Float and Raft: Role of Buoyant Seaweeds in the Phylogeography and Genetic Structure of Non-buoyant Associated Flora

  • Erasmo C. MacayaEmail author
  • Boris López
  • Fadia Tala
  • Florence Tellier
  • Martin Thiel


Many seaweed species (primary rafters) float at the sea surface and travel with marine currents after detachment from benthic habitats. Various studies have confirmed that dispersal via floating sporophytes and/or gametophytes influences the phylogeography and genetic population structure of these buoyant seaweeds. In addition, non-buoyant seaweeds (secondary rafters) that grow attached to or intermingled with these primary floaters may also become dispersed by rafting on their floating hosts. Here, we examine reports of non-buoyant seaweed species associated with buoyant seaweeds and discuss potential consequences for their phylogeography and/or genetic population structure. We found that mostly red and brown algae have been reported with floating seaweed rafts, most of them growing as epiphytes and some as obligate parasites (e.g. endophytes) that travel with their hosts. Molecular evidence suggests dispersal associated with primary floaters in 16 non-buoyant seaweeds, although colonization of distant sites could also have occurred via other floating substrata such as wood, buoys, and other man-made materials. Transoceanic dispersal has been inferred for non-buoyant seaweeds (for example, Gracilaria chilensis and Capreolia implexa) based on low levels of genetic structure and shared haplotypes among populations separated over vast distances of open ocean (e.g. New Zealand–Chile). Some non-buoyant species suspected or shown to be dispersed by rafting are from intertidal habitats, and these algae can resist physiologically stressful conditions during long trips at the sea surface. However, subtidal and low intertidal non-buoyant species have higher potential to be transported because they cohabit with common raft-forming kelps, often growing on them as epiphytes. We conclude that buoyant seaweeds play an important role in driving the phylogeography, evolution, connectivity and distribution of non-buoyant associated seaweeds. Dispersal of non-buoyant seaweeds via these floating seaweeds may have been underestimated in the past.


Connectivity Floating alga Long-distance dispersal Non-buoyant species Rafting 



We thank the editors for inviting us to contribute this review. Financial support was received through FONDECYT 1131082 to M.T., F. Tellier and F. Tala; FONDECYT 1131023 to F. Tala, M.T. and E.M.; FONDECYT 1110437 to E.M.; PhD-fellowship Becas CONICYT-PCHA/Doctorado Nacional/2014-21140010 to B.L.


  1. Abdala-Díaz RT, Cabello-Pasini A, Pérez-Rodríguez E, Ãlvarez RMC, Figueroa FL. Daily and seasonal variations of optimum quantum yield and phenolic compounds in Cystoseira tamariscifolia (Phaeophyta). Mar Biol. 2006;148:459–65.CrossRefGoogle Scholar
  2. Aliani S, Molcard A. Hitch-hiking on floating marine debris: Macrobenthic species in the western Mediterranean Sea. Hydrobiologia. 2003;503:59–67.CrossRefGoogle Scholar
  3. Arenas F, Fernández C, Rico J, Fernández E, Haya D. Growth and reproductive strategies of Sargassum muticum (Yendo) Fensholt and Cystoseira nodicaulis (Whit.) Roberts. Sci Mar. 1995;59:1–8.Google Scholar
  4. Arnold TM, Targett NM. Marine tannins: the importance of a mechanistic framework for predicting ecological roles. J Chem Ecol. 2002;28:1919–34.PubMedCrossRefGoogle Scholar
  5. Astudillo JC, Bravo M, Dumont CP, Thiel M. Detached aquaculture buoys in the SE Pacific: potential dispersal vehicles for associated organisms. Aquat Biol. 2009;5:219–31.CrossRefGoogle Scholar
  6. Bell G. The evolution of the life cycle of brown seaweeds. Biol J Linn Soc. 1997;60:21–38.CrossRefGoogle Scholar
  7. Boedeker C, Ramírez ME, Nelson W. Cladophoropsis brachyartra from southern South America is a synonym of Wittrockiella lyallii (Cladophorophyceae, Chlorophyta), previously regarded as endemic to New Zealand. Phycologia. 2010;49:525–36.CrossRefGoogle Scholar
  8. Boo GH, Mansilla A, Nelson W, Bellgrove A, Boo SM. Genetic connectivity between trans-oceanic populations of Capreolia implexa (Gelidiales, Rhodophyta) in cool temperate waters of Australasia and Chile. Aquat Bot. 2014;119:73–9.CrossRefGoogle Scholar
  9. Bravo M, Astudillo JC, Lancellotti D, Luna-Jorquera G, Valdivia N, Thiel M. Rafting on abiotic substrata: properties of floating items and their influence on community succession. Mar Ecol Prog Ser. 2011;439:1–17.Google Scholar
  10. Bryan SE, Cook AG, Evans JP, Hebden K, Hurrey L, Colls P, Jell JS, Weatherley D, Firn J. Rapid, long-distance dispersal by pumice rafting. PLoS ONE. 2012;7:e40583.PubMedCentralPubMedCrossRefGoogle Scholar
  11. Buchanan J, Zuccarello GC. Decoupling of short- and long-distance dispersal pathways in the endemic New Zealand seaweed Carpophyllum maschalocarpum (Phaeophyceae, Fucales). J Phycol. 2012;48:518–29.Google Scholar
  12. Buschmann AH, Vásquez J, Osorio P, Reyes E, Filun L, Hernandez-Gonzalez MC, Vega JMA. The effect of water movement, temperature and salinity on abundance and reproductive patterns of Macrocystis spp. (Phaeophyta) at different latitudes in Chile. Mar Biol. 2004;145:849–62.CrossRefGoogle Scholar
  13. Bussolini LT, Waters JM. Genetic analyses of rafted macroalgae reveal regional oceanographic connectivity patterns. J Biogeogr. 2015;42:1319–26.CrossRefGoogle Scholar
  14. Buza-Jacobucci G, Pereira-Leite FP. The role of epiphytic algae and different species of Sargassum in the distribution and feeding of herbivorous amphipods. Latin Am J Aquat Res. 2014;42:353–63.CrossRefGoogle Scholar
  15. Cecere E, Petrocelli A, Verlaque M. Vegetative reproduction by multicellular propagules in Rhodophyta: an overview. Mar Ecol. 2011;32:419–37.CrossRefGoogle Scholar
  16. Chan SW, Cheang CC, Chirapart A, Gerung G, Tharith C, Ang P. Homogeneous population of the brown alga Sargassum polycystum in Southeast Asia: possible role of recent expansion and asexual propagation. PLoS ONE. 2013;8:e77662.PubMedCentralPubMedCrossRefGoogle Scholar
  17. Chan SW, Cheang CC, Yeung CW, Chirapart A, Gerung G, Ang P. Recent expansion led to the lack of genetic structure of Sargassum aquifolium populations in Southeast Asia. Mar Biol. 2014;161:785–95.CrossRefGoogle Scholar
  18. Clarkin E, Maggs CA, Allcock AL, Johnson MP. Environment, not characteristics of individual algal rafts, affects composition of rafting invertebrate assemblages in Irish coastal waters. Mar Ecol Prog Ser. 2012;470:31–40.CrossRefGoogle Scholar
  19. Coleman MA, Brawley SH. Spatial and temporal variability in dispersal and population genetic structure of a rockpool alga. Mar Ecol Prog Ser. 2005;300:63–77.CrossRefGoogle Scholar
  20. Coleman MA, Kelaher BP. Connectivity among fragmented populations of a habitat-forming alga, Phyllospora comosa (Phaeophyceae, Fucales) on an urbanised coast. Mar Ecol Prog Ser. 2009;381:63–70.CrossRefGoogle Scholar
  21. Collantes G, Merino A, Lagos V. Fenología de la gametogénesis, madurez de conceptáculos, fertilidad y embriogénesis en Durvillaea antarctica (Chamisso) Hariot (Phaeophyta, Durvillaeales). Revista de Biología Marina y Oceanografía. 2002;37:83–112.CrossRefGoogle Scholar
  22. Connan S, Goulard F, Stiger V, Deslandes E, Ar GE. Interspecific and temporal variation in phlorotannin levels inan assemblage of brown algae. Bot Mar. 2004;47:410–16.CrossRefGoogle Scholar
  23. Coyer JA, Hoarau G, Costa JF, Hogerdijk B, Serrão EA, Billard E, Valero M, Pearson GA, Olsen JL. Evolution and diversification within the intertidal brown macroalgae Fucus spiralis/F. vesiculosus species complex in the North Atlantic. Mol Phylogenet Evol. 2011a;58:283–96.Google Scholar
  24. Coyer JA, Hoarau G, Van Schaik J, Luijckx P, Olsen JL. Trans-Pacific and trans-Arctic pathways of the intertidal macroalga Fucus distichus L. reveal multiple glacial refugia and colonizations from the North Pacific to the North Atlantic. J Biogeogr. 2011b;38:756–71.CrossRefGoogle Scholar
  25. Critchley A, Farnham WF, Morrell SL. A chronology of new European sites of attachment for the invasive brown alga, Sargassum muticum, 1973–1981. J Mar Biol Ass UK. 1983;63:799–811.CrossRefGoogle Scholar
  26. Cruces E, Huovinen P, Gómez I. Interactive effects of UV radiation and enhanced temperature on photosynthesis, phlorotannin induction and antioxidant activities of two sub-Antarctic brown algae. Mar Biol. 2013;160:1–13.CrossRefGoogle Scholar
  27. Cumming RA, Nikula R, Spencer HG, Waters JM. Transoceanic genetic similarities of kelp-associated sea slug populations: long-distance dispersal via rafting? J Biogeogr. 2014;41:2357–70.CrossRefGoogle Scholar
  28. D’Antonio C. Epiphytes on the rocky intertidal red alga Rhodomela larix (Turner) C. Agardh: negative effects on the host and food for herbivores? J Exp Mar Biol Ecol. 1985;86:197–218.CrossRefGoogle Scholar
  29. Dayton PK. Dispersion, dispersal, and persistence of the annual intertidal alga, Postelsia palmaeformis Ruprecht. Ecology. 1973;54:433–8.CrossRefGoogle Scholar
  30. Diez YL, Capote AJ, Suárez AM, Gómez LM, Toyota M. Distribution of epiphytic macroalgae on the thalli of their hosts in Cuba. Acta Bot Bras. 2013;27:815–26.CrossRefGoogle Scholar
  31. Dromgoole FI. Photosynthesis of marine algae in fluctuating light. I. Adjustment of rate in constant and fluctuating light regimes. Funct Ecol. 1987;1:377–86.CrossRefGoogle Scholar
  32. Duggins DO, Eckman JE, Siddon CE, Klinger T. Population, morphometric and biomechanical studies of three understory kelps along a hydrodynamic gradient. Mar Ecol Prog Ser. 2003;265:57–76.CrossRefGoogle Scholar
  33. Edding M, León C, Tala F. Morphological variations of Gracilaria chilensis Bird, McLachlan et Oliveira, 1986 (Rhodophyta, Gracilariales) in the southeast Pacific. Gayana. 2006;70:220–7.Google Scholar
  34. Edgar GJ. Dispersal of faunal and floral propagules associated with drifting Macrocystis pyrifera plants. Mar Biol. 1987;95:599–610.CrossRefGoogle Scholar
  35. Eggert A. Seaweed responses to temperature. In: Wiencke C, Bischof K, editors. Seaweed biology, ecological studies. Berlin Heidelberg: Springer; 2012. p. 47–66.CrossRefGoogle Scholar
  36. Filho S, Tagliaro CH, Beasley CR. Seasonal abundance of the shipworm Neoteredo reynei (Bivalvia, Teredinidae) in mangrove driftwood from a northern Brazilian beach. Iheringia Série Zoologia. 2008;98:17–23.CrossRefGoogle Scholar
  37. Fonck E, Martínez R, Vásquez J, Bulboa C. Factors that affect the re-attachment of Chondracanthus chamissoi (Rhodophyta, Gigartinales) thalli. J Appl Phycol. 2008;20:311–4.CrossRefGoogle Scholar
  38. Franklin L, Forster R. The changing irradiance environment: consequences for marine macrophyte physiology, productivity and ecology. Eur J Phycol. 1997;32:207–32.Google Scholar
  39. Fraser CI, Nikula R, Spencer HG, Waters JM. Kelp genes reveal effects of subantarctic sea ice during the Last Glacial Maximum. Proc Nat Acad Sci USA. 2009;106:3249–53.PubMedCentralPubMedCrossRefGoogle Scholar
  40. Fraser CI, Thiel M, Spencer HG, Waters JM. Contemporary habitat discontinuity and historic glacial ice drive genetic divergence in Chilean kelp. BMC Evol Biol. 2010;10:203.PubMedCentralPubMedCrossRefGoogle Scholar
  41. Fraser CI, Waters JM. Algal parasite Herpodiscus durvillaeae (Phaeophyceae: Sphacelariales) inferred to have traversed the pacific ocean with its buoyant host. J Phycol. 2013;49:202–6.CrossRefGoogle Scholar
  42. Fraser CI, Zuccarello GC, Spencer HG, Salvatore LC, Garcia GR, Waters JM. Genetic affinities between trans-oceanic populations of non-buoyant macroalgae in the high latitudes of the Southern Hemisphere. PLoS ONE. 2013;8(7):e69138.PubMedCentralPubMedCrossRefGoogle Scholar
  43. Garbary DJ, Burke J, Lining T. The Ascophyllum/Polysiphonia/Mycosphaerella symbiosis. II. Aspects of the ecology and distribution of Polysiphonia in Nova Scotia. Bot Mar. 1991;34:391–401.CrossRefGoogle Scholar
  44. Garbary DJ, Deckert RJ. Three part harmony-Ascophyllum and its symbionts. In: Seckbach J, editor. Symbiosis: mechanisms and model systems. Dortrecht: Kluwer; 2001. p. 309–21.Google Scholar
  45. Garden CJ, Craw D, Waters JM, Smith A. Rafting rocks reveal marine biological dispersal: a case study using clasts from beach-cast macroalgal holdfasts. Estu Coast Shelf Sci. 2011;95:388–94.CrossRefGoogle Scholar
  46. Garden CJ, Currie K, Fraser CI, Waters JM. Rafting dispersal constrained by an oceanographic boundary. Mar Ecol Prog Ser. 2014;501:297–302.CrossRefGoogle Scholar
  47. Gilbert R. The movement of gravel by the alga Fucus vesiculosus (L.) on an arctic intertidal flat. J Sedimen Petrol. 1984;54:463–8.Google Scholar
  48. Gómez I, Figueroa FL, Huovinen P, Ulloa N, Morales V. Photosynthesis of the red alga Gracilaria chilensis under natural solar radiation in an estuary in southern Chile. Aquaculture. 2005;244:369–82.CrossRefGoogle Scholar
  49. Gómez I, Huovinen P. Morpho-functional patterns and zonation of South Chilean seaweeds: the importance of photosynthetic and bio-optical traits. Mar Ecol Prog Ser. 2011;422:77–91.CrossRefGoogle Scholar
  50. Gómez I, López-Figueroa F, Ulloa N, Morales V, Lovengreen C, Huovinen P, Hess S. Patterns of photosynthesis in 18 species of intertidal macroalgae from southern Chile. Mar Ecol Prog Ser. 2004;270:103–16.CrossRefGoogle Scholar
  51. Gómez I, Westermeier RC. Frond regrowth from basal disk in Iridaea laminarioides (Rhodophyta, Gigartinales) at Mehuin, southern Chile. Mar Ecol Prog Ser. 1991;73:83–91.CrossRefGoogle Scholar
  52. González MA, Barrales HL, Candia A, Cid L. Spatial and temporal distribution of dominant epiphytes on Gracilaria from a natural subtidal bed in Central-Southern Chile. Aquaculture. 1993;116:135–48.CrossRefGoogle Scholar
  53. González AV, Beltrán J, Flores V, Santelices B. Morphological convergence in the inter-holdfast coalescence process among kelp and kelp-like seaweeds (Lessonia, Macrocystis, Durvillaea). Phycologia. 2015;54:283–91.CrossRefGoogle Scholar
  54. Gower J, Young E, King S. Satellite images suggest a new Sargassum source region in 2011. Remote Sens Lett. 2013;4:764–73.CrossRefGoogle Scholar
  55. Graiff A, Karsten U, Meyer S, Pfender D, Tala F, Thiel M. Seasonal variation in floating persistence of detached Durvillaea antarctica (Chamisso) Hariot thalli. Bot Mar. 2013;56:3–14.CrossRefGoogle Scholar
  56. Gregory MR. Virgin plastic granules on some beaches of eastern Canada and Bermuda. Mar Environ Res. 1983;10:73–92.CrossRefGoogle Scholar
  57. Guillemin ML, Faugeron S, Destombe C, Viard F, Correa JA, Valero M. Genetic variation in wild and cultivated populations of the haploid- diploid red alga Gracilaria chilensis: how farming practices favor asexual reproduction and heterozygosity. Evolution. 2008;62:1500–19.PubMedCrossRefGoogle Scholar
  58. Guillemin ML, Valero M, Faugeron S, Nelson W, Destombe C. Tracing the trans-pacific evolutionary history of a domesticated seaweed (Gracilaria chilensis) with archaeological and genetic data. PLoS ONE. 2014;9(12):e114039.PubMedCentralPubMedCrossRefGoogle Scholar
  59. Gutow L, Beermann J, Buschbaum C, Rivadeneira MM, Thiel M. Castaways can’t be choosers—homogenization of rafting assemblages on floating seaweeds. J Sea Res. 2015;95:161–71.CrossRefGoogle Scholar
  60. Gutow L, Franke HD. Metapopulation structure of the marine isopod Idotea metallica, a species associated with drifting habitat patches. Helgol Mar Res. 2003;56:259–64.Google Scholar
  61. Gutow L, Gimenez L, Boos K, Saborowski R. Rapid changes in the epifaunal community after detachment of buoyant benthic macroalgae. J Mar Biol Ass UK. 2009;89:323–8.CrossRefGoogle Scholar
  62. Heesch S, Peters AF, Broom JE, Hurd CL. Affiliation of the parasite Herpodiscus durvillaeae (Phaeophyceae) with the Sphacelariales based on DNA sequence comparisons and morphological observations. Eur J Phycol. 2008;43:283–95.CrossRefGoogle Scholar
  63. Helmuth B, Veit RR, Holberton R. Long-distance dispersal of a subantarctic brooding bivalve (Gaimardia trapesina) by kelp-rafting. Mar Biol. 1994;120:421–6.CrossRefGoogle Scholar
  64. Hernández-Carmona G, Hughes B, Graham MH. Reproductive longevity of drifting kelp Macrocystis pyrifera (Phaeophyceae) in Monterey Bay, USA. J Phycol. 2006;42:1199–207.CrossRefGoogle Scholar
  65. Hinojosa IA, Pizarro M, Ramos M, Thiel M. Spatial and temporal distribution of floating kelp in the channels and fjords of southern Chile. Estu Coast Shelf Sci. 2010;87:367–77.CrossRefGoogle Scholar
  66. Hinojosa IA, Rivadeneira MM, Thiel M. Temporal and spatial distribution of floating objects in coastal waters of central-southern Chile and Patagonian fjords. Cont Shelf Res. 2011;31:172–86.CrossRefGoogle Scholar
  67. Hirata T, Tanaka J, Iwami T, Ohmi T, Dazai A, Aoki M, Ueda H, Tsuchiya Y, Sato T, Yokohama Y. Ecological studies on the community of drifting seaweeds in the south-eastern coastal waters of Izu Peninsula, central Japan. I. Seasonal changes of plants in species composition, appearance, number of species and size. Phycol Res. 2001;49:215–29.CrossRefGoogle Scholar
  68. Hobday AJ. Abundance and dispersal of drifting kelp Macrocystis pyrifera rafts in the Southern California Bight. Mar Ecol Prog Ser. 2000a;195:101–16.CrossRefGoogle Scholar
  69. Hobday AJ. Persistence and transport of fauna on drifting kelp (Macrocystis pyrifera (L.) C. Agardh) rafts in the Southern California Bight. J Exp Mar Biol Ecol. 2000b;253:75–96.PubMedCrossRefGoogle Scholar
  70. Hoyer K, Karsten U, Wiencke C. Induction of sunscreen compounds in Antarctic macroalgae by different radiation conditions. Mar Biol. 2002;141:619–27.CrossRefGoogle Scholar
  71. Hu ZM, Uwai S, Yu SH, Komatsu T, Ajisaka T, Duan D-L. Phylogeographic heterogeneity of the brown macroalga Sargassum horneri (Fucaceae) in the northwestern Pacific in relation to late Pleistocene glaciation and tectonic configurations. Mol Ecol. 2011;20:3894–909.PubMedCrossRefGoogle Scholar
  72. Hu ZM, Zhang J, Lopez-Bautista J, Duan DL. Asymmetric genetic exchange in the brown seaweed Sargassum fusiforme (Phaeophyceae) driven by oceanic currents. Mar Biol. 2013;160:1407–14.CrossRefGoogle Scholar
  73. Huovinen P, Gómez I, Figueroa FL, Ulloa N, Morales V, Lovengreen CBM. Ultraviolet-absorbing mycosporine-like amino acids in red macroalgae from Chile. Bot Mar. 2004;47:21–9.CrossRefGoogle Scholar
  74. Hurd C, Harrison PJ, Bischof K, Lobban CS. Seaweed ecology and physiology. 2nd ed. UK: Cambridge University Press; 2014.CrossRefGoogle Scholar
  75. Iken K, Amsler CD, Hubbard JM, McClintock JB, Baker BJ. Allocation patterns of phlorotannins in antarctic brown algae. Phycologia. 2007;46:386–95.CrossRefGoogle Scholar
  76. Ingólfsson A. Floating clumps of seaweed around Iceland: natural microcosms and a means of dispersal for shore fauna. Mar Biol. 1995;122:13–21.CrossRefGoogle Scholar
  77. Ingólfsson A. Dynamics of macrofaunal communities of floating seaweed clumps off western Iceland: a study of patches on the surface of the sea. J Exp Mar Biol Ecol. 1998;231:119–37.Google Scholar
  78. John DM. New records of Ascophyllum nodosum (L.) Le Joli from the warmer parts of the Atlantic Ocean. Phycologia. 1974;10:243–4.Google Scholar
  79. Jokiel PL. Rafting of reef corals and other organisms at Kwajalein Atoll. Mar Biol. 1989;101:483–93.CrossRefGoogle Scholar
  80. Karsten U. Defense strategies of algae and cyanobacteria against solar ultraviolet radiation. In: Amsler CD, editor. Algal chemical ecology. Heidelberg: Springer; 2008. p. 273–96.CrossRefGoogle Scholar
  81. Karsten U, Bischof K, Wiencke C. Photosynthetic performance of Arctic macroalgae after transplantation from deep to shallow waters. Oecologia. 2001;127:11–20.CrossRefGoogle Scholar
  82. Karsten U, Koch S, West JA, Kirst JO. Physiological responses of the eulittoral macroalga Stictosiphonia hookeri (Rhodomelaceae, Rhodophyta) from Argentina and Chile: salinity, light and temperature acclimation, Eur J Phycol. 1996;31:361–68.Google Scholar
  83. Khalaman VV, Berger VY. Floating seaweeds and associated fauna in the White Sea. Oceanology. 2006;46:827–33.CrossRefGoogle Scholar
  84. Kiessling T, Gutow L, Thiel M. Marine litter as habitat and dispersal vector. In: Bergmann M, Gutow L, Klages M, editors. Marine anthropogenic litter. Berlin: Springer; 2015. p. 141–81.CrossRefGoogle Scholar
  85. Kingsford MJ, Choat JH. The fauna associated with drift algae captured with a plankton-mesh purse seine net. Limnol Oceanogr. 1985;30:618–30.CrossRefGoogle Scholar
  86. Klumpp DW, Salita-Espinosa JT, Fortes MD. Feeding ecology and trophic role of sea urchins in a tropical seagrass community. Aquat Bot. 1993;45:205–29.CrossRefGoogle Scholar
  87. Kohlmeyer J, Bebout B, Vlkmann-Kohlmeyer B. Decomposition of mangrove wood by marine fungi and teredinids in Belize. Mar Ecol. 1995;16:27–39.CrossRefGoogle Scholar
  88. Komatsu T, Mizuno S, Natheer A, Kantachumpoo A, Tanaka K, Morimoto A, Hsiao S-T, Rothäusler EA, Shishidou H, Aoki M, Ajisaka T. Unusual distribution of floating seaweeds in the East China Sea in the early spring of 2012. J Appl Phycol. 2014;26:1169–79.PubMedCentralPubMedCrossRefGoogle Scholar
  89. Lee KM, Boo GH, Coyer JA, Nelson WA, Miller KA, Boo SM. Distribution patterns and introduction pathways of the cosmopolitan brown alga Colpomenia peregrina using mt cox3 and atp6 sequences. J Appl Phycol. 2014;26:491–504.CrossRefGoogle Scholar
  90. Lindstrom SC, Gabrielson PW, Hughey JR, Macaya EC, Nelson WA. Sequencing of historic and modern specimens reveals cryptic diversity in Nothogenia (Scinaiaceae, Rhodophyta). Phycologia. 2015;54:97–108.CrossRefGoogle Scholar
  91. Lizée-Prynne, Lopez D, Tala B, Thiel FM. No sex-related dispersal limitation in a dioecious, oceanic long-distance traveller: the bull kelp Durvillaea antarctica. Bot Mar. 2016;59 (in press).Google Scholar
  92. Lüning K. Seaweeds: their environment, biogeography and ecophysiology. New York: Wiley; 1990.Google Scholar
  93. Luthringer R, Cormier A, Ahmed S, Peters AF, Cock JM. Sexual dimorphism in the brown algae. Persp Phycol. 2014;1:11–25.Google Scholar
  94. Macaya EC, Boltaña S, Hinojosa IA, Macchiavello JE, Valdivia NA, Vásquez NR, Buschmann AH, Vásquez JA, Vega JMA, Thiel M. Presence of sporophylls in floating kelp rafts of Macrocystis spp. (Phaeophyceae) along the Chilean pacific coast. J Phycol. 2005;41:913–22.CrossRefGoogle Scholar
  95. Macaya EC, Zuccarello GC. DNA barcoding and genetic divergence in the giant kelp Macrocystis (Laminariales). J Phycol. 2010a;46:736–42.CrossRefGoogle Scholar
  96. Macaya EC, Zuccarello GC. Genetic structure of the giant kelp Macrocystis pyrifera along the southeastern Pacific. Mar Ecol Prog Ser. 2010b;420:103–12.CrossRefGoogle Scholar
  97. Macchiavello J, Bulboa CR, Edding M. Vegetative propagation and spore-based recruitmentin the carragenophyte Chondracanthus chamissoi (Gigartinales, Rhodophyta) in northern Chile. Phycol Res. 2003;51:45–50.CrossRefGoogle Scholar
  98. Macchiavello J, De Paula ÉJ, Oliveira EC. Growth rate responses of five commercial strains of Gracilaria (Rhodophyta, Gracilariales) to temperature and light. J World Aquacul Soc. 1998;29:259–66.CrossRefGoogle Scholar
  99. Macreadie PI, Bishop MJ, Booth DJ. Implications of climate change for macrophytic rafts and their hitchhikers. Mar Ecol Prog Ser. 2011;443:285–92.CrossRefGoogle Scholar
  100. Maggs CA. Intraspecific life history variability in the Florideophycidae (Rhodophyta). Bot Mar. 1988;31:465–90.CrossRefGoogle Scholar
  101. McKenzie PF, Bellgrove A. Dispersal of Hormosira banksii (Phaeophyceae) via detached fragments: reproductive viability and longevity. J Phycol. 2008;44:1108–15.CrossRefGoogle Scholar
  102. Molina X, Montecino V. Acclimation to UV irradiance in Gracilaria chilensis Bird, McLachlan & Oliveira (Gigartinales, Rhodophyta). Hydrobiologia. 1996;326(327):415–20.CrossRefGoogle Scholar
  103. Morton B, Britton JC. Origins of the Azorean intertidal biota: the significance of introduced species, survivors of chance events. Arquipélago Life Mar Sci. 2000a;Suppl 2 (Part A):29–51.Google Scholar
  104. Morton B, Britton JC. The origins of the coastal and marine flora and fauna of the Azores. Oceanogr Mar Biol Ann Rev. 2000;38:3–84.Google Scholar
  105. Muangmai N, West JA, Zuccarello GC. Evolution of four Southern Hemisphere Bostrychia (Rhodomelaceae, Rhodophyta) species: phylogeny, species delimitation and divergence times. Phycologia. 2014;53:593–601.CrossRefGoogle Scholar
  106. Muhlin JF, Engel CR, Stessel R, Weatherbee RA, Brawley SH. The influence of coastal topography, circulation patterns, and rafting in structuring populations of an intertidal alga. Mol Ecol. 2008;17:1198–210.PubMedCrossRefGoogle Scholar
  107. Müller DG. Culture studies on the life history of Adenocystis utricularis (Phaeophyceae, Dictyosiphonales). Phycologia. 1984;23:87–94.CrossRefGoogle Scholar
  108. Neiva J, Assis J, Fernandes F, Pearson GA, Serrão EA. Species distribution models and mitochondrial DNA phylogeography suggest an extensive biogeographical shift in the high-intertidal seaweed Pelvetia canaliculata. J Biogeogr. 2014;41:1137–48.CrossRefGoogle Scholar
  109. Neiva J, Pearson GA, Valero M, Serrão EA. Drifting fronds and drifting alleles: range dynamics, local dispersal and habitat isolation shape the population structure of the estuarine seaweed Fucus ceranoides. J Biogeogr. 2012;39:1167–78.CrossRefGoogle Scholar
  110. Nikula R, Fraser CI, Spencer HG, Waters JM. Circumpolar dispersal by rafting in two subantarctic kelp-dwelling crustaceans. Mar Ecol Prog Ser. 2010;405:221–30.CrossRefGoogle Scholar
  111. Nikula R, Spencer HG, Waters JM. Evolutionary consequences of microhabitat: population-genetic structuring in kelp- vs. rock-associated chitons. Mol Ecol. 2011;20:4915–24.PubMedCrossRefGoogle Scholar
  112. Nikula R, Spencer HG, Waters JM. Passive rafting is a powerful driver of transoceanic gene flow. Biol Lett. 2013;20120821.Google Scholar
  113. Norton TA. The growth and development of Sargassum muticum (Yendo) Fensholt. J Exp Mar Biol Ecol. 1977;26:41–53.CrossRefGoogle Scholar
  114. Norton TA, Mathieson AC. The biology of unattached seaweeds. In: Round FE, Chapman DJ, editors. Progress in phycological research. New York: Elsevier; 1983. p. 336–86.Google Scholar
  115. Ohno M. Observations on the floating seaweeds of near-shore waters of southern Japan. Hydrobiologia. 1984;116(117):408–12.CrossRefGoogle Scholar
  116. Ojeda FP, Santelices B. Invertebrate communities in hodfasts of the kelp Macrocystis pyrifera from southern Chile. Mar Ecol Prog Ser. 1984;16:65–73.CrossRefGoogle Scholar
  117. Oliveira E, Ugadim Y, Paula E. Associated epibiota on Sargassum floating on the waters of the Brazilian current-biogeographical remarks. Boletim do Botanica, Universidade de Sao Paulo 1979;7:5–9.Google Scholar
  118. Olsen JL, Zechman FW, Hoarau G, Coyer JA, Stam WT, Valero M, Åberg P. The phylogeographic architecture of the fucoid seaweed Ascophyllum nodosum: an intertidal ‘marine tree’ and survivor of more than one glacial–interglacial cycle. J Biogeogr. 2010;37:842–56.CrossRefGoogle Scholar
  119. Orfanidis S. Temperature responses and distribution of several Mediterranean macroalgae belonging to different distribution groups. Bot Mar. 1993;36:359–70.CrossRefGoogle Scholar
  120. Pearson GA, Evans LV. Settlement and survival of Polysiphonia lanosa (Ceramiales) spores on Ascophyllum nodosum and Fucus vesiculosus (Fucales). J Phycol. 1990;26:597–603.CrossRefGoogle Scholar
  121. Pérez-Rodríguez E, Aguilera J, Gómez I, Figueroa F. Excretion of coumarins by the Mediterranean green alga Dasycladus vermicularis in response to environmental stress. Mar Biol. 2001;139:633–9.CrossRefGoogle Scholar
  122. Peters AF, Breeman AM. Temperature tolerance and latitudinal range of brown algae from temperate Pacific South America. Mar Biol. 1993;115:143–50.CrossRefGoogle Scholar
  123. Rothäusler E, Gómez I, Hinojosa IA, Karsten U, Miranda L, Tala F, Thiel M. Kelp rafts in the Humboldt Current: interplay of abiotic and biotic factors limit their floating persistence and dispersal potential. Limnol Oceanogr. 2011a;56:1751–63.Google Scholar
  124. Rothäusler E, Gómez I, Hinojosa IA, Karsten U, Tala F, Thiel M. Effect of temperature and grazing on growth and reproduction of floating Macrocystis spp. (Phaeophyceae) along a latitudinal gradient. J Phycol. 2009;45:547–59.CrossRefGoogle Scholar
  125. Rothäusler E, Gómez I, Hinojosa IA, Karsten U, Tala F, Thiel M. Physiological performance of floating giant kelp Macrocystis pyrifera (Phaeophyceae): latitudinal variability in the effects of temperature and grazing. J Phycol. 2011b;47:269–81.CrossRefGoogle Scholar
  126. Rothäusler E, Gómez I, Karsten U, Tala F, Thiel M. Physiological acclimation of floating Macrocystis pyrifera to temperature and irradiance ensures long-term persistence at the sea surface at mid-latitudes. J Exp Mar Biol Ecol. 2011c;405:33–41.CrossRefGoogle Scholar
  127. Rothäusler E, Gómez I, Karsten U, Tala F, Thiel M. UV-radiation versus grazing pressure: long-term floating of kelp rafts (Macrocystis pyrifera) is facilitated by efficient photoacclimation but undermined by grazing losses. Mar Biol. 2011d;158:127–41.CrossRefGoogle Scholar
  128. Rothäusler E, Gutow L, Thiel M. Floating seaweeds and their communities. In: Wiencke C, Bischof K, editors. Seaweed biology. Ecological studies. Heidelberg: Springer; 2012. p. 359–80.CrossRefGoogle Scholar
  129. Sáez F, Macchiavello J, Fonck E, Bulboa C. The role of the secondary attachment disc in the vegetative propagation of Chondracanthus chamissoi (Gigartinales; Rhodophyta). Aquat Bot. 2008;89:63–5.CrossRefGoogle Scholar
  130. Santelices B, Varela D. Intra-clonal variation in the red seaweed Gracilaria chilensis. Mar Biol. 1993;116:543–52.CrossRefGoogle Scholar
  131. Saunders GW. Long distance kelp rafting impacts seaweed biogeography in the northeast pacific: the kelp conveyor hypothesis. J Phycol. 2014;50:968–74.CrossRefGoogle Scholar
  132. Schoenwaelder MEA. Physode distribution and the effect of ‘thallus sunburn’ in Hormosira banksii (Fucales, Phaeophyceae). Bot Mar. 2002;45:262–6.CrossRefGoogle Scholar
  133. Schoenwaelder MEA, Wiencke C. Phenolic compounds in the embryo development of several northern hemisphere fucoids. Plant Biol. 2000;2:24–33.CrossRefGoogle Scholar
  134. Serrão EA, Brawley SH, Hedman J, Kautsky L, Samuelsson G. Reproductive success of Fucus vesiculosus (Phaeophyceae) in the Baltic Sea. J Phycol. 1999;35:254–69.CrossRefGoogle Scholar
  135. Smith SDA. Kelp rafts in the Southern Ocean. Glob Ecol Biogeogr. 2002;11:67–9.CrossRefGoogle Scholar
  136. Stachowicz JJ, Fried H, Osman RW, Whitlatch RB. Biodiversity, invasion resistance, and marine ecosystem function: reconciling pattern and process. Ecology. 2002;83:2575–90.CrossRefGoogle Scholar
  137. Steinberg P. Biogeographical variation in brown algal polyphenolics and other secondary metabolites: comparison between temperate Australasia and North America. Oecologia. 1989;78:373–82.CrossRefGoogle Scholar
  138. Stewart HL. Ontogenetic changes in buoyancy, breaking strength, extensibility, and reproductive investment in a drifting macroalga Turbinaria ornata (Phaeophyta). J Phycol. 2006;42:43–50.CrossRefGoogle Scholar
  139. Susini ML, Thibaut T, Meinesz A, Forcioli D. A preliminary study of genetic diversity in Cystoseira amentacea (C. Agardh) Bory var. stricta Montagne (Fucales, Phaeophyceae) using random amplified polymorphic DNA. Phycologia. 2007;46:605–11.CrossRefGoogle Scholar
  140. Swanson AK, Druehl LD. Induction, exudation and the UV protective role of kelp phlorotannins. Aquat Bot. 2002;73:241–53.CrossRefGoogle Scholar
  141. Tala F, Gómez I, Luna-Jorquera G, Thiel M. Morphological, physiological and reproductive conditions of rafting bull kelp (Durvillaea antarctica) in northern-central Chile (30°S). Mar Biol. 2013;160:1339–51.CrossRefGoogle Scholar
  142. Tatarenkov A, Bergstrom L, Jonsson RB, Serrão EA, Kautsky L, Johannesson K. Intriguing asexual life in marginal populations of the brown seaweed Fucus vesiculosus. Mol Ecol. 2005;14:647–51.PubMedCrossRefGoogle Scholar
  143. Tegner MJ, Dayton PK, Edwards PB, Riser KL. Sea urchin cavitation of giant kelp Macrocystis pyrifera (C. Agardh) holdfasts and its effects on kelp mortality across a large California forest. J Exp Mar Biol Ecol. 1995;191:83–99.CrossRefGoogle Scholar
  144. Thiel M. Rafting of benthic macrofauna: important factors determining the temporal succession of the assemblage on detached macroalgae. Hydrobiologia. 2003;503:49–57.CrossRefGoogle Scholar
  145. Thiel M, Gutow L. The ecology of rafting in the marine environment. I. The floating substrata. Oceanogr Mar Biol Ann Rev. 2005a;42:181–264.Google Scholar
  146. Thiel M, Gutow L. The ecology of rafting in the marine environment. II. The rafting organisms and community. Oceanogr Mar Biol Ann Rev. 2005b;43:279–418.Google Scholar
  147. Thiel M, Haye P. The ecology of rafting in the marine environment. III. Biogeographical and evolutionary consequences. Oceanogr Mar Biol Ann Rev. 2006;44:323–429.Google Scholar
  148. Vairappan CS. Seasonal occurrences of epiphytic algae on the commercially cultivated red alga Kappaphycus alvarezii (Solieriaceae, Gigartinales, Rhodophyta). J Appl Phycol. 2006;18:611–7.CrossRefGoogle Scholar
  149. Van Alstyne KL, McCarthy JJ III, Hustead CL, Duggins DO. Geographic variation in polyphenolic levels of Northeastern Pacific kelps and rockweeds. Mar Biol. 1999;133:371–9.CrossRefGoogle Scholar
  150. van den Hoek C. The possible significance of long-range dispersal for the biogeography of seaweeds. Helgol Meeresunters. 1987;41:261–72.CrossRefGoogle Scholar
  151. Vandendriessche S, Vincx M, Degraer S. Floating seaweed and the influences of temperature, grazing and clump size on raft longevity—a microcosm study. J Exp Mar Biol Ecol. 2007;343:64–73.CrossRefGoogle Scholar
  152. Waters JM. Driven by the West Wind Drift? A synthesis of southern temperate marine biogeography, with new directions for dispersalism. J Biogeogr. 2008;35:417–27.CrossRefGoogle Scholar
  153. Waters JM, Fraser CI, Hewitt GM. Founder takes all: density-dependent processes structure biodiversity. Trends Ecol Evol. 2013;28:78–85.PubMedCrossRefGoogle Scholar
  154. West JA, Zuccarello GC, Karsten U. Reproductive biology of Stictosiphonia hookeri (Rhodomelaceae, Rhodophyta) from Argentina, Chile, South Africa and Australia in laboratory culture. Hydrobiologia. 1996;326(327):277–82.CrossRefGoogle Scholar
  155. Wheeler WN. Effect of boundary layer transport on the fixation of carbon by the giant kelp Macrocystis pyrifera. Mar Biol. 1980;56:103–10.CrossRefGoogle Scholar
  156. Whittick A. Spatial and temporal distributions of dominant epiphytes on the stipes of Laminaria hyperborea (Gunn.) Fosl. (Phaeophyta: Laminariales) in S.E. Scotland. J Exp Mar Biol Ecol. 1983;73:1–10.CrossRefGoogle Scholar
  157. Wichmann CS, Hinojosa IA, Thiel M. Floating kelps in Patagonian Fjords: an important vehicle for rafting invertebrates and its relevance for biogeography. Mar Biol. 2012;159:2035–49.CrossRefGoogle Scholar
  158. Wiencke C, Bartsch I, Bischoff B, Peters AF, Breeman AM. Temperature requirements and biogeography of Antarctic, Arctic and amphiequatorial seaweeds. Bot Mar. 1994;37:247–59.CrossRefGoogle Scholar
  159. Wiencke C, Clayton MN, Gómez I, Iken K, Lüder UH, Amsler CD, Karsten U, Hanelt D, Bischof K, Dunton K. Life strategy, ecophysiology and ecology of seaweeds in polar waters. Rev Environ Sci Bio. 2007;6:95–126.CrossRefGoogle Scholar
  160. Wieters EA, Medrano A, Quiroga G. Spatial variation in photosynthetic recovery of intertidal turf algae from acute UVB and temperature stress associated with low tides along the central coast of Chile. J Exp Mar Biol Ecol. 2013;449:340–8.CrossRefGoogle Scholar
  161. Wing S, Patterson M. Effects of wave-induced light flecks in the intertidal zone on photosynthesis in the macroalgae Postelsia palmaeformis and Hedophyllum sessile (Phaeophyceae). Mar Biol. 1993;116:519–25.CrossRefGoogle Scholar
  162. Winston JE, Gregory MR, Stevens LM. Encrusters, epibionts, and other biota associated with pelagic plastics: a review of biogeographical, environmental, and conservation issues. In: Coe JM, Rogers DB, editors. Marine debris. New York: Springer; 1997. p. 81–97.CrossRefGoogle Scholar
  163. Woelkerling WJ. On the epibiotic and pelagic Chlorophyceae, Phaeophyceae, and Rhodophyceae of the Western Sargasso Sea. Rhodora. 1975;77:1–40.Google Scholar
  164. Won BY, Cho TO, Yates KK, Fredericq S. Characterization of macroalgal epiphytes on Thalassia testudinum and Syringodium filiforme seagrass in Tampa Bay, Florida. Algae. 2010;25:141–53.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Erasmo C. Macaya
    • 1
    • 7
    Email author
  • Boris López
    • 2
    • 3
  • Fadia Tala
    • 4
  • Florence Tellier
    • 5
  • Martin Thiel
    • 6
    • 7
    • 8
  1. 1.Laboratorio de Estudios Algales (ALGALAB), Departamento de OceanografíaUniversidad de ConcepciónConcepciónChile
  2. 2.Programa de Doctorado en Biología y Ecología Aplicada (BEA), Facultad de Ciencias del MarUniversidad Católica del NorteCoquimboChile
  3. 3.Departamento de Acuicultura y Recursos AgroalimentariosUniversidad de Los LagosOsornoChile
  4. 4.Centro de Investigación y Desarrollo Tecnológico en Algas de la Universidad Católica del Norte (CIDTA-UCN)CoquimboChile
  5. 5.Departamento de Ecología, Facultad de CienciasUniversidad Católica de la Santísima ConcepciónConcepciónChile
  6. 6.Facultad Ciencias del MarUniversidad Católica del NorteCoquimboChile
  7. 7.Millennium Nucleus Ecology and Sustainable Management of Oceanic Island (ESMOI)CoquimboChile
  8. 8.Centro de Estudios Avanzados en Zonas Áridas (CEAZA)CoquimboChile

Personalised recommendations