Assessment of Itch and Pain in Animal Models and Human Subjects

  • Tangmi Yuan
  • Juan Li
  • Le Shen
  • Wanying Zhang
  • Tao Wang
  • Yinyan Xu
  • Jie Zhu
  • Yuguang HuangEmail author
  • Chao MaEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 904)


For the past century, scientists have developed a variety of methods to evaluate itch and pain in both animal models and human subjects to throw light on some of the most important pathways mediating these unpleasant sensations. Discoveries in the mechanisms underlying itch and pain in both physiological and pathological conditions relied greatly upon these studies and may eventually lead to the discovery of new therapeutics. However, it was a much more complicated job to access itch and pain in animal models than in human subjects due to the subjective nature of these sensations. The results could be contradictory or even misleading when applying different methodologies in animal models, especially under pathological conditions with a mixed sensation of itch and pain. This chapter introduces and evaluates some of the classical and newly designed methodologies to access the sensation of itch and pain in animal models as well as human subjects.


Itch Pain Animal model Human subject 



This work was supported by grants from National Science Foundation of China #81271239 (C.M.), the IBMS/CAMS Dean’s Fund #2011RC01 (C.M.), and the PUMC Youth Fund (X.S. and C.M.)


  1. Akiyama T, Carstens E. Neural processing of itch. Neuroscience. 2013;250:697–714.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Akiyama T, Carstens MI, Carstens E. Differential itch- and pain-related behavioral responses and micro-opoid modulation in mice. Acta Derm Venereol. 2010;90:575–81.CrossRefPubMedGoogle Scholar
  3. Andersen HH, Elberling J, Arendt-Nielsen L. Human surrogate models of histaminergic and non-histaminergic itch. Acta Derm Venereol. 2015;95:771–7.CrossRefPubMedGoogle Scholar
  4. Andoh T, Sakai K, Urashima M, Kitazawa K, Honma A, Kuraishi Y. Involvement of leukotriene B4 in itching in a mouse model of ocular allergy. Exp Eye Res. 2012;98:97–103.CrossRefPubMedGoogle Scholar
  5. Ankier SI. New hot plate tests to quantify antinociceptive and narcotic antagonist activities. Eur J Pharmacol. 1974;27:1–4.CrossRefPubMedGoogle Scholar
  6. Attal N, Jazat F, Kayser V, Guilbaud G. Further evidence for ‘pain-related’ behaviours in a model of unilateral peripheral mononeuropathy. Pain. 1990;41:235–51.CrossRefPubMedGoogle Scholar
  7. Bardo MT, Hughes RA. Exposure to a nonfunctional hot plate as a factor in the assessment of morphine-induced analgesia and analgesic tolerance in rats. Pharmacol Biochem Behav. 1979;10:481–5.CrossRefPubMedGoogle Scholar
  8. Barrett JE. The pain of pain: challenges of animal behavior models. Eur J Pharmacol. 2015;753:183–90.CrossRefPubMedGoogle Scholar
  9. Beecher HK. The measurement of pain; prototype for the quantitative study of subjective responses. Pharmacol Rev. 1957;9:59–209.PubMedGoogle Scholar
  10. Bennett GJ, Xie YK. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain. 1988;33:87–107.CrossRefPubMedGoogle Scholar
  11. Bickford R. Experiments relating to the itch sensation, its peripheral mechanism, and central pathways. Clin Sci. 1938;3:377–86.Google Scholar
  12. Bingel U, Tracey I. Imaging CNS modulation of pain in humans. Physiology (Bethesda). 2008;23:371–80.CrossRefGoogle Scholar
  13. Bradman MJ, Ferrini F, Salio C, Merighi A. Practical mechanical threshold estimation in rodents using von Frey hairs/Semmes-Weinstein monofilaments: towards a rational method. J Neurosci Methods. 2015;255:92–103.CrossRefPubMedGoogle Scholar
  14. Broadbent JL. Observations on itching produced by cowhage, and on the part played by histamine as a mediator of the itch sensation. Br J Pharmacol Chemother. 1953;8:263–70.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Bromm B, Scharein E, Darsow U, Ring J. Effects of menthol and cold on histamine-induced itch and skin reactions in man. Neurosci Lett. 1995;187:157–60.CrossRefPubMedGoogle Scholar
  16. Carstens E, Wilson C. Rat tail flick reflex: magnitude measurement of stimulus-response function, suppression by morphine and habituation. J Neurophysiol. 1993;70:630–9.PubMedGoogle Scholar
  17. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL. Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods. 1994;53:55–63.CrossRefPubMedGoogle Scholar
  18. Chapman CR. Evoked potentials as correlates of pain and pain relief in man. Agents Actions Suppl. 1986;19:51–73.PubMedGoogle Scholar
  19. Choi Y, Yoon YW, Na HS, Kim SH, Chung JM. Behavioral signs of ongoing pain and cold allodynia in a rat model of neuropathic pain. Pain. 1994;59:369–76.CrossRefPubMedGoogle Scholar
  20. Cizza G, Sternberg EM. The role of the hypothalamic-pituitary-adrenal axis in susceptibility to autoimmune/inflammatory disease. Immunomethods. 1994;5:73–8.CrossRefPubMedGoogle Scholar
  21. Cunha TM, Verri WJ, Vivancos GG, Moreira IF, Reis S, Parada CA, Cunha FQ, Ferreira SH. An electronic pressure-meter nociception paw test for mice. Braz J Med Biol Res. 2004;37:401–7.CrossRefPubMedGoogle Scholar
  22. D’Amore A, Chiarotti F, Renzi P. High-intensity nociceptive stimuli minimize behavioral effects induced by restraining stress during the tail-flick test. J Pharmacol Toxicol Methods. 1992;27:197–201.CrossRefPubMedGoogle Scholar
  23. Davidson S, Giesler GJ. The multiple pathways for itch and their interactions with pain. Trends Neurosci. 2010;33:550–8.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Dixon WJ. Efficient analysis of experimental observations. Annu Rev Pharmacol Toxicol. 1980;20:441–62.CrossRefPubMedGoogle Scholar
  25. Dong X, Han S, Zylka MJ, Simon MI, Anderson DJ. A diverse family of GPCRs expressed in specific subsets of nociceptive sensory neurons. Cell. 2001;106:619–32.CrossRefPubMedGoogle Scholar
  26. Dubuisson D, Dennis SG. The formalin test: a quantitative study of the analgesic effects of morphine, meperidine, and brain stem stimulation in rats and cats. Pain. 1977;4:161–74.CrossRefPubMedGoogle Scholar
  27. Dunford PJ, Williams KN, Desai PJ, Karlsson L, McQueen D, Thurmond RL. Histamine H4 receptor antagonists are superior to traditional antihistamines in the attenuation of experimental pruritus. J Allergy Clin Immunol. 2007;119:176–83.CrossRefPubMedGoogle Scholar
  28. Fioravanti B, De Felice M, Stucky CL, Medler KA, Luo MC, Gardell LR, Ibrahim M, Malan TJ, Yamamura HI, Ossipov MH, King T, Lai J, Porreca F, Vanderah TW. Constitutive activity at the cannabinoid CB1 receptor is required for behavioral response to noxious chemical stimulation of TRPV1: antinociceptive actions of CB1 inverse agonists. J Neurosci. 2008;28:11593–602.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Frese T, Herrmann K, Sandholzer H. Pruritus as reason for encounter in general practice. J Clin Med Res. 2011;3:223–9.PubMedPubMedCentralGoogle Scholar
  30. Gabriel AF, Marcus MA, Honig WM, Walenkamp GH, Joosten EA. The CatWalk method: a detailed analysis of behavioral changes after acute inflammatory pain in the rat. J Neurosci Methods. 2007;163:9–16.CrossRefPubMedGoogle Scholar
  31. Gegout-Pottie P, Philippe L, Simonin MA, Guingamp C, Gillet P, Netter P, Terlain B. Biotelemetry: an original approach to experimental models of inflammation. Inflamm Res. 1999;48:417–24.CrossRefPubMedGoogle Scholar
  32. Hagermark O. Influence of antihistamines, sedatives, and aspirin on experimental itch. Acta Derm Venereol. 1973;53:363–8.PubMedGoogle Scholar
  33. Handwerker HO, Kobal G. Psychophysiology of experimentally induced pain. Physiol Rev. 1993;73:639–71.PubMedGoogle Scholar
  34. Hardy JD, Wolff HG, Goodell H. Studies on pain. A new method for measuring pain threshold: observations on spatial summation of pain. J Clin Invest. 1940;19:649–57.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Hargreaves K, Dubner R, Brown F, Flores C, Joris J. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain. 1988;32:77–88.CrossRefPubMedGoogle Scholar
  36. Hunskaar S, Fasmer OB, Hole K. Formalin test in mice, a useful technique for evaluating mild analgesics. J Neurosci Methods. 1985;14(1):69–76.CrossRefPubMedGoogle Scholar
  37. IASP. Pain terms: a list with definitions and notes on usage. Recommended by the IASP Subcommittee on Taxonomy. Pain. 1979;6:249.Google Scholar
  38. Ikoma A, Handwerker H, Miyachi Y, Schmelz M. Electrically evoked itch in humans. Pain. 2005;113:148–54.CrossRefPubMedGoogle Scholar
  39. Inagaki N, Nagao M, Igeta K, Kawasaki H, Kim JF, Nagai H. Scratching behavior in various strains of mice. Skin Pharmacol Appl Skin Physiol. 2001;14:87–96.CrossRefPubMedGoogle Scholar
  40. Jensen K, Andersen HO, Olesen J, Lindblom U. Pressure-pain threshold in human temporal region. Evaluation of a new pressure algometer. Pain. 1986;25:313–23.CrossRefPubMedGoogle Scholar
  41. Johanek LM, Meyer RA, Hartke T, Hobelmann JG, Maine DN, LaMotte RH, Ringkamp M. Psychophysical and physiological evidence for parallel afferent pathways mediating the sensation of itch. J Neurosci. 2007;27:7490–7.CrossRefPubMedGoogle Scholar
  42. Johansen JP, Fields HL, Manning BH. The affective component of pain in rodents: direct evidence for a contribution of the anterior cingulate cortex. Proc Natl Acad Sci U S A. 2001;98:8077–82.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Kim SJ, Park GH, Kim D, Lee J, Min H, Wall E, Lee CJ, Simon MI, Lee SJ, Han SK. Analysis of cellular and behavioral responses to imiquimod reveals a unique itch pathway in transient receptor potential vanilloid 1 (TRPV1)-expressing neurons. Proc Natl Acad Sci U S A. 2011;108:3371–6.CrossRefPubMedPubMedCentralGoogle Scholar
  44. King T, Vera-Portocarrero L, Gutierrez T, Vanderah TW, Dussor G, Lai J, Fields HL, Porreca F. Unmasking the tonic-aversive state in neuropathic pain. Nat Neurosci. 2009;12:1364–6.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Klein A, Carstens MI, Carstens E. Facial injections of pruritogens or algogens elicit distinct behavior responses in rats and excite overlapping populations of primary sensory and trigeminal subnucleus caudalis neurons. J Neurophysiol. 2011;106:1078–88.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Kuraishi Y, Nagasawa T, Hayashi K, Satoh M. Scratching behavior induced by pruritogenic but not algesiogenic agents in mice. Eur J Pharmacol. 1995;275:229–33.CrossRefPubMedGoogle Scholar
  47. Laidlaw A, Flecknell P, Rees JL. Production of acute and chronic itch with histamine and contact sensitizers in the mouse and guinea pig. Exp Dermatol. 2002;11:285–91.CrossRefPubMedGoogle Scholar
  48. LaMotte RH, Shimada SG, Sikand P. Mouse models of acute, chemical itch and pain in humans. Exp Dermatol. 2011;20:778–82.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Lembo PM, Grazzini E, Groblewski T, O’Donnell D, Roy MO, Zhang J, Hoffert C, Cao J, Schmidt R, Pelletier M, Labarre M, Gosselin M, Fortin Y, Banville D, Shen SH, Strom P, Payza K, Dray A, Walker P, Ahmad S. Proenkephalin A gene products activate a new family of sensory neuron–specific GPCRs. Nat Neurosci. 2002;5:201–9.CrossRefPubMedGoogle Scholar
  50. Martinov T, Mack M, Sykes A, Chatterjea D. Measuring changes in tactile sensitivity in the hind paw of mice using an electronic von Frey apparatus. J Vis Exp. 2013;82:e51212.PubMedGoogle Scholar
  51. Melzack R. The McGill Pain Questionnaire: major properties and scoring methods. Pain. 1975;1:277–99.CrossRefPubMedGoogle Scholar
  52. Minami K, Kamei C. A chronic model for evaluating the itching associated with allergic conjunctivitis in rats. Int Immunopharmacol. 2004;4:101–8.CrossRefPubMedGoogle Scholar
  53. Mogil JS. The genetic mediation of individual differences in sensitivity to pain and its inhibition. Proc Natl Acad Sci U S A. 1999;96:7744–51.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Nakano Y, Takahashi Y, Ono R, Kurata Y, Kagawa Y, Kamei C. Role of histamine H(4) receptor in allergic conjunctivitis in mice. Eur J Pharmacol. 2009;608:71–5.CrossRefPubMedGoogle Scholar
  55. Nirogi R, Goura V, Shanmuganathan D, Jayarajan P, Abraham R. Comparison of manual and automated filaments for evaluation of neuropathic pain behavior in rats. J Pharmacol Toxicol Methods. 2012;66:8–13.CrossRefPubMedGoogle Scholar
  56. Papoiu AD, Tey HL, Coghill RC, Wang H, Yosipovitch G. Cowhage-induced itch as an experimental model for pruritus. A comparative study with histamine-induced itch. PLoS One. 2011;6:e17786.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Patel T, Yosipovitch G. Therapy of pruritus. Expert Opin Pharmacother. 2010;11:1673–82.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Price DD. Psychological and neural mechanisms of the affective dimension of pain. Science. 2000;288:1769–72.CrossRefPubMedGoogle Scholar
  59. Rainville P. Brain mechanisms of pain affect and pain modulation. Curr Opin Neurobiol. 2002;12:195–204.CrossRefPubMedGoogle Scholar
  60. Randall LO, Selitto JJ. A method for measurement of analgesic activity on inflamed tissue. Arch Int Pharmacodyn Ther. 1957;111:409–19.PubMedGoogle Scholar
  61. Reddy VB, Lerner EA. Plant cysteine proteases that evoke itch activate protease-activated receptors. Br J Dermatol. 2010;163:532–5.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Rossbach K, Wendorff S, Sander K, Stark H, Gutzmer R, Werfel T, Kietzmann M, Baumer W. Histamine H4 receptor antagonism reduces hapten-induced scratching behaviour but not inflammation. Exp Dermatol. 2009;18:57–63.CrossRefPubMedGoogle Scholar
  63. Schmelz M, Michael K, Weidner C, Schmidt R, Torebjork HE, Handwerker HO. Which nerve fibers mediate the axon reflex flare in human skin? Neuroreport. 2000;11:645–8.CrossRefPubMedGoogle Scholar
  64. Shelley WB, Arthur RP. Mucunain, the active pruritogenic proteinase of cowhage. Science. 1955;122:469–70.CrossRefPubMedGoogle Scholar
  65. Shim WS, Oh U. Histamine-induced itch and its relationship with pain. Mol Pain. 2008;4:29.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Shimada SG, LaMotte RH. Behavioral differentiation between itch and pain in mouse. Pain. 2008;139(3):681–7.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Sikand P, Shimada SG, Green BG, LaMotte RH. Similar itch and nociceptive sensations evoked by punctate cutaneous application of capsaicin, histamine and cowhage. Pain. 2009;144:66–75.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Sikand P, Shimada SG, Green BG, LaMotte RH. Sensory responses to injection and punctate application of capsaicin and histamine to the skin. Pain. 2011;152:2485–94.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Simone DA, Alreja M, LaMotte RH. Psychophysical studies of the itch sensation and itchy skin (“alloknesis”) produced by intracutaneous injection of histamine. Somatosens Mot Res. 1991;8:271–9.CrossRefPubMedGoogle Scholar
  70. Song XJ, Hu SJ, Greenquist KW, Zhang JM, LaMotte RH. Mechanical and thermal hyperalgesia and ectopic neuronal discharge after chronic compression of dorsal root ganglia. J Neurophysiol. 1999;82:3347–58.PubMedGoogle Scholar
  71. Swerdlow NRGD. Neuromethods: Psycho-pharmacology. Clifton: Humana Press; 2000. p. 399–446.Google Scholar
  72. Terada Y, Fujimura M, Nishimura S, Tsubota M, Sekiguchi F, Nishikawa H, Kawabata A. Contribution of TRPA1 as a downstream signal of proteinase-activated receptor-2 to pancreatic pain. J Pharmacol Sci. 2013;123:284–7.CrossRefPubMedGoogle Scholar
  73. Tonussi CR, Ferreira SH. Rat knee-joint carrageenin incapacitation test: an objective screen for central and peripheral analgesics. Pain. 1992;48:421–7.CrossRefPubMedGoogle Scholar
  74. Trentin PG, Fernandes MB, D’Orleans-Juste P, Rae GA. Endothelin-1 causes pruritus in mice. Exp Biol Med (Maywood). 2006;231:1146–51.Google Scholar
  75. Tuckett RP. Itch evoked by electrical stimulation of the skin. J Invest Dermatol. 1982;79:368–73.CrossRefPubMedGoogle Scholar
  76. van Laarhoven AI, Kraaimaat FW, Wilder-Smith OH, van de Kerkhof PC, Evers AW. Heterotopic pruritic conditioning and itch–analogous to DNIC in pain? Pain. 2010;149:332–7.CrossRefPubMedGoogle Scholar
  77. Van Ree JM, Leys A. Behavioral effects of morphine and phencyclidine in rats: the influence of repeated testing before and after single treatment. Eur J Pharmacol. 1985;113:353–62.CrossRefPubMedGoogle Scholar
  78. Vrinten DH, Hamers FF. ‘CatWalk’ automated quantitative gait analysis as a novel method to assess mechanical allodynia in the rat; a comparison with von Frey testing. Pain. 2003;102:203–9.CrossRefPubMedGoogle Scholar
  79. Watling KJ, Guard S, Boyle SJ, McKnight AT, Woodruff GN. Species variants of tachykinin receptor types. Biochem Soc Trans. 1994;22:118–22.CrossRefPubMedGoogle Scholar
  80. Watson GS, Sufka KJ, Coderre TJ. Optimal Scoring strategies and weights for the formalin test in rats. Pain. 1997;70(1):53–8.CrossRefPubMedGoogle Scholar
  81. Wilson SR, Gerhold KA, Bifolck-Fisher A, Liu Q, Patel KN, Dong X, Bautista DM. TRPA1 is required for histamine-independent, Mas-related G protein-coupled receptor-mediated itch. Nat Neurosci. 2011;14:595–602.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Wilson SR, Nelson AM, Batia L, Morita T, Estandian D, Owens DM, Lumpkin EA, Bautista DM. The ion channel TRPA1 is required for chronic itch. J Neurosci. 2013;33:9283–94.CrossRefPubMedPubMedCentralGoogle Scholar
  83. Xie W. Animal models of pain: Chapter 1 Assessment of pain in animals. In: Xie W, editor. Neuromethods. Clifton: Humana Press; 2011. p. 1–21.Google Scholar
  84. Zhang JM, Li H, Brull SJ. Perfusion of the mechanically compressed lumbar ganglion with lidocaine reduces mechanical hyperalgesia and allodynia in the rat. J Neurophysiol. 2000;84:798–805.PubMedGoogle Scholar
  85. Zylka MJ, Rice FL, Anderson DJ. Topographically distinct epidermal nociceptive circuits revealed by axonal tracers targeted to Mrgprd. Neuron. 2005;45:17–25.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Tangmi Yuan
    • 1
  • Juan Li
    • 1
    • 2
  • Le Shen
    • 1
  • Wanying Zhang
    • 3
  • Tao Wang
    • 3
  • Yinyan Xu
    • 3
  • Jie Zhu
    • 3
  • Yuguang Huang
    • 4
    Email author
  • Chao Ma
    • 3
    Email author
  1. 1.Department of AnesthesiologyPeking Union Medical College HospitalBeijingChina
  2. 2.Department of Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic MedicinePeking Union Medical CollegeBeijingChina
  3. 3.Department of Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, School of Basic Medicine, Peking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
  4. 4.Department of Anesthesiology, Peking Union Medical College Hospital, Peking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina

Personalised recommendations