Phylogeography of Seaweeds in the South East Pacific: Complex Evolutionary Processes Along a Latitudinal Gradient

  • Marie-Laure GuilleminEmail author
  • Myriam Valero
  • Florence Tellier
  • Erasmo C. Macaya
  • Christophe Destombe
  • Sylvain Faugeron


The coast along the temperate South East Pacific (SEP) presents a simple linear topography with a north-south orientation spanning more than 4600 km. However, environmental heterogeneity associated with two major biogeographic boundaries has been described along the SEP (30–33°S and 42°S). Recent phylogeographic studies of seaweeds revealed the existence of different cryptic species along the SEP coast and that most of the genetic breaks between them are broadly congruent with the biogeographic boundaries. These phylogeographic patterns characterized by genetic discontinuities could be attributed to historical vicariance or to budding speciation. For SEP seaweeds, two major phylogeographic patterns are observed. Endemic species living north of 42°S show complex haplotype networks and an almost complete genetic isolation between populations located only a few kilometres from each other. This extreme genetic patchiness has been related to the combined effects of limited dispersal, reduced population size and high population turnover of these intertidal seaweeds due to stochastic effects of climatic and tectonic catastrophes. On the other hand, species with a range distribution limited to the south of 42°S and inhabiting the area highly affected by the coastal ice cap during the Last Glacial Maximum (LGM), show typical signatures of post-glacial demographic expansion. Finally, molecular studies reveal that several species are recent immigrants from New Zealand, demonstrating the importance of oceanic dispersal in shaping the diversity of the SEP.


Biogeographic boundaries Budding speciation Chile Cryptic species Phylogeographic breaks Post-glacial recolonization 



This research was supported by CONICYT FONDECYT/REGULAR No. 1130797 and Centro FONDAP IDEAL No. 15150003 to MLG and FONDECYT/INICIACION No. 11121504 to FT. Additional support came from CONICYT PCCI/Proyectos de Intercambio No. PCCI130047, The Nucleo Milenio “Centro de Conservación Marina”—RC130004, the French Research Agency ANR-ECOKELP (ANR 06 BDIV 012) and International Research Network ‘‘Diversity, Evolution and Biotechnology of Marine Algae’’ (GDRI No. 0803).


  1. Alberto F, Raimondi PT, Reed DC, Coelho NC, Leblois R, Whitmer A, Serräo EA. Habitat continuity and geographic distance predict population genetic differentiation in giant kelp. Ecology. 2010;91:49–56.PubMedCrossRefGoogle Scholar
  2. Alberto F, Raimondi PT, Reed DC, Watson JR, Siegel DA, Mitarai S, Coelho NC, Serräo EA. Isolation by oceanographic distance explains genetic structure for Macrocystis pyrifera in the Santa Barbara Channel. Mol Ecol. 2011;20:2543–54.PubMedCrossRefGoogle Scholar
  3. Anacker BL, Strauss SY. The geography and ecology of plant speciation: range overlap and niche divergence in sister species. Proc R Soc B. 2014;281:20132980.PubMedCentralPubMedCrossRefGoogle Scholar
  4. Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE, Reeb CA, Saunders NC. Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Ann Rev Ecol Sys. 1987;18:489–522.CrossRefGoogle Scholar
  5. Baldwin BG. Origin of the serpentine-endemic herb Layia discoidea from the widespread L. glandulosa (Compositae). Evolution. 2005;59(11):2473–9.PubMedGoogle Scholar
  6. Barber PH. The challenge of understanding the Coral Triangle biodiversity hotspot. J Biogeogr. 2009;36:1845–6.CrossRefGoogle Scholar
  7. Beaumont MA, Balding DJ. Identifying adaptive genetic divergence among populations from genome scans. Mol Ecol. 2004;13:969–80.PubMedCrossRefGoogle Scholar
  8. Belkin IM, Gordon AL. Southern Ocean fronts from the Greenwich meridian to Tasmania. J Geophys Res. 1996;101(C2):3675–96.CrossRefGoogle Scholar
  9. Billard E, Reyes J, Mansilla A, Faugeron S, Guillemin ML. Deep genetic divergence between austral populations of the red alga Gigartina skottsbergii reveals a cryptic species endemic to the Antarctic continent. Pol Biol. 2015;. doi: 10.1007/s00300-015-1762-4.Google Scholar
  10. Boo GH, Mansilla A, Nelson W, Bellgrove A, Boo SM. Genetic connectivity between trans-oceanic populations of Capreolia implexa (Gelidiales, Rhodophyta) in cool temperate waters of Australasia and Chile. Aquat Bot. 2014;119:73–9.CrossRefGoogle Scholar
  11. Brante A, Fernández M, Viard F. Phylogeography and biogeography concordance in the marine gastropod Crepipatella dilatata (Calyptraeidae) along the southeastern Pacific coast. J Hered. 2012;103(5):630–7.PubMedCrossRefGoogle Scholar
  12. Brattström H, Johanssen A. Ecological and regional zoogeography of the marine benthic fauna of Chile. Sarsia. 1983;68:289–339.Google Scholar
  13. Briggs JC. Centrifugal speciation and centres of origin. J Biogeogr. 2000;27:1183–8.CrossRefGoogle Scholar
  14. Broitman BR, Navarrete SA, Smith F, Gaines SD. Geographic variation of southeastern Pacific intertidal communities. Mar Ecol Prog Ser. 2001;224:21–34.CrossRefGoogle Scholar
  15. Buschmann AH, Correa JA, Westermeier R, Hernández-González MC, Norambuena R. Red algal farming in Chile: a review. Aquaculture. 2001;194:203–20.CrossRefGoogle Scholar
  16. Buschmann AH, Prescott S, Potin P, Faugeron S, Vasquez JA, Camus C, Infante J, Hernández-González MC, Gutierrez A, Varela DA. The status of kelp exploitation and marine agronomy, with emphasis on Macrocystis pyrifera, in Chile. Adv Bot Res. 2014;71:161–88.CrossRefGoogle Scholar
  17. Camus PA. Procesos regionales y fitogeografía en el Pacífico Suroriental: el efecto de ‘El Niño-Oscilación del Sur’. Rev Chil Hist Nat. 1990;63:11–7.Google Scholar
  18. Camus PA. Biogeografía marina de Chile continental. Rev Chil Hist Nat. 2001;74(3):587–617.CrossRefGoogle Scholar
  19. Cárdenas L, Castilla JC, Viard F. A phylogeographical analysis across three biogeographical provinces of the south-eastern Pacific: the case of the marine gastropod Concholepas concholepas. J Biogeogr. 2009;36:969–81.CrossRefGoogle Scholar
  20. Castilla JC. Earthquake-caused coastal uplift and its effects on rocky intertidal kelp communities. Science. 1988;242(4877):440–3.PubMedCrossRefGoogle Scholar
  21. Castilla JC, Manriquez PH, Camaño A. Effects of rocky shore coseismic uplift and the 2010 Chilean mega-earthquake on intertidal biomarker species. Mar Ecol Prog Ser. 2010;418:17–23.CrossRefGoogle Scholar
  22. Crawford DJ. Progenitor-derivative species pairs and plant speciation. Taxon. 2010;59(5):1413–23.Google Scholar
  23. Crawford DJ, Landolt E, Les DH, Kimball RT. Speciation in duckweeds (Lemnaceae): phylogenetic and ecological inferences. Aliso. 2006;22(1):229–40.Google Scholar
  24. Darwin C. Voyages of the adventure and Beagle, vol. III. London: H. Colburn; 1839. p. 617.Google Scholar
  25. De Meester L, Gómez A, Okamura B, Schwenk K. The Monopolization Hypothesis and the dispersal–gene flow paradox in aquatic organisms. Acta Oecol. 2002;23:121–35.CrossRefGoogle Scholar
  26. Durrant HMS, Burridge CP, Kelaher BP, Barrett NS, Edgar GJ, Coleman MA. Implications of macroalgal isolation by distance for networks of marine protected areas. Cons Biol. 2014;28(2):438–45.CrossRefGoogle Scholar
  27. Excoffier E, Ray N. Surfing during population expansions promotes genetic revolutions and structuration. Trends Ecol Evol. 2008;23(7):347–51.PubMedCrossRefGoogle Scholar
  28. Faugeron S, Valero M, Destombe C, Martínez EA, Correa JA. Hierarchical spatial structure and discriminant analysis of genetic diversity in the red alga Mazzaella laminarioides (Gigartinales, Rhodophyta). J Phycol. 2001;37:705–16.CrossRefGoogle Scholar
  29. Faugeron S, Martínez EA, Correa JA, Cardenas L, Destombe C, Valero M. Reduced genetic diversity and increased population differentiation in peripheral and over-harvested populations of Gigartina skottsbergii (Rhodophyta, Gigartinales) in southern Chile. J Phycol. 2004;40:454–62.CrossRefGoogle Scholar
  30. Faugeron S, Martínez EA, Correa JA, Billot C. Long-term copper mine waste disposal in northern Chile associated with gene flow disruption of the intertidal Lessonia nigrescens. Mar Ecol Prog Ser. 2005;288:129–40.CrossRefGoogle Scholar
  31. Fenberg PB, Menge BA, Raimondi PT, Rivadeneira MM. Biogeographic structure of the northeastern Pacific rocky intertidal: the role of upwelling and dispersal to drive patterns. Ecography. 2015;38(1):83–95.CrossRefGoogle Scholar
  32. Fernández M, Jaramillo E, Marquet PA, Moreno CA, Navarrete SA, Ojeda FP, Valdovinos CR, Vasquez JA. Diversity, dynamics and biogeography of Chilean benthic nearshore ecosystems: an overview and guidelines for conservation. Rev Chil Hist Nat. 2000;73:797–830.CrossRefGoogle Scholar
  33. Fraser CI. Change in Southern Hemisphere intertidal communities through climate cycles: the role of dispersing algae. In: Hu ZM, Fraser CI, editors. Seaweed phylogeography: adaptation and evolution of seaweeds under environmental change. Berlin: Springer; 2016.Google Scholar
  34. Fraser CI, Nikula R, Spencer HG, Waters JM. Kelp genes reveal effects of subantarctic sea ice during the Last Glacial Maximum. Proc Nat Acad Sci USA. 2009;106:3249–53.PubMedCentralPubMedCrossRefGoogle Scholar
  35. Fraser CI, Thiel M, Spencer HG, Wasters JM. Contemporary habitat discontinuity and historic glacial ice drive genetic divergence in Chilean kelp. BMC Evol Biol. 2010a;10:203.PubMedCentralPubMedCrossRefGoogle Scholar
  36. Fraser CI, Winter DJ, Spencer HG, Waters JM. Multigene phylogeny of the southern bull-kelp genus Durvillaea (Phaeophyceae: Fucales). Mol Phylogenet Evol. 2010b;57:1301–11.PubMedCrossRefGoogle Scholar
  37. Fraser CI, Zuccarello GC, Spencer HG, Salvatore LC, Garcia GR, Waters JM. Genetic affinities between trans-oceanic populations of non-buoyant macroalgae in the high latitudes of the Southern Hemisphere. PLoS ONE. 2013;8(7):e69138.PubMedCentralPubMedCrossRefGoogle Scholar
  38. Fuentes K, Brante A. Megadisturbances and ecological recovery in the intertidal zone: the role of interspecific competition between bioengineer mussel species. Mar Ecol Prog Ser. 2014;515:161–72.CrossRefGoogle Scholar
  39. Funk DJ, Omland KE. Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Ann Rev Ecol Evol Syst. 2003;34:397–423.CrossRefGoogle Scholar
  40. González A, Beltrán J, Hiriart-Bertrand L, Flores V, de Reviers B, Correa JA, Santelices B. Identification of cryptic species in the Lessonia nigrescens complex (Phaeophyceae, Laminariales). J Phycol. 2012;48:1153–65.CrossRefGoogle Scholar
  41. González-Wevar CA, Hüne M, Cañete JI, Mansilla A, Nakano T, Poulin E. Towards a model of postglacial biogeography in shallow marine species along the Patagonian Province: lessons from the limpet Nacella magellanica (Gmelin, 1791). BMC Evol Biol. 2012;12:139.PubMedCentralPubMedCrossRefGoogle Scholar
  42. Gottlieb LD. Rethinking classic examples of recent speciation in plants. New Phytol. 2004;161:71–82.CrossRefGoogle Scholar
  43. Grossenbacher DL, Veloz SD, Sexton JP. Niche and range size patterns suggest that speciation begins in small, ecologically diverged populations in North American monkeyflowers (Mimulus spp.). Evolution. 2014;68:1270–80.PubMedCrossRefGoogle Scholar
  44. Guillemin M-L, Faugeron S, Destombe C, Viard F, Correa JA, Valero M. Genetic variation in wild and cultivated populations of the haploid-diploid red alga Gracilaria chilensis: how farming practices favor asexual reproduction and heterozygosity. Evolution. 2008;62:1500–19.PubMedCrossRefGoogle Scholar
  45. Guillemin M-L, Valero M, Faugeron S, Nelson W, Destombe C. Tracing the trans-Pacific evolutionary history of a domesticated seaweed (Gracilaria chilensis) with archaeological and genetic data. PLoS ONE. 2014;9(12):e114039.PubMedCentralPubMedCrossRefGoogle Scholar
  46. Hallatschek O, Hersen P, Ramanathan S, Nelson DR. Genetic drift at expanding frontiers promotes gene segregation. Proc Nat Acad Sci USA. 2007;104(50):19926–30.PubMedCentralPubMedCrossRefGoogle Scholar
  47. Haye PA, Muñoz-Herrera NC. Isolation with differentiation followed by expansion with admixture in the tunicate Pyura chilensis. BMC Evol Biol. 2013;13:252.PubMedCentralPubMedCrossRefGoogle Scholar
  48. Haye PA, Salinas P, Acuña E, Poulin E. Heterochronic phenotypic plasticity with lack of genetic differentiation in the southeastern Pacific squat lobster Pleuroncodes monodon. Evol Dev. 2010;12(6):628–34.PubMedCrossRefGoogle Scholar
  49. Haye PA, Varela AI, Thiel M. Genetic signatures of rafting dispersal in algal-dwelling brooders Limnoria spp. (Isopoda) along the SE Pacific (Chile). Mar Ecol Prog Ser. 2012;455:111–22.CrossRefGoogle Scholar
  50. Haye PA, Segovia NI, Muñoz-Herrera NC, Gálvez FE, Martinez A, Meynard A, Pardo-Gandarillas MC, Poulin E, Faugeron S. Phylogeographic structure in benthic marine invertebrates of the Southeast Pacific coast of Chile with differing dispersal potential. PLoS ONE. 2014;9(2):e88613.PubMedCentralPubMedCrossRefGoogle Scholar
  51. Hernández-Miranda E, Cisterna J, Díaz-Cabrera E, Veas R, Quinones RA. Epibenthic macrofaunal community response after a mega-earthquake and tsunami in a shallow bay off central-south Chile. Mar Biol. 2014;161(3):681–96.CrossRefGoogle Scholar
  52. Hormazabal S, Shaffer G, Leth O. Coastal transitions zone off Chile. J Geophys Res. 2004;109:1–13.Google Scholar
  53. Hulton N, Sugden D, Payne A, Clapperton C. Glacier modeling and the climate of Patagonia during the last glacial maximum. Quat Res. 1994;42(1):1–19.CrossRefGoogle Scholar
  54. Hulton NRJ, Purves RS, McCulloch RD, Sugden DE, Bentley MJ. The last glacial maximum and deglaciation in southern South America. Quat Sci Rev. 2002;21:233–41.CrossRefGoogle Scholar
  55. Jaramillo E, Dugan JE, Hubbard DM, Melnick D, Manzano M, Duarte C, Campos C, Sanchez R. Ecological implications of extreme events: footprints of the 2010 earthquake along the Chilean coast. PLoS ONE. 2012;7(5):e35348.PubMedCentralPubMedCrossRefGoogle Scholar
  56. Kaiser J, Lamy F, Hebbeln D. A 70-kyr sea surface temperature record off southern Chile (Ocean Drilling Program Site 1233). Paleoceanography. 2005;20:PA4009.CrossRefGoogle Scholar
  57. Keith SA, Kerswell AP, Connolly SR. Global diversity of marine macroalgae: environmental conditions explain less variation in the tropics. Gobal Ecol Biogeogr. 2014;23:517–29.CrossRefGoogle Scholar
  58. Kerswell AP. Global biodiversity patterns of benthic marine algae. Ecology. 2006;87:2479–88.PubMedCrossRefGoogle Scholar
  59. Kinlan BP, Gaines SD. Propagule dispersal in marine and terrestrial environments: a community perspective. Ecology. 2003;84(8):2007–20.CrossRefGoogle Scholar
  60. Klopfstein S, Currat M, Excoffier L. The fate of mutations surfing on the wave of a range expansion. Mol Biol Evol. 2006;23(3):482–90.PubMedCrossRefGoogle Scholar
  61. Knowlton N. Sibling species in the sea. Ann Rev Ecol Syst. 1993;24:189–216.CrossRefGoogle Scholar
  62. Knowlton N. Molecular genetic analyses of species boundaries in the sea. Hydrobiologia. 2000;420(1):73–90.CrossRefGoogle Scholar
  63. Koch K, Thiel M, Tellier F, Hagen W, Graeve M, Tala F, Laeseke P, Bischof K. Species separation within the Lessonia nigrescens complex (Phaeophyceae, Laminariales) is mirrored by ecophysiological traits. Bot Mar. 2015;58(2):81–92.Google Scholar
  64. Lachkar Z, Gruber N. A comparative study of biological production in eastern boundary upwelling systems using an artificial neural network. Biogeosciences. 2012;9(1):293–308.CrossRefGoogle Scholar
  65. Leliaert F, Verbruggen H, Vanormelingen P, Steen F, Lopez-Bautista JM, Zuccarello GC, De Clerck O. DNA-based species delimitation in algae. Eur J Phycol. 2014;49:179–96.CrossRefGoogle Scholar
  66. Lindstrom SC, Gabrielson PW, Hughey JR, Macaya EC, Nelson WA. Sequencing of historic and modern specimens reveals cryptic diversity in Nothogenia (Scinaiaceae, Rhodophyta). Phycologia. 2015;54(2):97–108.CrossRefGoogle Scholar
  67. Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE, Branova HA, Zweng MM, Johnson DR. World Ocean Atlas 2009, vol. 1. Temperature, NOAA Atlas NESDIS. 2010, p. 68.Google Scholar
  68. López-Cristoffanini C, Tellier F, Otaíza R, Correa JA, Contreras-Porcia L. Tolerance to air exposure: a feature driving the latitudinal distribution of two sibling kelp species. Bot Mar. 2013;56(5–6):431–40.Google Scholar
  69. Luikart G, England PR, Tallmon D, Jordan S, Taberlet P. The power and promise of population genomics: from genotyping to genome typing. Nat Rev Genet. 2003;4:981–94.PubMedCrossRefGoogle Scholar
  70. Macaya EC, Zuccarello GC. DNA barcoding and genetic divergence in the giant kelp Macrocystis (Laminariales). J Phycol. 2010a;46:736–42.CrossRefGoogle Scholar
  71. Macaya EC, Zuccarello GC. Genetic structure of the giant kelp Macrocystis pyrifera along the southeastern Pacific. Mar Ecol Prog Ser. 2010b;420:103–12.CrossRefGoogle Scholar
  72. Macaya EC, Lopez B, Tala F, Tellier F, Thiel M. Flot and raft: role of buoyant seaweeds in the phylogeography and genetic structure of non-buoyant associated flora. In: Hu ZM, Fraser CI, editors. Seaweed phylogeography: adaptation and evolution of seaweeds under environmental change. Berlin: Springer; 2016.Google Scholar
  73. Martin P, Zuccarello GC. Molecular phylogeny and timing of radiation in Lessonia (Phaeophyceae, Laminariales). Phycol Res. 2012;60(4):276–87.CrossRefGoogle Scholar
  74. Martínez EA, Cárdenas L, Pinto R. Recovery and genetic diversity of the intertidal kelp Lessonia nigrescens (Phaeophyceae) 20 years after El Niño 1982/1983. J Phycol. 2003;39(3):504–8.CrossRefGoogle Scholar
  75. Mayr E. Change of genetic environment and evolution. In: Huxley J, Hardy AC, Ford E, editors. Evolution as a process. London: Allen and Unwin; 1954. p. 157–80.Google Scholar
  76. McCulloch RD, Bentley MJ, Purves RS, Hulton NRJ, Sugden DE, Clapperton CM. Climatic inferences from glacial and palaeoecological evidence at the last glacial termination, southern South America. J Quat Sci. 2000;15:409–17.CrossRefGoogle Scholar
  77. Meneses I, Santelices B. Patterns and breaking points in the distribution of benthic algae along the temperate Pacific coast of South America. Rev Chil Hist Nat. 2000;73(4):615–23.CrossRefGoogle Scholar
  78. Mohtadi M, Hebbeln D. Mechanisms and variations of the paleoproductivity off northern Chile (24°S–33°S) during the last 40,000 years. Paleoceanography. 2004;19:20–3.CrossRefGoogle Scholar
  79. Montecinos A, Broitman BR, Faugeron S, Haye PA, Tellier F, Guillemin ML. Species replacement along a linear coastal habitat: phylogeography and speciation in the red alga Mazzaella laminarioides along the South East Pacific. BMC Evol Biol. 2012;12(1):97.PubMedCentralPubMedCrossRefGoogle Scholar
  80. Moy CM, Seltzer GO, Rodbell DT, Anderson DM. Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature. 2002;420(6912):162–5.PubMedCrossRefGoogle Scholar
  81. Neiva J, Pearson GA, Valero M, Serräo EA. Surfing the wave on a borrowed board: range expansion and spread of introgressed organellar genomes in the seaweed Fucus ceranoides L. Mol Ecol. 2010;19(21):4812–22.PubMedCrossRefGoogle Scholar
  82. Neiva J, Pearson GA, Valero M, Serrão EA. Fine-scale genetic breaks driven by historical range dynamics and ongoing density-barrier effects in the estuarine seaweed Fucus ceranoides L. BMC Evol Biol. 2012;12:78.PubMedCentralPubMedCrossRefGoogle Scholar
  83. Neiva J, Serrão EA, Assis J, Pearson GA, Coyer JA, Olsen JL, Hoarau G, Valero M. Climate oscillations, range shifts and phylogeographic patterns of North Atlantic Fucaceae. In: Hu ZM, Fraser CI, editors. Seaweed phylogeography: adaptation and evolution of seaweeds under environmental change. Berlin: Springer; 2016.Google Scholar
  84. Nelson WA. Pyropia plicata sp. nov. (Bangiales, Rhodophyta): naming a common intertidal alga from New Zealand. PhytoKeys. 2013;21:17–28.PubMedCrossRefGoogle Scholar
  85. Nuñez JJ, Wood NK, Rabanal FE, Fontanella FM, Sites JW Jr. Amphibian phylogeography in the Antipodes: Refugia and postglacial colonization explain mitochondrial haplotype distribution in the Patagonian frog Eupsophus calcaratus (Cycloramphidae). Mol Phylogenet Evol. 2011;58(2):343–52.PubMedCrossRefGoogle Scholar
  86. Oppliger VL, Correa JA, Faugeron S, Beltran J, Tellier F, Valero M, Destombe C. Sex ratio variation in the Lessonia nigrescens complex (Laminariales, Phaeophyceae): effect of latitude, temperature, and marginality. J Phycol. 2011;47(1):5–12.CrossRefGoogle Scholar
  87. Oppliger LV, Correa JA, Engelen AH, Tellier F, Vieira V, Faugeron S, Valero M, Gomez G, Destombe C. Temperature effects on gametophyte life-history traits and geographic distribution of two cryptic kelp species. PLoS ONE. 2012;7(6):e39289.PubMedCentralPubMedCrossRefGoogle Scholar
  88. Ortega KJ, Sáez CA, Macaya EC. Changes in invertebrate assemblages inhabiting Lessonia spicata (Phaeophyceae) holdfasts after the 2010 earthquake-mediated coastal uplift in Chile. Rev Biol Mar Oceanogr. 2014;49(1):129–34.CrossRefGoogle Scholar
  89. Pardo C, Lopez L, Peña V, Hernández-Kantun J, Gall LL, Bárbara I, Barreiro R. A multilocus species delimitation reveals a striking number of species of coralline algae forming maerl in the OSPAR maritime area. PLoS ONE. 2014;9(8):e104073.PubMedCentralPubMedCrossRefGoogle Scholar
  90. Payo DA, Leliaert F, Verbruggen H, D’hondt S, Calumpong HP, De Clerck O. Extensive cryptic species diversity and fine-scale endemism in the marine red alga Portieria in the Philippines. Proc R Soc B. 2013;280:20122660.PubMedCentralPubMedCrossRefGoogle Scholar
  91. Peters AF, Mann AD, Córdova CA, Brodie J, Correa JA, Schroeder DC, Cock JM. Genetic diversity of Ectocarpus (Ectocarpales, Phaeophyceae) in Peru and northern Chile, the area of origin of the genome-sequenced strain. New Phytol. 2010;188:30–41.PubMedCrossRefGoogle Scholar
  92. Ponce JF, Rabassa J, Coronato A, Borromei AM. Palaeogeographical evolution of the Atlantic coast of Pampa and Patagonia from the last glacial maximum to the Middle Holocene. Biol J Linn Soc. 2011;103(2):363–79.CrossRefGoogle Scholar
  93. Pyron RA, Burbrink FT. Can the tropical conservatism hypothesis explain temperate species richness patterns? An inverse latitudinal biodiversity gradient in the NewWorld snake tribe Lampropeltini. Global Ecol Biogeogr. 2009;18:406–15.CrossRefGoogle Scholar
  94. Ramírez ME. Flora marina bentónica de la región Austral de Sudamérica y la Antártica. Anales Instituto Patagonia. 2010;38:57–71.Google Scholar
  95. Ramírez ME, Contreras-Porcia L, Guillemin ML, Brodie J, Valdivia C, Flores-Molina MR, Nunez A, Contador CB, Lovazzano C. Pyropia orbicularis sp. nov. (Rhodophyta, Bangiaceae) based on a population previously known as Porphyra columbina from the central coast of Chile. Phytotaxa. 2014;158(2):133–53.CrossRefGoogle Scholar
  96. Riddle BR, Hafner DJ. Species as units of analysis in ecology and biogeography: time to take the blinders off. Global Ecol Biogeogr. 1999;8(6):433–41.CrossRefGoogle Scholar
  97. Ruzzante DE, Walde SJ, Gosse JC, Cussac VE, Habit E, Zemlak TS, Adams EDM. Climate control on ancestral population dynamics: insight from Patagonian fish phylogeography. Mol Ecol. 2008;17:2234–44.PubMedCrossRefGoogle Scholar
  98. Sánchez R, Sepúlveda RD, Brante A, Cristina CTL. Spatial pattern of genetic and morphological diversity in the direct developer Acanthina monodon (Gastropoda: Mollusca). Mar Ecol Prog Ser. 2011;434:121–31.CrossRefGoogle Scholar
  99. Santelices B. Phytogeographic characterization of the temperate coast of Pacific South America. Phycologia. 1980;19(1):1–12.CrossRefGoogle Scholar
  100. Santelices B. Patterns of reproduction, dispersal and recruitment in seaweeds. Oceanogr Mar Bio. 1990;128:177–276.Google Scholar
  101. Santelices B, Marquet P. Seaweeds, latitudinal diversity patterns, and Rapoport’s rule. Divers Distrib. 1998;4(2):71–5.CrossRefGoogle Scholar
  102. Santelices B, Meneses I. A reassessment of the phytogeographic characterization of temperate Pacific South America. Rev Chil Hist Nat. 2000;73:605–14.CrossRefGoogle Scholar
  103. Saunders GW, McDevit DC. DNA barcoding unmasks overlooked diversity improving knowledge on the composition and origins of the Churchill algal flora. BMC Ecol. 2013;13:9.PubMedCentralPubMedCrossRefGoogle Scholar
  104. Sérsic AN, Cosacov A, Cocucci AA, Johnson LA, Pozner R, Avila LJ, Sites JW Jr, Morando M. Emerging phylogeographical patterns of plants and terrestrial vertebrates from Patagonia. Biol J Linn Soc. 2011;103(2):475–94.CrossRefGoogle Scholar
  105. Strub PT, Mesías JM, Montecino V, Rutlant J, Salinas S. Coastal ocean circulation off western South America. In: Brink KH, Robinson AR, editors. The global coastal ocean. New York: Wiley; 1998. p. 273–313.Google Scholar
  106. Tapia FJ, Largier JL, Castillo M, Wieters EA, Navarrete SA. Latitudinal discontinuity in thermal conditions along the nearshore of Central-Northern Chile. PLoS ONE. 2014;9(10):e110841.PubMedCentralPubMedCrossRefGoogle Scholar
  107. Tarazona J, Arntz W. The Peruvian coastal upwelling system. In: Seeliger U, Kjerfve B, editors. Coastal marine ecosystems of Latin America. Ecological studies, vol. 144. Berlin: Springer; 2001. p. 229–44.CrossRefGoogle Scholar
  108. Tellier F, Meynard AP, Correa JA, Faugeron S, Valero M. Phylogeographic analyses of the 30°S south-east Pacific biogeographic transition zone establish the occurrence of a sharp genetic discontinuity in the kelp Lessonia nigrescens: Vicariance or parapatry? Mol Phylogenet Evol. 2009;53(3):679–93.PubMedCrossRefGoogle Scholar
  109. Tellier F, Tapia J, Faugeron S, Destombe C, Valero M. The Lessonia nigrescens complex (Laminariales, Phaeophyceae) shows strict parapatry and complete reproductive isolation in a secondary contact zone. J Phycol. 2011a;47:894–903.CrossRefGoogle Scholar
  110. Tellier F, Vega JMA, Broitman BR, Vasquez JA, Valero M, Faugeron S. The importance of having two species instead of one in kelp management: the Lessonia nigrescens species complex. Cah Biol Mar. 2011b;52:455–65.Google Scholar
  111. Thiel M, Macaya EC, Acuña E, Arntz WE, Bastias H, Brokordt K, Camus P, Castilla JC, Castro L, Cortes M, Dumont CP, Escribano R, Fernandez M, Gajardo JA, Gaymer CF, Gomez I, Gonzalez AE, Gonzalez HE, Haye PA, Illanes JE, Iriarte JL, Lancellotti DA, Luna-Jorquera G, Luxoro C, Manriquez PH, Marin V, Munoz P, Navarrete SA, Perez E, Poulin E, Sellanes J, Hito Sepulveda H, Stotz W, Tala F, Thomas A, Vargas C, Vasquez JA, Vega JMA. The Humboldt Current System of Northern and Central Chile: oceanographic processes, ecological interactions and socioeconomic feedback. Oceanogr Mar Biol. 2007;45:195–344.Google Scholar
  112. Tronholm A, Leliaert F, Sansón M, Afonso-Carrillo J, Tyberghein L, Verbruggen H, De Clerk O. Contrasting geographical distributions as a result of thermal tolerance and long-distance dispersal in two allegedly widespread tropical brown algae. PLoS ONE. 2012;7:e30813.PubMedCentralPubMedCrossRefGoogle Scholar
  113. Valero M, Destombe C, Mauger S, Ribout C, Engel CR, Daguin-Thiebaut C, Tellier F. Using genetic tools for sustainable management of kelps: a literature review and the example of Laminaria digitata. Cah Biol Mar. 2011;52(4):467–83.Google Scholar
  114. Varela AI, Haye PA. The marine brooder Excirolana braziliensis (Crustacea: Isopoda) is also a complex of cryptic species on the coast of Chile. Rev Chil Hist Nat. 2012;85:495–502.CrossRefGoogle Scholar
  115. Vasquez. Production, use and fate of Chilean brown seaweeds: re-sources for a sustainable fishery. J App Phycol. 2008;20:457–67.CrossRefGoogle Scholar
  116. Verleye TJ, Louwye S. Late Quaternary environmental changes and latitudinal shifts of the Antarctic Circumpolar Current as recorded by dinoflagellate cysts from offshore Chile (41°S). Quat Sci Rev. 2010;29(7):1025–39.CrossRefGoogle Scholar
  117. Vianna JA, Medina-Vogel G, Chehébar C, Sielfeld W, Olavarria C, Faugeron S. Phylogeography of the Patagonian otter Lontra provocax: adaptive divergence to marine habitat or signature of southern glacial refugia? BMC Evol Biol. 2011;11:53.PubMedCentralPubMedCrossRefGoogle Scholar
  118. Vidal R, Meneses I, Smith M. Phylogeography of the genus Spongites (Corallinales, Rhodophyta) from Chile. J Phycol. 2008;44:173–82.CrossRefGoogle Scholar
  119. Vieira C, D’hondt S, De Clerck O, Payri CE. Toward an inordinate fondness for stars, beetles and Lobophora? Species diversity of the genus Lobophora (Dictyotales, Phaeophyceae) in New Caledonia. J Phycol. 2014;50(6):1101–19.CrossRefGoogle Scholar
  120. Vieira VM, Oppliger LV, Engelen AH, Correa JA. A new method to quantify and compare the multiple components of fitness—A study case with Kelp niche partition by divergent microstage adaptations to temperature. PLoS ONE. 2015;10(3):e0119670.PubMedCentralPubMedCrossRefGoogle Scholar
  121. Walser B, Haag CR. Strong intraspecific variation in genetic diversity and genetic differentiation in Daphnia magna: the effects of population turnover and population size. Mol Ecol. 2012;21:851–61.PubMedCrossRefGoogle Scholar
  122. Waters JM, Fraser CI, Hewitt GM. Founder takes all: density-dependent processes structure biodiversity. Trends Ecol Evol. 2013;28(2):78–85.PubMedCrossRefGoogle Scholar
  123. Weinberger F, Guillemin M-L, Destombe C, Valero M, Faugeron S, Correa JA, Pohnert G, Pehlke C, Kloareg B, Potin P. Defense evolution in the Gracilariaceae (Rhodophyta): substrate-regulated oxidation of agar oligosaccharides is more ancient than the oligoagar-activated oxidative burst. J Phycol. 2010;46(5):958–68.CrossRefGoogle Scholar
  124. Xu J, Pérez-Losada M, Jara CG, Crandall KA. Pleistocene glaciation leaves deep signature on the freshwater crab Aegla alacalufi in Chilean Patagonia. Mol Ecol. 2009;18:904–18.PubMedCrossRefGoogle Scholar
  125. Zakas C, Binford J, Navarrete SA, Wares JP. Restricted gene flow in Chilean barnacles reflects an oceanographic and biogeographic transition zone. Mar Ecol Prog Ser. 2009;394:165–77.CrossRefGoogle Scholar
  126. Zemlak TS, Habit EM, Walde SJ, Carrea C, Ruzzante DE. Surviving historical Patagonian landscapes and climate: molecular insights from Galaxias maculatus. BMC Evol Biol. 2010;10:67.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Marie-Laure Guillemin
    • 1
    • 2
    Email author
  • Myriam Valero
    • 2
  • Florence Tellier
    • 3
  • Erasmo C. Macaya
    • 4
    • 5
  • Christophe Destombe
    • 2
  • Sylvain Faugeron
    • 2
    • 6
  1. 1.Instituto de Ciencias Ambientales y Evolutivas, Facultad de CienciasUniversidad Austral de ChileValdiviaChile
  2. 2.CNRS, Sorbonne UniversitésUPMC University Paris VI, UMI 3614, Evolutionary Biology and Ecology of Algae, Station Biologique de RoscoffRoscoffFrance
  3. 3.Departamento de Ecología, Facultad de CienciasUniversidad Católica de la Santísima ConcepciónConcepciónChile
  4. 4.Laboratorio de Estudios Algales (ALGALAB), Departamento de OceanografíaUniversidad de ConcepciónConcepciónChile
  5. 5.Millennium Nucleus Ecology and Sustainable Management of Oceanic Island (ESMOI)CoquimboChile
  6. 6.Centro de Conservación Marina and CeBiB, Facultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile

Personalised recommendations