environmentally conscious design and inverse manufacturing, 1999. In: Proceedings EcoDesign’99: first international symposium, pp 475–480Google Scholar
  93. Nakamura S (2011) Hybrid input-output analysis as a tool for communication among scientists of different disciplines. J Ind Ecol 15(5):661–663CrossRefGoogle Scholar
  94. Nakamura S, Kondo Y (2002) Input-output analysis of waste management. J Ind Ecol 6(1):39–63CrossRefGoogle Scholar
  95. Nakamura S, Kondo Y (2006) Hybrid LCC of appliances with different energy efficiency. Int J Life Cycle Assess 11:305–314CrossRefGoogle Scholar
  96. Nakamura S, Kondo Y (2009) Waste input-output analysis: concepts and application to industrial ecology. Eco-efficiency in industry and science. Springer, New YorkCrossRefGoogle Scholar
  97. Nakamura S, Nakajima K (2005) Waste input-output material flow analysis of metals in the Japanese economy. Mater Trans 46:2550–2553CrossRefGoogle Scholar
  98. Nakamura S, Yamasue S (2010) Hybrid lca of a design for disassembly technology: active disassembling fasteners of hydrogen storage alloys for home appliances. Environ Sci Technol 44:4402–4408CrossRefGoogle Scholar
  99. Nakamura S, Nakajima K, Kondo Y, Nagasaka T (2007) The waste input-output approach to materials flow analysis. J Ind Ecol 11(4):50–63CrossRefGoogle Scholar
  100. Nakamura S, Nakajima K, Yoshizawa Y, Matsubae-Yokoyama K, Nagasaka T (2009) Analyzing polyvinyl chloride in Japan with the waste input-output material flow analysis model. J Ind Ecol 13:706–717CrossRefGoogle Scholar
  101. Nakamura S, Kondo K, Matsubae K, Nakajima K, Nagasaka T (2011) Upiom: a new tool of MFA and its application to the flow of iron and steel associated with car production. Environ Sci Technol 45:1114–1120CrossRefGoogle Scholar
  102. Nakamura S, Kondo Y, Matsubae K, Nakajima K, Tasaki T, Nagasaka T (2012) Quality-and dilution losses in the recycling of ferrous materials from end-of-life passenger cars: input-output analysis under explicit consideration of scrap quality. Environ Sci Technol 46(17):9266–9273CrossRefGoogle Scholar
  103. Nansai K, Tohno S, Kono M, Kasahara M, Moriguchi Y (2001) Life-cycle analysis of charging infrastructure for electric vehicles. Appl Energy 70:251–265CrossRefGoogle Scholar
  104. Nansai K, Tohno S, Kono M, Kasahara M (2002) Effects of electric vehicles (ev) on environmental loads with consideration of regional differences of electric power generation and charging characteristic of ev users in Japan. Appl Energy 71:111–125CrossRefGoogle Scholar
  105. Nansai K, Kagawa S, Kondo Y, Suh S, Nakajima K (2009) Improving the completeness of product carbon footprints using a global link input-output model: the case of Japan. Econ Syst Res 21:267–290CrossRefGoogle Scholar
  106. Nansai K, Kondo Y, Kagawa S, Suh S, Nakajima K, Inaba R, Tohno S (2012) Estimates of embodied global energy and air-emission intensities of Japanese products for building a Japanese input–output life cycle assessment database with a global system boundary. Environ Sci Technol 46(16):9146–9154CrossRefGoogle Scholar
  107. Nansai K, Kagawa S, Kondo Y, Suh S (2013) Simplification of multi-regional input-output structure with a global system boundary: Global link input-output model (GLIO). In: Murray J, Lenzen M (eds) The sustainability practitioner’s guide to multiregional input-output analysis. Common Ground, ChampaignGoogle Scholar
  108. National Institute for Environmental Studies. Embodied Energy and Emission Intensity Data for Japan Using Input-Output Tables (3EID).
  109. Nikaido H (1970) Introduction to sets and mappings in modern economics. North-Holland, AmsterdamGoogle Scholar
  110. Northwest Territories Bureau of Statistics (2006) NWT input-output model – an overview.
  111. OECD web: input-output tables.
  112. Ohno H, Matsubae K, Nakajima K, Nakamura S, Nagasaka T (2014) Unintentional flow of alloying elements in steel during recycling of end-of-life vehicles. J Ind Ecol 18:242–253CrossRefGoogle Scholar
  113. Onat CN, Kucukvar M, Tatari O (2014) Scope-based carbon footprint analysis of U.S. residential and commercial buildings: an input-output hybrid life cycle assessment approach. Build Environ 72:53–62CrossRefGoogle Scholar
  114. Paltsev S, Reilly JM, Jacoby HD, Eckaus RS, McFarland J, Sarofim M, Asadoorian M, Babiker M (2005) The mit emissions prediction and policy analysis (EPPA) model: version 4. Technical report, MIT Joint Program on the Science and Policy of Global ChangeGoogle Scholar
  115. Peters GP, Andrew R, Lennox J (2011) Constructing an environmentally-extended multi-regional input-output table using the gtap database. Econ Syst Res 23(2):131–152CrossRefGoogle Scholar
  116. Peters MG, Rowley VH, Wiedmann S, Tucker R, Short DM, Schulz M (2010a) Red meat production in Australia: life cycle assessment and comparison with overseas studies. Environ Sci Technol 44:1327–1332CrossRefGoogle Scholar
  117. Peters MG, Wiedmann GS, Rowley VH, Tucker WR (2010b) Accounting for water use in Australian red meat production. Int J Life Cycle Assess 15:311–320CrossRefGoogle Scholar
  118. Piringer G, Steinberg H (2006) Reevaluation of energy use in wheat production in the United States. J Ind Ecol 10(1–2):149–167Google Scholar
  119. Qi T, Winchester N, Karplus V, Zhang X (2014) Will economic restructuring in China reduce trade-embodied CO2 emissions? Energy Econ 42:204–212CrossRefGoogle Scholar
  120. Ramaswami A, Hillman T, Janson B, Reiner M, Thomas G (2008) A demand-centered, hybrid life-cycle methodology for city-scale greenhouse gas inventories. Environ Sci Technol 42(17):6455–6461CrossRefGoogle Scholar
  121. Reap J, Roman F, Duncan S, Bras B (2008) A survey of unresolved problems in life cycle assessment. Int J Life Cycle Assess 13(5):374–388CrossRefGoogle Scholar
  122. Rebitzer G, Nakamura S (2008) Environmental life cycle costing. In: Hunkeler D, Lichtenvort K, Rebitzer G (eds) Environmental life cycle costing. SETAC Press, Boca RatonGoogle Scholar
  123. Rose A (1995) Input-output economics and computable general equilibrium models. Struct Chang Econ Dyn 6(3):295–304CrossRefGoogle Scholar
  124. Rowley VH, Lundie S, Peters MG (2009) A hybrid life cycle assessment model for comparison with conventional methodologies in Australia. Int J Life Cycle Assess 14:508–516CrossRefGoogle Scholar
  125. Samaras C, Meisterling K (2008) Life cycle assessment of greenhouse gas emissions from plug-in hybrid vehicles: implications for policy. Environ Sci Technol 42:3170–3176CrossRefGoogle Scholar
  126. S. Sangwon and B. C. Lippiatt. Framework for hybrid life cycle inventory databases: a case study on the Building for Environmental and Economic Sustainability (BEES) database. The International Journal of Life Cycle Assessment 17.5 (2012): 604-612Google Scholar
  127. Schoer K, Wood R, Arto I, Weinzettel J (2013) Estimating raw material equivalents on a macro-level: comparison of multi-regional input-output analysis and hybrid LCI-IO. Environ Sci Technol 47:14282–14289CrossRefGoogle Scholar
  128. Scholer K, Weinzettel J, Kovanda J, Giegrich J, Lauwigi C (2012) Raw material consumption of the European Union – concept, calculation method, and results. Environ Sci Technol 46:8903–8909CrossRefGoogle Scholar
  129. Schumacher K, Sands RD (2007) Where are the industrial technologies in energy-economy models? An innovative cge approach for steel production in Germany. Energy Econ 29(4):799–825CrossRefGoogle Scholar
  130. Scown DC, Horvath A, McKone ET (2011) Water footprint of U.S. transportation fuels. Environ Sci Technol 45:2541–2553CrossRefGoogle Scholar
  131. Shao L, Chen GQ (2013) Water footprint assessment for wastewater treatment: method, indicator, and application. Environ Sci Technol 47:7787–7794CrossRefGoogle Scholar
  132. Sharrard LA, Matthews SH, Ries JR (2008) Estimating construction project environmental effects using an input-output-based hybrid life-cycle assessment model. J Infrastruct Syst 14(4):327–336CrossRefGoogle Scholar
  133. Shen L, Worrell E, Patel MK (2010) Open-loop recycling: a LCA case study of pet bottle-to-re recycling. Resour Conserv Recycl 55(1):34–52CrossRefGoogle Scholar
  134. Shrake OS, Bilec MM, Landis EA (2013) The application of a multi-faceted approach for evaluating and improving the life cycle environmental performance of service industries. J Clean Prod 42:263–276CrossRefGoogle Scholar
  135. Singh B, Strømman AH, Hertwich GE (2011) Life cycle assessment of natural gas combined cycle power plant with post-combustion carbon capture, transport and storage. Int J Greenh Gas Control 5:457–466CrossRefGoogle Scholar
  136. Singh B, Strømman AH, Hertwich GE (2012) Environmental damage assessment of carbon capture and storage -application of end-point indicators. J Ind Ecol 16(3):407–419CrossRefGoogle Scholar
  137. Sivaraman D, Pacca S, Mueller K, Lin J (2007) Comparative energy, environmental, and economic analysis of traditional and e-commerce DVD rental networks. J Ind Ecol 11(3):77–91CrossRefGoogle Scholar
  138. Solli C, Reenaas M, Strømman AH, Hertwich GE (2009) Life cycle assessment of wood-based heating in Norway. Int J Life Cycle Assess 14:517–528CrossRefGoogle Scholar
  139. Sono M (1961) The effect of price changes on the demand and supply of separable goods. International economic review (English translation of the original Japanese publication in Kokumin keizai zassi 74–3, 1943, 261–311) 2:239–271Google Scholar
  140. Steen-Olsen K, Weinzettel J, Cranston G, Ercin A, Hertwich EG (2012) Carbon, land, and water footprint accounts for the European Union: consumption, production, and displacements through international trade. Environ Sci Technol 46:10883–10891CrossRefGoogle Scholar
  141. Stokes RJ, Horvath A (2006) Life cycle energy assessment of alternative water supply systems. Int J Life Cycle Assess 11(5):335–343CrossRefGoogle Scholar
  142. Stokes RJ, Horvath A (2009) Energy and air emission effects of water supply. Environ Sci Technol 43:2680–2687CrossRefGoogle Scholar
  143. Stokes RJ, Horvath A, Sturm R (2013) Water loss control using pressure management: life-cycle energy and air emission effects. Environ Sci Technol 47:10771–10780CrossRefGoogle Scholar
  144. Stone R (1961) Input-output and national accounts. The Organization for European Economic Development, ParisGoogle Scholar
  145. Strømman AH (2009) Dealing with double-counting in tiered hybrid life-cycle inventories: a few comments – response. J Clean Prod 17:1607–1609CrossRefGoogle Scholar
  146. Strømman AH, Solli C, Hertwich GE (2006) Hybrid life-cycle assessment of natural gas based fuel chains for transportation. Environ Sci Technol 40:2797–2804CrossRefGoogle Scholar
  147. Strømman AH, Peters GP, Hertwich EG (2009) Approaches to correct for double counting in tiered hybrid life cycle inventories. J Clean Prod 17:248–254CrossRefGoogle Scholar
  148. Suh S (2004) Functions, commodities and environmental impacts in an ecological-economic model. Ecol Econ 48:451–467CrossRefGoogle Scholar
  149. Suh S (ed) (2009) Handbook of input-output economics in industrial ecology. Springer, DordrechtGoogle Scholar
  150. Suh S, Huppes G (2005) Methods for life cycle inventory of a product. J Clean Prod 13:687–697CrossRefGoogle Scholar
  151. Suh S, Lenzen M, Treloar GJ, Hondo H, Horvath A, Huppes G, Jolliet O, Klann U, Krewitt W, Moriguchi Y, Munksgaard J, Norris G (2004) System boundary selection in life-cycle inventories using hybrid approaches. Environ Sci Technol 38:657–664CrossRefGoogle Scholar
  152. Suh S, Weidema B, Schmidt JH, Heijungs R (2010) Generalized make and use framework for allocation in life cycle assessment. J Ind Ecol 14:335–353CrossRefGoogle Scholar
  153. Suh S, Tomar S, Leighton M, Kneifel J (2014) Environmental performance of green building code and certification systems. Environ Sci Technol 48:2551–2560CrossRefGoogle Scholar
  154. Swarr TE, Hunkeler D, Klöpffer W, Pesonen HL, Ciroth A, Brent AC, Pagan R (2011) Environmental life-cycle costing: a code of practice. Int J Life Cycle Assess 16:389–391CrossRefGoogle Scholar
  155. Takahashi K, Nansai K, Tohno S, Nishizawa M, Kurokawa J, Ohara T (2014) Production-based and consumption-based emissions and health impacts of PM2.5 carbonaceous aerosols in Asia. Atmos Environ 97:406–415CrossRefGoogle Scholar
  156. Timmer MP (2012) World input-output database. WIOD working paper 10.
  157. Treloar GJ (1997) Extracting embodied energy paths from input-output tables: towards an input-output-based hybrid energy analysis method. Econ Syst Res 9:375–391CrossRefGoogle Scholar
  158. Trelor GJ, Love PED, Crawford RH (2004) Hybrid life-cycle inventory for road construction and use. J Constr Eng Manag 130(1):43–49CrossRefGoogle Scholar
  159. Tukker A, Bulavskaya T, Giljum S, De Koning A, Lutter S, Simas M, Stadler K, Wood R (2015) The global resource footprint of nations. Carbon, water, land and materials embodied in trade and final consumption.
  160. United Nations (2003) National accounts: a practical introduction. Studies in methods Series F 85. Department of Economic and Social Affairs, Statistics DivisionGoogle Scholar
  161. Urban AR, Bakshi RB (2013) Techno-ecological synergy as a path toward sustainability of a North American residential systems. Environ Sci Technol 47:1985–1993CrossRefGoogle Scholar
  162. Vieira SP, Horvath A (2008) Assessing the end-of-life impacts of buildings. Environ Sci Technol 42:4663–4669CrossRefGoogle Scholar
  163. Wang C, Zhang L, Yang A, Pang M (2012) A hybrid life-cycle assessment of nonrenewable energy and greenhouse-gas emissions of a village-level biomass gasification project in China. Energies 5:2708–2723CrossRefGoogle Scholar
  164. Weil M, Jeske U, Schebek L (2006) Closed-loop recycling of construction and demolition waste in Germany in view of stricter environmental threshold values. Waste Manag Res 24(3):197–206CrossRefGoogle Scholar
  165. Weinzettel J, Hertwich EG, Peters GP, Steen-Olsen K, Galli A (2013) Affluence drives the global displacement of land use. Glob Environ Chang 23(2):433–438CrossRefGoogle Scholar
  166. Weisz H, Duchin F (2006) Physical and monetary input-output analysis: what makes the difference? Ecol Econ 57:534–541CrossRefGoogle Scholar
  167. Wiedmann T (2009) A review of recent multi-region input-output models used for consumption-based emission and resource accounting. Ecol Econ 69(2):211–222CrossRefGoogle Scholar
  168. Wiedmann T, Suh S, Feng K, Lenzen M, Acquaye A, Scott K, Barrett JR (2011) Application of hybrid life cycle approaches to emerging energy technologies-the case of wind power in the UK. Environ Sci Technol 45(13):5900–5907CrossRefGoogle Scholar
  169. Williams E (2004) Energy intensity of computer manufacturing: hybrid assessment combining process and economic input-output methods. Environ Sci Technol 38:6166–6174CrossRefGoogle Scholar
  170. Williams ED, Weber CL, Hawkins TR (2009) Hybrid framework for managing uncertainty in life cycle inventories. J Ind Ecol 13(6):928–944CrossRefGoogle Scholar
  171. World Bank. The International Comparison Program (ICP).
  172. Wright D (1974) Goods and services: an input-output analysis. Energy Policy 2:307–315CrossRefGoogle Scholar
  173. Yang Y, Bae J, Kim J, Suh S (2012) Replacing gasoline with corn ethanol results in significant environmental problem-shifting. Environ Sci Technol 46:3671–3678CrossRefGoogle Scholar
  174. Yao MA, Higgs GT, Cullen JM, Stewart S, Brady AT (2010) Comparative assessment of lifecycle assessment methods used for personal computers. Environ Sci Technol 44:7335–7346CrossRefGoogle Scholar
  175. Zamagni A, Guinée J, Heijungs R, Masoni P, Raggi A (2012) Lights and shadows in consequential LCA. Int J Life Cycle Assess 17(7):904–918CrossRefGoogle Scholar
  176. Zhai P, Williams DE (2010) Dynamic hybrid assessment of energy and carbon of multicrystalline silicon photovoltaic systems. Environ Sci Technol 44:7950–7955CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Faculty of Political Science and EconomicsWaseda UniversityTokyoJapan
  2. 2.National Institute for Environmental StudiesCenter for Material Cycles and Waste Management ResearchIbarakiJapan

Personalised recommendations