Advertisement

Lessons from 25 Years of GM Tree Field Trials in Europe and Prospects for the Future

  • G. Pilate
  • I. Allona
  • W. Boerjan
  • A. Déjardin
  • M. Fladung
  • F. Gallardo
  • H. Häggman
  • S. Jansson
  • R. Van Acker
  • C. Halpin
Chapter
Part of the Forestry Sciences book series (FOSC, volume 82)

Abstract

It is common agronomic practice to perform a formal evaluation of the behaviour of new varieties under natural field conditions. Accordingly, shortly after the optimization of genetic engineering techniques on trees, a number of field trials were set up to assess GM trees modified for different genes. Here, we review the work that has been done in this arena in Europe over the last 25 years, and summarize what we learned from these experiments. GM tree field trials remain the exception rather than the rule in Europe. Several trials have been destroyed by anti-GMO activists and it is becoming increasingly difficult to obtain authorization for a GM tree field trial. These increasing constraints on GM tree trials within Europe are both surprising and counter-productive as we learned a lot from the past 25 years of experiments and the results were promisingly positive: (1) Phenotypic effects resulting from transgene expression in GM trees grown in the field appears to be stable, albeit variable; (2) most field studies have validated earlier observations made under greenhouse conditions, although in some cases the modification of target traits was less obvious in fluctuating field environments, and in a few cases had severe growth and developmental penalties; (3) non-target effects were consistently within the range of natural variation. Overall, the European GM tree field trials failed to exemplify any significant tangible risks. Based on this evidence, it seems appropriate that Europe should now move forward beyond small confined trials to larger scale experiments better fitted to a broader context of evaluation and environmental assessment.

Keywords

Transgenic Line Field Trial Glutamine Synthetase Wood Property Short Rotation Coppice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Agerer R (1987–1993) Colour atlas of ectomycorrhizae. Einhorn-Verlag, Schwäbisch Gmünd D-73525, GermanyGoogle Scholar
  2. Aronen T, Nikkanen T, Häggman H (1998) Compatibility of different pollination techniques with microprojectile bombardment of Norway spruce and Scots pine pollen. Can J For Res 28:79–86CrossRefGoogle Scholar
  3. Aronen T, Nikkanen T, Häggman H (2003) The production of transgenic Scots pine (Pinus sylvestris L.) via the application of transformed pollen in controlled crossings. Transgenic Res 12:375–378CrossRefPubMedGoogle Scholar
  4. Barton KA, Binns AN, Matzke JM, Chilton M-D (1983) Regeneration of intact tobacco plants containing full length copies of genetically engineered T-DNA, and transmission of T-DNA to R1 progeny. Cell 32:1033–1043CrossRefPubMedGoogle Scholar
  5. Baucher M, Chabbert B, Pilate G, van Doorsselaere J, Tollier M-T, Petit-Conil M, Cornu D, Monties B, van Montagu M, Inzé D, Jouanin L, Boerjan W (1996) Red xylem and higher lignin extractability by downregulating cinnamyl alcohol dehydrogenase in poplar. Plant Physiol 112:1479–1490PubMedCentralPubMedGoogle Scholar
  6. Chen F, Dixon RA (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 25:759–761CrossRefPubMedGoogle Scholar
  7. Clapham DH, Häggman H, Elfstrand M, Aronen T, von Arnold S (2003) Transformation of Norway spruce (Picea abies) by particle bombardment. In: Jackson JF, Linskens HF (eds) Molecular methods of plant analysis, vol 23. Genetic transformation of plants. Springer, Berlin. ISBN 3-540-00292-8, pp 127–146Google Scholar
  8. Coleman HD, Cánovas FM, Man H, Kirby EG, Mansfield SD (2012) Enhanced expression of glutamine synthetase (GS1a) confers altered fibre and wood chemistry in field grown hybrid poplar (Populus tremula X alba) (717-1B4). Plant Biotech 10:883–889CrossRefGoogle Scholar
  9. Custers R (2009) First GM trial in Belgium since 2002. Nat Biotech 27:506CrossRefGoogle Scholar
  10. Danielsen L, Thürmer A, Meinicke P, Buee M, Morin E, Martin F, Pilate G, Daniel R, Polle A, Reich M (2012) Fungal soil communities in a young transgenic poplar plantation form a rich reservoir for fungal root communities. Ecol Evol 2:1935–1948PubMedCentralCrossRefPubMedGoogle Scholar
  11. Danielsen L, Lohaus G, Sirrenberg A, Karlovsky P, Bastien C, Pilate G, Polle A (2013) Ectomycorrhizal colonization and diversity in relation to tree biomass and nutrition in a plantation of transgenic poplars with modified lignin biosynthesis. PLoS ONE 8:e59207PubMedCentralCrossRefPubMedGoogle Scholar
  12. De Block M (1990) Factors influencing the tissue culture and the Agrobacterium tumefaciens-mediated transformation of hybrid aspen and poplar clones. Plant Physiol 93:1110–1116PubMedCentralCrossRefPubMedGoogle Scholar
  13. El-Khatib R, Hamerlynck EP, Gallardo F, Kirby EG (2004) Transgenic poplar characterized by ectopic expression of a pine cytosolic glutamine synthetase gene exhibits enhanced tolerance to water stress. Tree Physiol 24:729–736CrossRefPubMedGoogle Scholar
  14. Ellis DD, McCabe DE, Mcinnis S, Ramachandran R, Russell DR, Wallace KM, Martinell BJ, Roberts DR, Raffa KF, McCown BH (1993) Stable transformation of Picea glauca by particle acceleration. Biotechnology 11:84–89CrossRefGoogle Scholar
  15. Filatti JJ, Sellmer J, McCown B, Haissig B, Comai L (1987) Agrobacterium-mediated transformation and regeneration of Populus. Mol Gen Genet 206:192–199CrossRefGoogle Scholar
  16. Fladung M (1999) Gene stability in transgenic aspen-Populus. I. Flanking DNA sequences and T-DNA structure. Mol Gen Genet 260:574–581Google Scholar
  17. Fladung M, Hoenicka H (2012) Fifteen years of forest tree biosafety research in Germany. iForest 5:126–130Google Scholar
  18. Fladung M, Kumar S (2002) Gene stability in transgenic aspen-Populus. III. T-DNA repeats influence transgene expression differentially among different transgenic lines. Plant Biol 4:329–338CrossRefGoogle Scholar
  19. Fladung M, Muhs HJ, Ahuja MR (1996) Morphological changes observed in transgenic Populus carrying the rolC gene from Agrobacterium rhizogenes. Silvae Genet 45:349–354Google Scholar
  20. Fladung M, Nowitzki O, Ziegenhagen B, Kumar S (2003) Vegetative and generative dispersal capacity of field released transgenic aspen trees. Trees 17:412–416CrossRefGoogle Scholar
  21. Fladung M, Kaldorf M, Gieffers W, Ziegenhagen B, Kumar S (2004) Field analysis of transgenic aspen. In: Walter C, Carson M (eds) Plantation forestry of the 21st century, Research Signpost, pp 393–403Google Scholar
  22. Fu J, Sampalo R, Gallardo F, Cánovas FM, Kirby EG (2003) Assembly of cytosolic pine glutamine synthetase holoenzyme in leaves of transgenic poplar leads to enhanced vegetative growth. Plant, Cell Environ 26:411–418CrossRefGoogle Scholar
  23. Gallardo F, Fu J, Cantón FR, García-Gutiérrez A, Cánovas FM, Kirby EG (1999) Expression of a conifer glutamine synthetase gene in transgenic poplar. Planta 210:19–26CrossRefPubMedGoogle Scholar
  24. GMO register European Commission http://gmoinfo.jrc.ec.europa.eu
  25. Gallardo F, Fu J, Jing ZP, Kirby EG, Cánovas FM (2003) Genetic modification of amino acid metabolism in woody plants. Plant Physiol Biochem 41:587–594CrossRefGoogle Scholar
  26. Häggman H, Aronen T, Nikkanen T (1997) Gene transfer by particle bombardment to Norway spruce and Scots pine pollen. Can J For Res 27:928–935CrossRefGoogle Scholar
  27. Häggman H, Raybould A, Borem A, Fox T, Handley L, Hertzberg M, Lu MZ, Macdonald P, Oguchi T, Pasquali G, Pearson L, Peter G, Quemada H, Séguin A, Tattersall K, Ulian E, Walter C, McLean M (2013) Genetically engineered trees for plantation forests: key considerations for environmental risk assessment. Plant Biotechnol J 11:785–798PubMedCentralCrossRefPubMedGoogle Scholar
  28. Halpin C, Thain SC, Tilston EL, Guiney E, Lapierre C, Hopkins DW (2007) Ecological impacts of trees with modified lignin. Tree Genet Genomes 3:101–110CrossRefGoogle Scholar
  29. Hawkins S, Leplé J-C, Cornu D, Jouanin L, Pilate G (2003) Stability of transgene expression in poplar: a model forest tree species. Ann For Sci 60:427–438CrossRefGoogle Scholar
  30. Herrera-Estrella L, Depicker A, van Montagu M, Schell J (1983) Expression of chimaeric genes transferred into plant cells using a Ti plasmid-derived vector. Nature 303:209–213CrossRefGoogle Scholar
  31. Hopkins DW, Webster EA, Boerjan W, Pilate G, Halpin C (2007) Genetically modified lignin below ground. Nat Biotech 25:168–169 CrossRefGoogle Scholar
  32. Hu WJ, Harding SA, Lung J, Popko JL, Ralph J, Stokke DD, Tsai CJ, Chiang VL (1999) Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nat Biotechnol 17:808–812Google Scholar
  33. Jing ZP, Gallardo F, Pascual MB, Sampalo R, Romero J, Torres de Navarra A, Cánovas FM (2004) Improved growth in a field trial of transgenic hybrid poplar overexpressing glutamine synthetase. New Phytol 164:137–145CrossRefGoogle Scholar
  34. Kaldorf M, Fladung M, Muhs HJ, Buscot F (2002) Mycorrhizal colonization of transgenic aspen in a field trial. Planta 214:653–660CrossRefPubMedGoogle Scholar
  35. Kaldorf M, Renker C, Fladung M, Buscot F (2004a) Characterization and spatial distribution of ectomycorrhizas colonizing aspen clones released in an experimental field. Mycorrhiza 14:295–306CrossRefPubMedGoogle Scholar
  36. Kaldorf M, Zhang C, Nehls U, Hampp R, Buscot F (2004b) Interactions of microbes with genetically modified plants. In: Varma A, Abbott L, Werner D, Hampp R (eds) Plant surface microbiology. Springer, Heidelberg, pp 179–196Google Scholar
  37. Kang SH, Singh S, Kim JY, Lee W, Mulchandani A, Chen W (2007) Metabolically engineered for enhanced phytochelatin production and cadmium accumulation. Appl Environ Microbiol 73:6317–6320PubMedCentralCrossRefPubMedGoogle Scholar
  38. Kontunen-Soppela S, Sillanpää M, Luomala E-M, Sutinen S, Kangasjärvi J, Vapaavuori E, Häggman H (2010) Photosynthetic characteristics in genetically modified sense-RbcS silver birch lines. J Plant Physiol 167:820–828CrossRefPubMedGoogle Scholar
  39. Kumar S, Fladung M (2000a) Transgene repeats in aspen: molecular characterisation suggests simultaneous integration of independent T-DNAs into receptive hotspots in the host genome. Mol Gen Genet 264:20–28CrossRefPubMedGoogle Scholar
  40. Kumar S, Fladung M (2000b) Determination of T-DNA repeat formation and promoter methylation in transgenic plants. Biotechniques 28:1128–1137PubMedGoogle Scholar
  41. Kumar S, Fladung M (2001) Gene stability in transgenic aspen (Populus). II. Molecular characterization of variable expression of transgene in wild and hybrid aspen. Planta 213:731–740CrossRefPubMedGoogle Scholar
  42. Lännenpää M, Hassinen M, Ranki A, Hölttä-Vuori M, Lemmetyinen J, Keinonen K, Sopanen T (2005) Prevention of flower development in birch and other plants using a BpFULL1:BARNASE construct. Plant Cell Rep 24:69–78CrossRefPubMedGoogle Scholar
  43. Lapierre C, Pollet B, Petit-Conil M, Toval G, Romero J, Pilate G, Leplé J-C, Boerjan W, Ferret V, de Nadaï V, Jouanin L (1999) Structural alterations of lignin in transgenic poplars with depressed cinnamyl alcohol dehydrogenase or caffeic acid O-methyltransferase activity have an opposite impact on the efficiency of industrial Kraft pulping. Plant Physiol 119:153–163PubMedCentralCrossRefPubMedGoogle Scholar
  44. Lemmetyinen J, Järvinen P, Pasonen H-L, Keinonen K, Lännenpää M, Keinänen M (2008) Birches. In: Kole C, Hall TC (eds) A compendium of transgenic plants, vol 9: Forest tree species. Blackwell Publishing, Oxford, UKGoogle Scholar
  45. Leplé J-C, Bonadé-Bottino M, Augustin S, Pilate G, Dumanois Lê Tân V, Delplanque A, Cornu D, Jouanin L (1995) Toxicity to Chrysomela tremulae (Coleoptera: Chrysomelidae) of transgenic poplars expressing a cysteine proteinase inhibitor. Mol Breed 1:319–328CrossRefGoogle Scholar
  46. Leplé J-C, Dauwe R, Morreel K, Storme V, Lapierre C, Pollet B, Naumann A, Kang KY, Kim H, Ruel K, Lefèbvre A, Joseleau J-P, Grima-Pettenati J, de Rycke R, Andersson-Gunnerås S, Erban A, Fehrle I, Petit-Conil M, Kopka J, Polle A, Messens E, Sundberg B, Mansfield SD, Ralph J, Pilate G, Boerjan W (2007) Downregulation of cinnamoyl-coenzyme a reductase in poplar: multiple-level phenotyping reveals effects on cell wall polymer metabolism and structure. Plant Cell 19:3669–3691PubMedCentralCrossRefPubMedGoogle Scholar
  47. Levée V, Lelu M-A, Jouanin L, Cornu D, Pilate G (1997) Agrobacterium tumefaciens-mediated transformation of hybrid larch (Larix kaempferi × L. decidua) and transgenic plant regeneration. Plant Cell Rep 16:680–685CrossRefGoogle Scholar
  48. Lohtander K, Pasonen H-L, Aalto MK, Palva T, Pappinen A, Rikkinen J (2008) Phylogeny of chitinases and implications for estimating horizontal gene transfer from chitinase transgenic silver birch (Betula pendula). Environ Biosafety Res 7:227–239. doi: 10.1051/ebr:2008019 CrossRefPubMedGoogle Scholar
  49. Moreno-Cortés A, Hernández-Verdeja T, Sánchez Jiménez P, González-Melendi P, Aragoncillo C, Allona I (2012) CsRAV1 induces sylleptic branching in hybrid poplar. New Phytol 194:83–90CrossRefPubMedGoogle Scholar
  50. Nehls U, Zhang C, Tarkka M, Hampp R, Fladung M (2006) Investigation of horizontal gene transfer from transgenic aspen to ectomyccorhizal fungi. In: Fladung M, Ewald D (eds) Tree transgenesis—recent developments. Springer, New York, pp 323–333CrossRefGoogle Scholar
  51. Pascual MB, Jing ZP, Kirby EG, Cánovas FM, Gallardo F (2008) Response of transgenic poplar overexpressing cytosolic glutamine synthetase to phosphinothricin. Phytochemestry 69:382–389CrossRefGoogle Scholar
  52. Pasonen H-L, Seppänen S-K, Degefu Y, Rytkönen A, von Weissenberg K, Pappinen A (2004) Field performance of chitinase transgenic silver birches (Betula pendula): resistance to fungal diseases. Theor Appl Genet 109:562–570CrossRefPubMedGoogle Scholar
  53. Pasonen H-L, Degefu Y, Brumos J, Pappinen A, Timonen S, Seppänen S-K (2005) Transgenic silver birch (Betula pendula) expressing an antifungal sugar beet chitinase IV gene forms normal ectomycorrhizae with Paxillus involutus in vitro. Scand J For Res 20:385–392CrossRefGoogle Scholar
  54. Pasonen H-L, Vihervuori L, Seppänen S-K, Lyytikäinen-Saarenmaa P, Ylioja T, von Weissenberg K, Pappinen A (2008) Field performance of chitinase transgenic silver birch (Betula pendula Roth): growth and adaptive traits. Trees-Struct Funct 22:413–421. doi: 10.1007/s00468-007-0202-7 CrossRefGoogle Scholar
  55. Pasonen H-L, Lu J, Niskanen AM, Seppänen S-K, Rytkönen A, Raunio J, Pappinen A, Kasanen R, Timonen S (2009) Effects of sugar beet chitinase IV on root-associated fungal community of transgenic silver birch in a field trial. Planta 230:973–983CrossRefPubMedGoogle Scholar
  56. Peuke AD, Rennenberg H (2005) Phytoremediation: molecular biology, requirements for application, environmental protection, public attention, and feasibility. EMBO Rep 6:497–501PubMedCentralCrossRefPubMedGoogle Scholar
  57. Peuke AD, Rennenberg H (2006) Heavy metal resistance and phytoremediation with transgenic trees. In: Fladung M, Ewald D (eds) Tree transgenesis—recent developments. Springer, New York, pp 137–155CrossRefGoogle Scholar
  58. Pilate G, Ellis D, Hawkins S (1997) Transgene expression in field-grown poplar. In: Klopfenstein N, Chung YW, Kim M-S, Ahuja MR (eds) Micropropagation, genetic engineering and molecular biology of Populus, USDA Forest Service, pp 84–89Google Scholar
  59. Pilate G, Guiney E, Holt K, Petit-Conil M, Lapierre C, Leplé J-C, Pollet B, Mila I, Webster EA, Marstorp HG, Hopkins DW, Jouanin L, Boerjan W, Schuch W, Cornu D, Halpin C (2002) Field and pulping performances of transgenic trees with altered lignification. Nat Biotechnol 20:607–612CrossRefPubMedGoogle Scholar
  60. Report WIV-ISP (2010) The Scientific Institute of Public Health, Belgian focal point for Biosafety “1990–2010: 20 years of risk assessment of GMOs and pathogens”. ISBN 9789074968287 (NUR-code: 884). http://www.biosafety.be/Book/PDF/SBB_20yearsBiosafety_EN_LR.pdf
  61. Ryynänen L, Sillanpää M, Kontunen-Soppela S, Tiimonen H, Kangasjärvi J, Vapaavuori E, Häggman H (2002) Preservation of transgenic silver birch (Betula pendula Roth) lines by means of cryopreservation. Mol Breed 10:143–152CrossRefGoogle Scholar
  62. Seppänen S-K, Pasonen H-L, Vauramo S, Vahala J, Toikka M, Kilpeläinen I, Setälä H, Teeri T, Timonen S, Pappinen A (2007) Decomposition of the leaf litter and mycorrhiza forming ability of silver birch with a genetically modified lignin biosynthesis pathway. Appl Soil Ecol 36:100–106Google Scholar
  63. Strauss SH, Tan H, Boerjan W, Sedjo R (2009) Strangled at birth? Forest biotech and the convention on biological diversity. Nat Biotechnol 27:519–527CrossRefPubMedGoogle Scholar
  64. Tilston EL, Halpin C, Hopkins DW (2004) Genetic modifications to lignin biosynthesis in field-grown poplar trees have inconsistent effects on the rate of woody trunk decomposition. Soil Biol Biochem 36:1903–1906CrossRefGoogle Scholar
  65. Valve H, McNally R, Pappinen A (2010) Doing research, creating impact: Using “PROTEE” to learn from a GM tree field trial. Sci Public Pol 37:369–379. doi: 10.3152/030234210X501216 CrossRefGoogle Scholar
  66. Van Acker R, Vanholme R, Storme V, Mortimer JC, Dupree P, Boerjan W (2013) Lignin biosynthesis perturbations affect secondary cell wall composition and saccharification yield in Arabidopsis thaliana. Biotechnol Biofuels 6:46–63PubMedCentralCrossRefPubMedGoogle Scholar
  67. Van Acker R, Leplé JC, Aerts D, Storme V, Goeminne G, Ivens B, Piens K, Van Montagu M, Santoro N, Foster C, Ralph J, Soetaert W, Pilate G, Boerjan W (2014) Improved saccharification and ethanol yield from field-grown transgenic poplar deficient in cinnamoyl-CoA reductase. Proc Natl Acad Sci USA 111:845–850PubMedCentralCrossRefPubMedGoogle Scholar
  68. Vauramo S, Pasonen H-L, Pappinen A, Setälä H (2006) Decomposition of leaf litter from chitinase transgenic silver birch (Betula pendula) and effects on decomposer populations in a field trial. Appl Soil Ecol 32:338–349CrossRefGoogle Scholar
  69. Vihervuori L, Lyytikäinen-Saarenmaa P, Tuomikoski E, Luoma M, Niemelä P, Pappinen A, Pasonen H-L (2012) Palatability of transgenic birch and aspen to roe deer and mountain hare. Biocontrol Sci Technol 22:1167–1180. doi: 10.1080/09583157.2012.716393 CrossRefGoogle Scholar
  70. Voelker SL, Lachenbruch B, Meinzer FC, Jourdes M, Ki CY, Patten AM, Davin LB, Lewis NG, Tuskan GA, Gunter L, Decker SR, Selig MJ, Sykes R, Himmel ME, Kitin P, Shevchenko O, Strauss SH (2010) Antisense down-regulation of 4CL expression alters lignification, tree growth, and saccharification potential of field-grown poplar. Plant Physiol 154:874–886PubMedCentralCrossRefPubMedGoogle Scholar
  71. Walter C, Fladung M, Boerjan W (2010) The 20-year environmental safety record of GM trees. Nat Biotechnol 28:656–658CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • G. Pilate
    • 1
  • I. Allona
    • 2
  • W. Boerjan
    • 3
    • 4
  • A. Déjardin
    • 1
  • M. Fladung
    • 5
  • F. Gallardo
    • 6
  • H. Häggman
    • 7
  • S. Jansson
    • 8
  • R. Van Acker
    • 3
    • 4
  • C. Halpin
    • 9
  1. 1.UR0588, Amélioration Génétique et Physiologie ForestièresInstitut National de La Recherche Agronomique (INRA)OrléansFrance
  2. 2.Centre for Plant Biotechnology and Genomics (UPM-INIA)MadridSpain
  3. 3.Department of Plant Systems BiologyVIBGhentBelgium
  4. 4.Belgium Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
  5. 5.Thünen Institute of Forest Genetics (TI-FG)GrosshansdorfGermany
  6. 6.Dpto Biología Molecular y BioquímicaUniversidad de MálagaMálagaSpain
  7. 7.Genetics and Physiology Unit, Faculty of ScienceUniversity of OuluOuluFinland
  8. 8.Department of Plant Physiology, Umea Plant Science CenterUmea UniversityUmeaSweden
  9. 9.Division of Plant Sciences, College of Life SciencesUniversity of Dundee at the JHIDundeeScotland, UK

Personalised recommendations