Advertisement

Survival in Glacial Refugia Versus Postglacial Dispersal in the North Atlantic: The Cases of Red Seaweeds

  • Jing-Jing Li
  • Zi-Min HuEmail author
  • De-Lin Duan
Chapter

Abstract

The past two decades have witnessed the North Atlantic used as a model system to explore how climate changes and environmental conditions shaped the spatiotemporal distributions and biogeographic processes of intertidal seaweed species. The tectonic reconfigurations of the Northwestern and Northeastern Atlantic shores caused by the Quaternary ice ages allow us to examine two evolutionarily contrasting scenarios: survival in local glacial refugia versus postglacial trans-Atlantic dispersal. In this chapter, we collected comparative data from the red algae Chondrus crispus, Mastocarpus stellatus, Palmaria palmata, and Porphyra umbilicalis across the North Atlantic to illustrate the effects of paleoclimatic oscillations on historical demography, lineage divergence, and genetic connectivity. The genetic signals detected in C. crispus and P. palmata are consistent with the hypothesis that they survived in situ on each side of the North Atlantic during the Quaternary glaciations, while the phylogeographic evidence for M. stellatus and P. umbilicalis indicates postglacial trans-Atlantic dispersals. Bayesian coalescent analysis detected signals of demographic expansions in the four algal species, during the late Pliocene to the middle Pleistocene. In addition, the dated genetic splits between lineages were compatible with the expansion times for each species. In summary, our comparative analysis revealed contrasting biogeographic processes in these seaweeds despite their similar contemporary distributional ranges in the North Atlantic. These results also highlight the importance of comparative phylogeographic surveys in exploring dynamic evolutionary patterns and phylogeographic histories of intertidal marine organisms.

Keywords

Demographic history Divergence time Genetic diversity Genealogical isolation The quaternary ice age Postglacial recolonization 

Notes

Acknowledgments

We would like to thank Ceridwen Fraser and two anonymous reviewers for valuable comments on the early version of this chapter. This study was partially supported by National Natural Science Foundation of China (31370264) granted to Z.M. Hu.

References

  1. Addison JA, Hart MW. Colonization, dispersal, and hybridization influence phylogeography of North Atlantic sea urchins (Strongylocentrotus droebachiensis). Evolution. 2005;59:532–43.PubMedGoogle Scholar
  2. Alm T, Birks HH. Late Weichselian flora and vegetation of Andøya, Northern Norway-Macro fossil (seed and fruit) evidence from Nedre Aerasvatn. Nord J Bot. 1991;11:465–76.CrossRefGoogle Scholar
  3. Bermingham E, Rohwer S, Freeman S, Wood C. Vicariance biogeography in the Pleistocene and speciation in North American wood warblers: Atest of Mengel’s model. Proc Nat Acad Sci USA. 1992;89:6624–8.PubMedCentralCrossRefPubMedGoogle Scholar
  4. Björck S. A review of the history of the Baltic Sea, 13.0–8.0 ka BP. Quat Int. 1995;27:19–40.CrossRefGoogle Scholar
  5. Bouza N, Caujapé-Castells J, González-Pérez MA, Sosa PA. Genetic structure of natural populations in the red algae Gelidium canariense (Gelidiales, Rhodophyta) investigated by random amplified polymorphic DNA (RAPD) markers. J Phycol. 2006;42:304–11.CrossRefGoogle Scholar
  6. Brawley SH, Coyer JA, Blakeslee AMH, Hoarau G, Johnson LE, Byers JE, Stam WT, Olsen JL. Historical invasions of the intertidal zone of Atlantic North America associated with distinctive patterns of trade and emigration. Proc Nat Acad Sci USA. 2009;106:8239–44.PubMedCentralCrossRefPubMedGoogle Scholar
  7. Brochmann C, Gabrielsen TM, Nordal I, Landvik JY, Elven R. Glacial survival or tabula rasa? The history of North Atlantic biota revisited. Taxon. 2003;52:417–50.CrossRefGoogle Scholar
  8. Charbit S, Ritz C, Philippon G, Peyaud V, Kageyama M. Numerical reconstructions of the Northern Hemisphere ice sheets through the last glacial-interglacial cycle. Clim Past. 2007;3:15–37.CrossRefGoogle Scholar
  9. Clark PU, Dyke AS, Shakun JD, Carlson AE, Clark J, Wohlfarth B, Mitrovica JX, Hostetler SW, McCabe AM. The Last Glacial Maximum. Science. 2009;325:710–4.CrossRefPubMedGoogle Scholar
  10. Couceiro L, Maneiro I, Ruiz JM, Barreiro R. Multiscale genetic structure of an endangered seaweed Ahnfeltiopsis pusilla (Rhodophyta): implications for its conservation. J Phycol. 2011;47:259–68.CrossRefGoogle Scholar
  11. Coyer JA, Peters AF, Stam WT, Olsen JL. Post-ice age recolonization and differentiation of Fucus serratus L. (Phaeophyceae; Fucaceae) populations in Northern Europe. Mol Ecol. 2003;12:1817–29.CrossRefPubMedGoogle Scholar
  12. Coyer JA, Hoarau G, Costa JF, Hogerdijk B, Serrão EA, Billard E, Valero M, Pearson GA, Olsen JL. Evolution and diversification within the intertidal brown macroalgae Fucus spiralis/F. vesiculosus species complex in the North Atlantic. Mol Phylogenet Evol. 2011;58:283–96.CrossRefPubMedGoogle Scholar
  13. Doellman MM, Trussell GC, Grahame JW, Vollmer SV. Phylogeographic analysis reveals a deep lineage split within North Atlantic Littorina saxatilis. Proc R Soc B. 2011;278:3175–83.PubMedCentralCrossRefPubMedGoogle Scholar
  14. Dyke AS, Andrews JT, Clark PU, England JH, Miller GH, Shaw J, Veillette JJ. The Laurentide and Innuitian ice sheets during the Last Glacial Maximum. Quat Sci Rev. 2002;21:9–31.CrossRefGoogle Scholar
  15. Faugeron S, Valero M, Destombe C, Martinez EA, Correa JA. Hierarchical spatial structure and discriminant analysis of genetic diversity in the red alga Mazzaella laminarioides (Gigartinales, Rhodophyta). J Phycol. 2001;37:705–16.CrossRefGoogle Scholar
  16. Gabrielsen TM, Brochmann C, Rueness J. The Baltic Sea as a model system for studying postglacial colonization and ecological differentiation, exemplified by the red alga Ceramium tenuicorne. Mol Ecol. 2002;11:2083–95.CrossRefPubMedGoogle Scholar
  17. Grant WS. Paradigm shifts in the analysis of seaweeds. In: Hu ZM, Fraser CI, editors. Seaweed phylogeography: adaptation and evolution of seaweeds under environmental change. Springer, Heidelberg; 2016.Google Scholar
  18. Guiry MD, West JA. Life history and hybridization studies on Gigartina stellata and Petrocelis cruenta (Rhodophyta) in the North Atlantic. J Phycol. 1983;19:474–94.CrossRefGoogle Scholar
  19. Gurgel CFD, Fredericq S, Norris JN. Phylogeography of Gracilaria tikvahiae (Gracilariaceae, Rhodophyta): A study of genetic discontinuity in a continuously distributed species based on molecular evidence. J Phycol. 2004;40:748–58.CrossRefGoogle Scholar
  20. Hewitt GM. Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc. 1996;58:247–76.CrossRefGoogle Scholar
  21. Hewitt GM. The genetic legacy of the Quaternary ice ages. Nature. 2000;405:907–13.CrossRefPubMedGoogle Scholar
  22. Hewitt GM. Genetic consequences of climatic oscillations in the Quaternary. Phil Trans R Soc B. 2004;359:183–95.PubMedCentralCrossRefPubMedGoogle Scholar
  23. Hey J. Isolation with migration models for more than two populations. Mol Biol Evol. 2010;27:905–20.PubMedCentralCrossRefPubMedGoogle Scholar
  24. Hey J, Nielsen R. Integration within the Felsenstein equation for improved Markov chain Monte Carlo methods in population genetics. Proc Nat Acad Sci USA. 2007;104:2785–90.PubMedCentralCrossRefPubMedGoogle Scholar
  25. Ho SYW, Phillips MJ, Drummond AJ, Cooper A. Accuracy of rate estimation using relaxed-clock models with a critical focus on the early metazoan radiation. Mol Biol Evol. 2005;22:1355–63.CrossRefPubMedGoogle Scholar
  26. Ho SYW, Shapiro B, Phillips MJ, Copper A, Drummond AJ. Evidence for time dependency of molecular rate estimates. Syst Biol. 2007;56:515–22.CrossRefPubMedGoogle Scholar
  27. Ho SYW, Saarma U, Barnett R, Haile J, Shapiro B. The effect of inappropriate calibration: three case studies in molecular ecology. PLoS ONE. 2008;3(2):e1615.PubMedCentralCrossRefPubMedGoogle Scholar
  28. Hoarau G, Coyer JA, Veldsink JH, Stam WT, Olsen JL. Glacial refugia and recolonization pathways in the brown seaweed Fucus serratus. Mol Ecol. 2007;16:3606–16.CrossRefPubMedGoogle Scholar
  29. Hu ZM. Intertidal population genetic dynamics at a microgeographic seascape scale. Mol Ecol. 2013;22:3191–4.CrossRefPubMedGoogle Scholar
  30. Hu ZM, Duan DL, Lopez-Bautista J. Seaweed phylogeography from 1994 to 2014: an overview. In: Hu ZM, Fraser CI, editors. Seaweed phylogeography: adaptation and evolution of seaweeds under environmental Change. Springer, Heidelberg; 2016.Google Scholar
  31. Hu ZM, Zeng XQ, Critchley AT, Morrell SL, Duan DL. Phylogeography of the Northern Atlantic species Chondrus crispus (Gigartinales, Rhodophyta) inferred from nuclear rDNA internal transcribed spacer sequences. Hydrobiologia. 2007;575:315–27.CrossRefGoogle Scholar
  32. Hu ZM, Guiry MD, Critchley AT, Duan DL. Phylogeographic patterns indicate transatlantic migration from Europe to North America in the red seaweed Chondrus crispus (Gigartinales, Rhodophyta). J Phycol. 2010;46:889–900.CrossRefGoogle Scholar
  33. Hu ZM, Li W, Li JJ, Duan DL. Post-Pleistocene demographic history of the North Atlantic endemic Irish moss Chondrus crispus: glacial survival, spatial expansion and gene flow. J Evol Biol. 2011;24:505–17.CrossRefPubMedGoogle Scholar
  34. Ingólfsson A. The origin of the rocky shore fauna of Iceland and the Canadian Maritimes. J Biogeogr. 1992;19:705–12.CrossRefGoogle Scholar
  35. Johnson LE, Brawley SH, Adey WH. Secondary spread of invasive species: historic patterns and underlying mechanisms of the continuing invasion of the European rockweed Fucus serratus in eastern North America. Biol Invasions. 2012;14:79–97.CrossRefGoogle Scholar
  36. Jolly MT, Viard F, Gentil F, Thiebaut E, Jollivet D. Comparative phylogeography of two coastal polychaete tubeworms in the Northeast Atlantic supports shared history and vicariant events. Mol Ecol. 2006;15:1841–55.CrossRefPubMedGoogle Scholar
  37. Krebes L, Blank M, Bastrop R. Phylogeography, historical demography and postglacial colonization routes of two amphi-Atlantic distributed amphipods. Syst Biodivers. 2011;9:259–73.CrossRefGoogle Scholar
  38. Krueger-Hadfield SA, Collen J, Daguin-Thiebaut C, Valero M. Genetic population structure and mating system in Chondrus crispus (Rhodophyta). J Phycol. 2011;47:440–50.CrossRefGoogle Scholar
  39. Lambeck K, Chappell J. Sea level change through the last glacial cycle. Science. 2001;292:679–86.CrossRefPubMedGoogle Scholar
  40. Lambeck K, Esat TM, Potter EK. Links between climate and sea levels for the past three million years. Nature. 2002;419:199–206.CrossRefPubMedGoogle Scholar
  41. Larsen E, Gulliksen S, Lauritzen SE, Lie R, Lovlie R, Mangerud J. Cave stratigraphy in western Norway: multiple Weischselian glaciations and interstadial vertebrate fauna. Boreas. 1987;16:267–92.CrossRefGoogle Scholar
  42. Li JJ, Hu ZM, Duan DL. Genetic data from the red alga Palmaria palmata reveal a mid-Pleistocene deep genetic split in the North Atlantic. J Biogeogr. 2015;42(5):902–13.CrossRefGoogle Scholar
  43. Li JJ, Hu ZM, Liu RY, Zhang J, Liu SL, Duan DL. Phylogeographic surveys and apomictic genetic connectivity in the North Atlantic red seaweed Mastocarpus stellatus. Mol Phylogenetic Evol. 2016;94: 463–72.Google Scholar
  44. Lisiecki LE, Raymo ME. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography. 2005;20:17.Google Scholar
  45. Maggs CA, Castilho R, Foltz D, Henzler C, Jolly MT, Kelly J, Olsen J, Perez KE, Stam W, Väinölä R, Viard F, Wares J. Evaluating signatures of glacial refugia for North Atlantic benthic marine taxa. Ecology. 2008;89:S108–22.CrossRefPubMedGoogle Scholar
  46. Mathieson AC, Penniman CA, Busse PK, Tvetergallagher E. Effects of ice on Ascophyllum nodosum within the Great Bay Estuary System of New Hampshire-Maine. J Phycol. 1982;18:331–6.CrossRefGoogle Scholar
  47. McKindsey CW, Bourget E. Diversity of a northern rocky intertidal community: the influence of body size and succession. Ecology. 2001;82:3462–78.CrossRefGoogle Scholar
  48. Miller GH, Wolfe AP, Steig EJ, Sauer PE, Kaplan MR, Briner JP. The Goldilocks dilemma: big ice, little ice, or “just-right” ice in the Eastern Canadian Arctic. Quat Sci Rev. 2002;21:33–48.CrossRefGoogle Scholar
  49. Minchinton TE, Scheibling RE, Hunt HL. Recovery of an intertidal assemblage following a rare occurrence of scouring by sea ice in Nova Scotia, Canada. Bot Mar. 1997;40:139–48.CrossRefGoogle Scholar
  50. Neiva J, Serrão EA, Assis J, Pearson GA, Coyer JA, Olsen JL, Hoarau G, Valero M. Climate oscillations, and phylogeographic patterns of North Atlantic Fucaceae. In: Hu ZM, Fraser CI, editors. Seaweed phylogeography: adaptation and evolution of seaweeds under environmental change. Springer, Heidelberg; 2016.Google Scholar
  51. Neiva J, Pearson GA, Valero M, Serrão EA. Drifting fronds and drifting alleles: range dynamics, local dispersal and habitat isolation shape the population structure of the estuarine seaweed Fucus ceranoides. J Biogeogr. 2012;39:1167–78.CrossRefGoogle Scholar
  52. Neiva J, Assis J, Fernandes F, Pearson GA, Serrão EA. Species distribution models andmmitochondrial DNA phylogeography suggest an extensive biogeographical shift in the. J Biogeogr. 2014;41:1137–48.CrossRefGoogle Scholar
  53. Nielsen R, Wakeley J. Distinguishing migration from isolation: a Markov chain Monte Carlo approach. Genetics. 2001;158:885–96.PubMedCentralPubMedGoogle Scholar
  54. Olsen JL, Zechman FW, Hoarau G, Coyer JA, Stam WT, Valero M, Åberg P. The phylogeographic architecture of the fucoid seaweed Ascophyllum nodosum: an intertidal ‘marine tree’ and survivor of more than one glacial-interglacial cycle. J Biogeogr. 2010;37:842–56.CrossRefGoogle Scholar
  55. Petit RJ, Aguinagalde I, de Beaulieu JL, Bittkau C, Brewer S, Cheddadi R, Ennos R, Fineschi S, Grivet D, Lascoux M, Mohanty A, Muller-Starck GM, Demesure-Musch B, Palme A, Martin JP, Rendell S, Vendramin GG. Glacial refugia: hotspots but not melting pots of genetic diversity. Science. 2003;300:1563–5.CrossRefPubMedGoogle Scholar
  56. Provan J, Bennett KD. Phylogeographic insights into cryptic glacial refugia. Trends Ecol Evol. 2008;23:564–71.CrossRefPubMedGoogle Scholar
  57. Provan J, Maggs CA. Unique genetic variation at a species’ rear edge is under threat from global climate change. Proc R Soc B. 2012;279:39–47.PubMedCentralCrossRefPubMedGoogle Scholar
  58. Provan J, Wattier RA, Maggs CA. Phylogeographic analysis of the red seaweed Palmaria palmata reveals a Pleistocene marine glacial refugium in the English Channel. Mol Ecol. 2005;14:793–803.CrossRefPubMedGoogle Scholar
  59. Provan J, Glendinning K, Kelly R, Maggs CA. Levels and patterns of population genetic diversity in the red seaweed Chondrus crispus (Florideophyceae): a direct comparison of single nucleotide polymorphisms and microsatellites. Biol J Linn Soc. 2013;108:251–62.CrossRefGoogle Scholar
  60. Riggs SR, Snyder SW, Hine AC, Mearns DL. Hardbottom morphology and relationship to the geologic framework: mid-Atlantic continental shelf. J Sediment Res. 1996;66:830–46.Google Scholar
  61. Riginos C, Henzler CM. Patterns of mtDNA diversity in North Atlantic populations of the mussel Mytilus edulis. Mar Biol. 2008;155:399–412.CrossRefGoogle Scholar
  62. Roman J, Palumbi SR. A global invader at home: population structure of the green crab, Carcinus maenas, in Europe. Mol Ecol. 2004;13:2891–8.CrossRefPubMedGoogle Scholar
  63. Roth PH. Mesozoic paleoceanography of the North Atlantic and Tethys Oceans. In: Summerhayes CP, Shackleton NJ, editors. North Atlantic Paleoceanography, vol. 21. Geological Society of America Special Publication 1986; pp. 299–320.Google Scholar
  64. Rowe G, Harris DJ, Beebee TJC. Lusitania revisited: a phylogeographic analysis of the natterjack toad Bufo calamita across its entire biogeographical range. Mol Phylogenet Evol. 2006;39:335–46.CrossRefPubMedGoogle Scholar
  65. Saucier FJ, Roy F, Gilbert D, Pellerin P, Ritchie H. Modeling the formation and circulation processes of water masses and sea ice in the Gulf of St. Lawrence, Canada. J Geophys Res Oceans. 2003;108:3269.CrossRefGoogle Scholar
  66. Scrosati R, Heaven C. Spatial trends in community richness, diversity, and evenness across rocky intertidal environmental stress gradients in eastern Canada. Mar Ecol Prog Ser. 2007;342:1–14.CrossRefGoogle Scholar
  67. Sejrup HP, Hjelstuen BO, Dahlgren KIT, Haflidason H, Kuijpers A, Nygard A, Praeg D, Stoker MS, Vorren TO. Pleistocene glacial history of the NW European continental margin. Mar Pet Geol. 2005;22:1111–29.CrossRefGoogle Scholar
  68. Siegenthaler U, Stocker TF, Monnin E, Luthi D, Schwander J, Stauffer B, Raynaud D, Barnola JM, Fischer H, Masson-Delmotte V, Jouzel J. Stable carbon cycle-climate relationship during the late Pleistocene. Science. 2005;310:1313–7.CrossRefPubMedGoogle Scholar
  69. Sinclair WT, Morman JD, Ennos RA. Multiple origins for Scots pine (Pinus sylvestris L) in Scotland: evidence from mitochondrial DNA variation. Heredity. 1998;80:233–40.CrossRefGoogle Scholar
  70. Stam WT, Olsen JL, Coyer JA. Post-glacial recolonization and biogeographic patterns in the North Atlantic. Phycologia. 2000;40s:46.Google Scholar
  71. Teasdale BW, Klein AS. Genetic variation and biogeographical boundaries within the red alga Porphyra umbilicalis (Bangiales, Rhodophyta). Bot Mar. 2010;53:417–31.CrossRefGoogle Scholar
  72. Uchupi E, Bolmer ST. Geologic evolution of the Gulf of Maine region. Earth Sci Rev. 2008;91:27–76.CrossRefGoogle Scholar
  73. van Oppen MJH, Draisma SGA, Olsen JL, Stam WT. Multiple trans-Arctic passages in the red alga Phycodrys rubens: evidence from nuclear rDNA ITS sequences. Mar Biol. 1995;123:179–88.CrossRefGoogle Scholar
  74. Waltari E, Hickerson MJ. Late Pleistocene species distribution modelling of North Atlantic intertidal invertebrates. J Biogeogr. 2013;40:249–60.CrossRefGoogle Scholar
  75. Wares JP. Intraspecific variation and geographic isolation in Idotea balthica (Isopoda: Valvifera). J Crustac Biol. 2001;21:1007–13.CrossRefGoogle Scholar
  76. Wares JP, Cunningham CW. Phylogeography and historical ecology of the North Atlantic intertidal. Evolution. 2001;55:2455–69.CrossRefPubMedGoogle Scholar
  77. Young AM, Torres C, Mack JE, Cunningham CW. Morphological and genetic evidence for vicariance and refugium in Atlantic and Gulf of Mexico populations of the hermit crab Pagurus longicarpus. Mar Biol. 2002;140:1059–66.CrossRefGoogle Scholar
  78. Zaragosi S, Eynaud F, Pujol C, Auffret GA, Turon JL, Garlan T. Initiation of the European deglaciation as recorded in the northwestern Bay of Biscay slope environments (Meriadzek Terrace and Trevelyan Escarpment): a multi-proxy approach. Earth Planet Sci Lett. 2001;188:493–507.CrossRefGoogle Scholar
  79. Zuccarello GC, Schidlo N, McIvor L, Guiry MD. A molecular re-examination of speciation in the intertidal red alga Mastocarpus stellatus (Gigartinales, Rhodophyta) in Europe. Eur J Phycol. 2005;40:337–44.CrossRefGoogle Scholar
  80. Zuccarello GC, Buchanan J, West JA. Increased sampling for inferring phylogeographic patterns in Bostrychia radicans/B. moritziana (Rhodomelaceae, Rhodophyta) in the eastern USA. J Phycol. 2006;42:1349–52.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Key Laboratory of Experimental Marine Biology, Institute of OceanologyChinese Academy of SciencesQingdaoChina
  2. 2.Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina

Personalised recommendations