Neuropathic Pain: Sensory Nerve Injury or Motor Nerve Injury?

  • Xian-Guo Liu
  • Rui-Ping Pang
  • Li-Jun Zhou
  • Xu-Hong Wei
  • Ying Zang
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 904)


Peripheral nerve injury often induces chronic neuropathic pain. Peripheral nerve is consisted of sensory fibers and motor fibers, it is questioned injury to which type of fibers is responsible for generation of neuropathic pain? Because neuropathic pain is sensory disorder, it is generally believed that the disease should be induced by injury to sensory fibers. In recent years, however, emergent evidence shows that motor fiber injury but not sensory fiber injury is necessary and sufficient for induction of neuropathic pain. Motor fiber injury leads to neuropathic pain by upregulating pro-inflammatory cytokines and brain-derived neurotrophic factor in pain pathway.


Neuropathic pain Neuroinflammation Ectopic discharge Long-term potentiation Motor fiber 


  1. Baud V, Karin M. Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol. 2001;11(9):372–7.CrossRefPubMedGoogle Scholar
  2. Beckh S, Noda M, Lubbert H, Numa S. Differential regulation of three sodium channel messenger RNAs in the rat central nervous system during development. EMBO J. 1989;8(12):3611–6.PubMedPubMedCentralGoogle Scholar
  3. Berta T, Poirot O, Pertin M, Ji RR, Kellenberger S, Decosterd I. Transcriptional and functional profiles of voltage-gated Na + channels in injured and non-injured DRG neurons in the SNI model of neuropathic pain. Mol Cell Neurosci. 2008;37(2):196–208.CrossRefPubMedGoogle Scholar
  4. Black JA, Cummins TR, Plumpton C, Chen YH, Hormuzdiar W, Clare JJ, Waxman SG. Upregulation of a silent sodium channel after peripheral, but not central, nerve injury in DRG neurons. J Neurophysiol. 1999;82(5):2776–85.PubMedGoogle Scholar
  5. Bliss TV, Lomo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol. 1973;232(2):331–56.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Blumberg H, Janig W. Discharge pattern of afferent fibers from a neuroma. Pain. 1984;20(4):335–53.CrossRefPubMedGoogle Scholar
  7. Boucher TJ, Okuse K, Bennett DL, Munson JB, Wood JN, McMahon SB. Potent analgesic effects of GDNF in neuropathic pain states. Science. 2000;290(5489):124–7.CrossRefPubMedGoogle Scholar
  8. Butler MP, O’Connor JJ, Moynagh PN. Dissection of tumor-necrosis factor-alpha inhibition of long-term potentiation (LTP) reveals a p38 mitogen-activated protein kinase-dependent mechanism which maps to early-but not late-phase LTP. Neuroscience. 2004;124(2):319–26.CrossRefPubMedGoogle Scholar
  9. Capek L, Clarke HM, Zuker RM. Endoscopic sural nerve harvest in the pediatric patient. Plast Reconstr Surg. 1996;98(5):884–8.CrossRefPubMedGoogle Scholar
  10. Chen X, Pang RP, Shen KF, Zimmermann M, Xin WJ, Li YY, Liu XG. TNF-alpha enhances the currents of voltage gated sodium channels in uninjured dorsal root ganglion neurons following motor nerve injury. Exp Neurol. 2010;227:279–86.CrossRefPubMedGoogle Scholar
  11. Chen HS, Zhou ZH, Li M, Wang JX, Liu BJ, Lu Y. Contribution of brain-derived neurotrophic factor to mechanical hyperalgesia induced by ventral root transection in rats. Neuroreport. 2013;24(4):167–70. doi:10.1097/WNR.0b013e32835d4b97.CrossRefPubMedGoogle Scholar
  12. Chu YX, Zhang Y, Zhang YQ, Zhao ZQ. Involvement of microglial P2X7 receptors and downstream signaling pathways in long-term potentiation of spinal nociceptive responses. Brain Behav Immun. 2010;24(7):1176–89.CrossRefPubMedGoogle Scholar
  13. Colburn RW, Rickman AJ, DeLeo JA. The effect of site and type of nerve injury on spinal glial activation and neuropathic pain behavior. Exp Neurol. 1999;157(2):289–304.CrossRefPubMedGoogle Scholar
  14. Cowley TR, O’Sullivan J, Blau C, Deighan BF, Jones R, Kerskens C, Richardson JC, Virley D, Upton N, Lynch MA. Rosiglitazone attenuates the age-related changes in astrocytosis and the deficit in LTP. Neurobiol Aging. 2012;33(1):162–75. doi:10.1016/j.neurobiolaging.2010.02.002.CrossRefPubMedGoogle Scholar
  15. Drdla R, Gassner M, Gingl E, Sandkuhler J. Induction of synaptic long-term potentiation after opioid withdrawal. Science. 2009;325(5937):207–10.CrossRefPubMedGoogle Scholar
  16. Dubovy P. Wallerian degeneration and peripheral nerve conditions for both axonal regeneration and neuropathic pain induction. Ann Anat. 2011;193(4):267–75. doi:10.1016/j.aanat.2011.02.011.CrossRefPubMedGoogle Scholar
  17. Ekberg J, Jayamanne A, Vaughan CW, Aslan S, Thomas L, Mould J, Drinkwater R, et al. muO-conotoxin MrVIB selectively blocks Nav1.8 sensory neuron specific sodium channels and chronic pain behavior without motor deficits. Proc Natl Acad Sci U S A. 2006;103(45):17030–5.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Engert F, Bonhoeffer T. Synapse specificity of long-term potentiation breaks down at short distances. Nature. 1997;388(6639):279–84. doi:10.1038/40870.CrossRefPubMedGoogle Scholar
  19. Eschenfelder S, Habler HJ, Janig W. Dorsal root section elicits signs of neuropathic pain rather than reversing them in rats with L5 spinal nerve injury. Pain. 2000;87(2):213–9.CrossRefPubMedGoogle Scholar
  20. Fjell J, Cummins TR, Dib-Hajj SD, Fried K, Black JA, Waxman SG. Differential role of GDNF and NGF in the maintenance of two TTX-resistant sodium channels in adult DRG neurons. Brain Res Mol Brain Res. 1999;67(2):267–82.CrossRefPubMedGoogle Scholar
  21. Frey U, Krug M, Reymann KG, Matthies H. Anisomycin, an inhibitor of protein synthesis, blocks late phases of LTP phenomena in the hippocampal CA1 region in vitro. Brain Res. 1988;452(1-2):57–65.CrossRefPubMedGoogle Scholar
  22. Fukuoka T, Kondo E, Dai Y, Hashimoto N, Noguchi K. Brain-derived neurotrophic factor increases in the uninjured dorsal root ganglion neurons in selective spinal nerve ligation model. J Neurosci. 2001;21(13):4891–900.PubMedGoogle Scholar
  23. Gong QJ, Li YY, Xin WJ, Zang Y, Ren WJ, Wei XH, Zhang T, Liu XG. ATP induces long-term potentiation of C-fiber-evoked field potentials in spinal dorsal horn: The roles of P2X(4) receptors and p38 MAPK in microglia. Glia. 2009;57:583–91.CrossRefPubMedGoogle Scholar
  24. Govrin-Lippmann R, Devor M. Ongoing activity in severed nerves: source and variation with time. Brain Res. 1978;159(2):406–10.CrossRefPubMedGoogle Scholar
  25. Griffin R, Nally R, Nolan Y, McCartney Y, Linden J, Lynch MA. The age-related attenuation in long-term potentiation is associated with microglial activation. J Neurochem. 2006;99(4):1263–72.CrossRefPubMedGoogle Scholar
  26. Hains BC, Saab CY, Klein JP, Craner MJ, Waxman SG. Altered sodium channel expression in second-order spinal sensory neurons contributes to pain after peripheral nerve injury. J Neurosci. 2004;24(20):4832–9.CrossRefPubMedGoogle Scholar
  27. He XH, Zang Y, Chen X, Pang RP, Xu JT, Zhou X, Wei XH, et al. TNF-alpha contributes to up-regulation of Nav1.3 and Nav1.8 in DRG neurons following motor fiber injury. Pain. 2010;151:266–79.CrossRefPubMedGoogle Scholar
  28. Hu NW, Zhang HM, Hu XD, Li MT, Zhang T, Zhou LJ, Liu XG. Protein synthesis inhibition blocks the late-phase LTP of C-fiber evoked field potentials in rat spinal dorsal horn. J Neurophysiol. 2003;89(5):2354–9.CrossRefPubMedGoogle Scholar
  29. IJpma FF, Nicolai JP, Meek MF. Sural nerve donor-site morbidity: thirty-four years of follow-up. Ann Plast Surg. 2006;57(4):391–5. doi:10.1097/ Scholar
  30. Ikeda H, Stark J, Fischer H, Wagner M, Drdla R, Jager T, Sandkuhler J. Synaptic amplifier of inflammatory pain in the spinal dorsal horn. Science. 2006;312(5780):1659–62.CrossRefPubMedGoogle Scholar
  31. Jarvis MF, Honore P, Shieh CC, Chapman M, Joshi S, Zhang XF, Kort M, et al. A-803467, a potent and selective Nav1.8 sodium channel blocker, attenuates neuropathic and inflammatory pain in the rat. Proc Natl Acad Sci. 2007;104(20):8520–5.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Klein T, Magerl W, Hopf HC, Sandkuhler J, Treede RD. Perceptual correlates of nociceptive long-term potentiation and long-term depression in humans. J Neurosci. 2004;24(4):964–71.CrossRefPubMedGoogle Scholar
  33. Kuwabara S, Yuki N. Axonal Guillain-Barre syndrome: concepts and controversies. Lancet Neurol. 2013;12(12):1180–8. doi:10.1016/S1474-4422(13)70215-1.CrossRefPubMedGoogle Scholar
  34. Lai J, Gold MS, Kim CS, Bian D, Ossipov MH, Hunter JC, Porreca F. Inhibition of neuropathic pain by decreased expression of the tetrodotoxin-resistant sodium channel, NaV1.8. Pain. 2002;95(1-2):143–52.CrossRefPubMedGoogle Scholar
  35. Ledeboer A, Jekich BM, Sloane EM, Mahoney JH, Langer SJ, Milligan ED, Martin D, et al. Intrathecal interleukin-10 gene therapy attenuates paclitaxel-induced mechanical allodynia and proinflammatory cytokine expression in dorsal root ganglia in rats. Brain Behav Immun. 2007;21(5):686–98. doi:10.1016/j.bbi.2006.10.012.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Leffler A, Cummins TR, Dib-Hajj SD, Hormuzdiar WN, Black JA, Waxman SG. GDNF and NGF reverse changes in repriming of TTX-sensitive Na(+) currents following axotomy of dorsal root ganglion neurons. J Neurophysiol. 2002;88(2):650–8.PubMedGoogle Scholar
  37. Li Y, Dorsi MJ, Meyer RA, Belzberg AJ. Mechanical hyperalgesia after an L5 spinal nerve lesion in the rat is not dependent on input from injured nerve fibers. Pain. 2000;85(3):493–502.CrossRefPubMedGoogle Scholar
  38. Li L, Xian CJ, Zhong JH, Zhou XF. Effect of lumbar 5 ventral root transection on pain behaviors: a novel rat model for neuropathic pain without axotomy of primary sensory neurons. Exp Neurol. 2002;175(1):23–34.CrossRefPubMedGoogle Scholar
  39. Li L, Xian CJ, Zhong JH, Zhou XF. Lumbar 5 ventral root transection-induced upregulation of nerve growth factor in sensory neurons and their target tissues: a mechanism in neuropathic pain. Mol Cell Neurosci. 2003;23(2):232–50.CrossRefPubMedGoogle Scholar
  40. Light AR, Trevino DL, Perl ER. Morphological features of functionally defined neurons in the marginal zone and substantia gelatinosa of the spinal dorsal horn. J Comp Neurol. 1979;186(2):151–71.CrossRefPubMedGoogle Scholar
  41. Lin YT, Ro LS, Wang HL, Chen JC. Up-regulation of dorsal root ganglia BDNF and trkB receptor in inflammatory pain: an in vivo and in vitro study. J Neuroinflammation. 2011;8:126. doi:10.1186/1742-2094-8-126.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Liu XG, Sandkuhler J. Long-term potentiation of C-fiber-evoked potentials in the rat spinal dorsal horn is prevented by spinal N-methyl-D-aspartic acid receptor blockage. Neurosci Lett. 1995;191(1-2):43–6.CrossRefPubMedGoogle Scholar
  43. Liu XG, Sandkuhler J. Characterization of long-term potentiation of C-fiber-evoked potentials in spinal dorsal horn of adult rat: essential role of NK1 and NK2 receptors. J Neurophysiol. 1997;78(4):1973–82.PubMedGoogle Scholar
  44. Liu XG, Zhou LJ. Long-Term Potentiation at Spinal C-Fiber Synapses: a Target for Pathological Pain. Curr Pharm Des. 2015;21(7):895–905.CrossRefPubMedGoogle Scholar
  45. Liu YL, Zhou LJ, Hu NW, Xu JT, Wu CY, Zhang T, Li YY, Liu XG. Tumor necrosis factor-alpha induces long-term potentiation of C-fiber evoked field potentials in spinal dorsal horn in rats with nerve injury: the role of NF-kappa B, JNK and p38 MAPK. Neuropharmacology. 2007;52(3):708–15.CrossRefPubMedGoogle Scholar
  46. Luo ZD, Chaplan SR, Higuera ES, Sorkin LS, Stauderman KA, Williams ME, Yaksh TL. Upregulation of dorsal root ganglion (alpha)2(delta) calcium channel subunit and its correlation with allodynia in spinal nerve-injured rats. J Neurosci. 2001;21(6):1868–75.PubMedGoogle Scholar
  47. Martins RS, Barbosa RA, Siqueira MG, Soares MS, Heise CO, Foroni L, Teixeira MJ. Morbidity following sural nerve harvesting: a prospective study. Clin Neurol Neurosurg. 2012;114(8):1149–52. doi:10.1016/j.clineuro.2012.02.045.CrossRefPubMedGoogle Scholar
  48. Michaelis M, Liu XG, Janig W. Axotomized and intact muscle afferents but no skin afferents develop ongoing discharges of dorsal root ganglion origin after peripheral nerve lesion. J Neurosci. 2000;20(7):2742–8.PubMedGoogle Scholar
  49. Obata K, Yamanaka H, Kobayashi K, Dai Y, Mizushima T, Katsura H, Fukuoka T, Tokunaga A, Noguchi K. The effect of site and type of nerve injury on the expression of brain-derived neurotrophic factor in the dorsal root ganglion and on neuropathic pain behavior. Neuroscience. 2006;137(3):961–70.CrossRefPubMedGoogle Scholar
  50. Park CK, Lu N, Xu ZZ, Liu T, Serhan CN, Ji RR. Resolving TRPV1- and TNF-alpha-mediated spinal cord synaptic plasticity and inflammatory pain with neuroprotectin D1. J Neurosci. 2011;31(42):15072–85. doi:10.1523/JNEUROSCI.2443-11.2011.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Ramer LM, Borisoff JF, Ramer MS. Rho-kinase inhibition enhances axonal plasticity and attenuates cold hyperalgesia after dorsal rhizotomy. J Neurosci. 2004;24(48):10796–805.CrossRefPubMedGoogle Scholar
  52. Rekand T, Gramstad A, Vedeler CA. Fatigue, pain and muscle weakness are frequent after Guillain-Barre syndrome and poliomyelitis. J Neurol. 2009;256(3):349–54.CrossRefPubMedGoogle Scholar
  53. Ren WJ, Liu Y, Zhou LJ, Li W, Zhong Y, Pang RP, Xin WJ, et al. Peripheral Nerve Injury Leads to Working Memory Deficits and Dysfunction of the Hippocampus by Upregulation of TNF-alpha in Rodents. Neuropsychopharmacology. 2011;36(5):15.Google Scholar
  54. Rush AM, Cummins TR, Waxman SG. Multiple sodium channels and their roles in electrogenesis within dorsal root ganglion neurons. J Physiol. 2007;579(Pt 1):1–14.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Sekiguchi M, Sekiguchi Y, Konno SI, Kobayashi H, Homma Y, Kikuchi SI. Comparison of neuropathic pain and neuronal apoptosis following nerve root or spinal nerve compression. Eur Spine J. 2009;18(12):13.CrossRefGoogle Scholar
  56. Sharma S, Chopra K, Kulkarni SK. Effect of insulin and its combination with resveratrol or curcumin in attenuation of diabetic neuropathic pain: participation of nitric oxide and TNF-alpha. Phytother Res. 2007;21(3):278–83. doi:10.1002/ptr.2070.CrossRefPubMedGoogle Scholar
  57. Sheen K, Chung JM. Signs of neuropathic pain depend on signals from injured nerve fibers in a rat model. Brain Res. 1993;610(1):62–8.CrossRefPubMedGoogle Scholar
  58. Shen KF, Zhu HQ, Wei XH, Wang J, Li YY, Pang RP, Liu XG. Interleukin-10 down-regulates voltage gated sodium channels in rat dorsal root ganglion neurons. Exp Neurol. 2013;247:466–75. doi:10.1016/j.expneurol.2013.01.018.CrossRefPubMedGoogle Scholar
  59. Sheth RN, Dorsi MJ, Li Y, Murinson BB, Belzberg AJ, Griffin JW, Meyer RA. Mechanical hyperalgesia after an L5 ventral rhizotomy or an L5 ganglionectomy in the rat. Pain. 2002;96(1-2):63–72.CrossRefPubMedGoogle Scholar
  60. Sleeper AA, Cummins TR, Dib-Hajj SD, Hormuzdiar W, Tyrrell L, Waxman SG, Black JA. Changes in expression of two tetrodotoxin-resistant sodium channels and their currents in dorsal root ganglion neurons after sciatic nerve injury but not rhizotomy. J Neurosci. 2000;20(19):7279–89.PubMedGoogle Scholar
  61. Stoelb BL, Carter GT, Abresch RT, Purekal S, McDonald CM, Jensen MP. Pain in persons with postpolio syndrome: frequency, intensity, and impact. Arch Phys Med Rehabil. 2008;89(10):1933–40.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Swett JE, Wikholm RP, Blanks RH, Swett AL, Conley LC. Motoneurons of the rat sciatic nerve. Exp Neurol. 1986;93(1):227–52.CrossRefPubMedGoogle Scholar
  63. Tancredi V, D’Arcangelo G, Grassi F, Tarroni P, Palmieri G, Santoni A, Eusebi F. Tumor necrosis factor alters synaptic transmission in rat hippocampal slices. Neurosci Lett. 1992;146(2):176–8.CrossRefPubMedGoogle Scholar
  64. Tedroff K, Lowing K, Astrom E. A prospective cohort study investigating gross motor function, pain, and health-related quality of life 17 years after selective dorsal rhizotomy in cerebral palsy. Dev Med Child Neurol. 2015;57(5):484–90. doi:10.1111/dmcn.12665.CrossRefPubMedGoogle Scholar
  65. Vereker E, O’Donnell E, Lynch A, Kelly A, Nolan Y, Lynch MA. Evidence that interleukin-1beta and reactive oxygen species production play a pivotal role in stress-induced impairment of LTP in the rat dentate gyrus. Eur J Neurosci. 2001;14(11):1809–19.CrossRefPubMedGoogle Scholar
  66. Wall PD, Waxman S, Basbaum AI. Ongoing activity in peripheral nerve: injury discharge. Exp Neurol. 1974;45(3):576–89.CrossRefPubMedGoogle Scholar
  67. Wang Q, Walsh DM, Rowan MJ, Selkoe DJ, Anwyl R. Block of long-term potentiation by naturally secreted and synthetic amyloid beta-peptide in hippocampal slices is mediated via activation of the kinases c-Jun N-terminal kinase, cyclin-dependent kinase 5, and p38 mitogen-activated protein kinase as well as metabotropic glutamate receptor type 5. J Neurosci. 2004;24(13):3370–8.CrossRefPubMedGoogle Scholar
  68. Wang W, Gu J, Li YQ, Tao YX. Are voltage-gated sodium channels on the dorsal root ganglion involved in the development of neuropathic pain? Mol Pain. 2011;7:16. doi:10.1186/1744-8069-7-16.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Waxman SG, Kocsis JD, Black JA. Type III sodium channel mRNA is expressed in embryonic but not adult spinal sensory neurons, and is reexpressed following axotomy. J Neurophysiol. 1994;72(1):466–70.PubMedPubMedCentralGoogle Scholar
  70. Wei XH, Zang Y, Wu CY, Xu JT, Xin WJ, Liu XG. Peri-sciatic administration of recombinant rat TNF-alpha induces mechanical allodynia via upregulation of TNF-alpha in dorsal root ganglia and in spinal dorsal horn: the role of NF-kappa B pathway. Exp Neurol. 2007;205(2):471–84.CrossRefPubMedGoogle Scholar
  71. Wei XH, Na XD, Liao GJ, Chen QY, Cui Y, Chen FY, Li YY, Zang Y, Liu XG. The up-regulation of IL-6 in DRG and spinal dorsal horn contributes to neuropathic pain following L5 ventral root transection. Exp Neurol. 2013;241:159–68. doi:10.1016/j.expneurol.2012.12.007.CrossRefPubMedGoogle Scholar
  72. Winkelstein BA, Rutkowski MD, Sweitzer SM, Pahl JL, DeLeo JA. Nerve injury proximal or distal to the DRG induces similar spinal glial activation and selective cytokine expression but differential behavioral responses to pharmacologic treatment. J Comp Neurol. 2001;439(2):127–39.CrossRefPubMedGoogle Scholar
  73. Wu G, Ringkamp M, Hartke TV, Murinson BB, Campbell JN, Griffin JW, Meyer RA. Early onset of spontaneous activity in uninjured C-fiber nociceptors after injury to neighboring nerve fibers. J Neurosci. 2001;21(8):RC140.PubMedGoogle Scholar
  74. Wu G, Ringkamp M, Murinson BB, Pogatzki EM, Hartke TV, Weerahandi HM, Campbell JN, Griffin JW, Meyer RA. Degeneration of myelinated efferent fibers induces spontaneous activity in uninjured C-fiber afferents. J Neurosci. 2002;22(17):7746–53.PubMedGoogle Scholar
  75. Wu Y, Na X, Zang Y, Cui Y, Xin W, Pang R, Zhou L, Wei X, Li Y, Liu XG. Upregulation of tumor necrosis factor-alpha in nucleus accumbens attenuates morphine-induced rewarding in a neuropathic pain model. Biochem Biophys Res Commun. 2014;449(4):502–7. doi:10.1016/j.bbrc.2014.05.025.CrossRefPubMedGoogle Scholar
  76. Xiao L, Cheng J, Dai J, Zhang D. Botulinum toxin decreases hyperalgesia and inhibits P2X3 receptor over-expression in sensory neurons induced by ventral root transection in rats. Pain Med. 2011;12(9):1385–94. doi:10.1111/j.1526-4637.2011.01182.x.CrossRefPubMedGoogle Scholar
  77. Xu JT, Xin WJ, Zang Y, Wu CY, Liu XG. The role of tumor necrosis factor-alpha in the neuropathic pain induced by Lumbar 5 ventral root transection in rat. Pain. 2006;123(3):306–21.CrossRefPubMedGoogle Scholar
  78. Xu JT, Xin WJ, Wei XH, Wu CY, Ge YX, Liu YL, Zang Y, Zhang T, Li YY, Liu XG. p38 activation in uninjured primary afferent neurons and in spinal microglia contributes to the development of neuropathic pain induced by selective motor fiber injury. Exp Neurol. 2007;204(1):355–65.CrossRefPubMedGoogle Scholar
  79. Yajima Y, Narita M, Usui A, Kaneko C, Miyatake M, Yamaguchi T, Tamaki H, Wachi H, Seyama Y, Suzuki T. Direct evidence for the involvement of brain-derived neurotrophic factor in the development of a neuropathic pain-like state in mice. J Neurochem. 2005;93(3):584–94.CrossRefPubMedGoogle Scholar
  80. Yamashita M, Ohtori S, Koshi T, Inoue G, Yamauchi K, Suzuki M, Takahashi K. Tumor necrosis factor-alpha in the nucleus pulposus mediates radicular pain, but not increase of inflammatory peptide, associated with nerve damage in mice. Spine (Phila Pa 1976). 2008;33(17):1836–42. doi:10.1097/BRS.0b013e31817bab2a.CrossRefGoogle Scholar
  81. Zang Y, Chen SX, Liao GJ, Zhu HQ, Wei XH, Cui Y, Na XD, et al. Calpain-2 contributes to neuropathic pain following motor nerve injury via up-regulating interleukin-6 in DRG neurons. Brain Behav Immun. 2014;44:37–47. doi:10.1016/j.bbi.2014.08.003.CrossRefPubMedGoogle Scholar
  82. Zelenka M, Schafers M, Sommer C. Intraneural injection of interleukin-1beta and tumor necrosis factor-alpha into rat sciatic nerve at physiological doses induces signs of neuropathic pain. Pain. 2005;116(3):257–63.CrossRefPubMedGoogle Scholar
  83. Zhang HM, Zhou LJ, Hu XD, Hu NW, Zhang T, Liu XG. Acute nerve injury induces long-term potentiation of C-fiber evoked field potentials in spinal dorsal horn of intact rat. Sheng Li Xue Bao. 2004;56(5):591–6.PubMedGoogle Scholar
  84. Zhong Y, Zhou LJ, Ren WJ, Xin WJ, Li YY, Zhang T, Liu XG. Interleukin-1beta induces long-term potentiation of C-Fiber evoked field potentials in spinal dorsal Horn in rats with neuropathic pain. Open Pain J. 2009;2:18–23.CrossRefGoogle Scholar
  85. Zhong Y, Zhou LJ, Ren WJ, Xin WJ, Li YY, Zhang T, Liu XG. The direction of synaptic plasticity mediated by C-fibers in spinal dorsal horn is decided by Src-family kinases in microglia: The role of tumor necrosis factor-alpha. Brain Behav Immun. 2010;24:874–80.CrossRefPubMedGoogle Scholar
  86. Zhou LJ, Zhong Y, Ren WJ, Li YY, Zhang T, Liu XG. BDNF induces late-phase LTP of C-fiber evoked field potentials in rat spinal dorsal horn. Exp Neurol. 2008;212(2):507–14.CrossRefPubMedGoogle Scholar
  87. Zhou LJ, Ren WJ, Zhong Y, Yang T, Wei XH, Xin WJ, Liu CC, Zhou LH, Li YY, Liu XG. Limited BDNF contributes to the failure of injury to skin afferents to produce a neuropathic pain condition. Pain. 2010a;148:148–57.CrossRefPubMedGoogle Scholar
  88. Zhou LJ, Yang T, Wei X, Liu Y, Xin WJ, Chen Y, Pang RP, Zang Y, Li YY, Liu XG. Brain-derived neurotrophic factor contributes to spinal long-term potentiation and mechanical hypersensitivity by activation of spinal microglia in rat. Brain Behav Immun. 2010b;25:322–34.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Xian-Guo Liu
    • 1
  • Rui-Ping Pang
    • 1
  • Li-Jun Zhou
    • 1
  • Xu-Hong Wei
    • 1
  • Ying Zang
    • 1
  1. 1.Pain Research Center and Department of Physiology, Zhongshan School of MedicineSun Yat-Sen UniversityGuangzhouPeople’s Republic of China

Personalised recommendations