Advertisement

Wool in Human Health and Well-Being

  • Raechel LaingEmail author
  • Paul Swan
Conference paper
Part of the RILEM Bookseries book series (RILEM, volume 12)

Abstract

This paper reviews published and unpublished literature on the role of wool in human health and well-being. Human-based investigations, or those involving human simulations (manikins) were the focus. The principal parameters in the review were skin health, physical contact between textiles/garments and human skin (tactile acceptability—prickle, friction, allergies), thermal and moisture properties, human body odour, and sleep (bed clothes/sleepwear, bedding).

Keywords

Wool fibre Skin health Perceptual characteristics 

Notes

Acknowledgments

This paper is based on a review prepared for and funded by the International Wool Textile Organisation, Belgium, and Australian Wool Innovation, Sydney, Australia. Contributions to sections of that review are acknowledged and included: Mr. David Crowe, AWTA, Melbourne, Australia; Mr. Mauro Rossetti, General manager, Associazione Tessile e Salute, Biella, Italy; Mr. Pier Giorgio Minazio, European technical service manager, Woolmark Italy, Biella, Italy.

References

  1. Ajello, L. and Getz, M. E. 1954. Recovery of dermatophytes from shoes and shower stalls. Journal of Investigative Dermatology 22 (1): 17-24.Google Scholar
  2. Amoore, J. E. 1977. Specific anosmia and the concept of primary odors. Chemical Senses and Flavor 2: 267-281.Google Scholar
  3. Ara, K., Hama, M., Akiba, S., Koike, K., Okisaka, K., Hagura, T., Kamiya, T. and Tomita, F. 2006. Foot odor due to microbial metabolism and its control. Canadian Journal of Microbiology 52 (4): 357-364.Google Scholar
  4. Associazione Tessile e Salute-Health and Textile Association 2013. Chemical substances in textile products and allergic reactions. Biella, Italy: Associazione Tessile e Salute-Health and Textile Association.Google Scholar
  5. Bach, V., Telliez, F. and Libert, J.-P. 2002. The interaction between sleep and thermoregulation in adults and neonates. Sleep Medicine Reviews 6 (6): 481-492.Google Scholar
  6. Bishop, D. P., Shen, J., Heine, E. and Hollfelder, B. 1998. The use of proteolytic enzymes to reduce wool-fibre stiffness and prickle. Journal of The Textile Institute (Special Issue) 89 (3): 546-553.Google Scholar
  7. Blackmore, T., Ball, N. and Scurr, J. 2011. The effect of socks on vertical and anteroposterior ground reaction forces in walking and running. The Foot 21 (1): 1-5.Google Scholar
  8. Brooks, J. H., Capablanca, J. S., Watt, I. C. and Holcombe, B. V. 1990. Comparative comfort of socks. In 8th International Wool Textile Research Conference, V Vol. 256-265. Christchurch, New Zealand: Wool Research Organisation of New Zealand (Inc).Google Scholar
  9. Brown, L. and McLarnon, N. A. 2007. Do patients with untreated tinea pedis have concomitant fungal contamination within their footwear and hosiery? British Journal of Podiatry 10 (4): 134-138.Google Scholar
  10. Cameron, B. A., Brown, D. M., Dallas, M. J. and Brandt, B. 1997. Effect of natural and synthetic fibers and film and moisture content on stratum corneum hydration in an occlusive system. Textile Research Journal 67 (8): 585-592.Google Scholar
  11. Collie, S. R. 2002. Comfort and blister prevention properties of wool and synthetic socks. Christchurch, New Zealand: Wool Research Organisation of New Zealand (Inc.), Christchurch, New Zealand. Unpublished report.Google Scholar
  12. Darlenski, R., Sassning, S., Tsankov, N. and Fluhr, J. W. 2009. Non-invasive in vivo methods for investigation of the skin barrier physical properties. European Journal of Pharmaceutics and Biopharmaceutics 72 (2): 295-303.Google Scholar
  13. Das, T. and Ramaswamy, G. N. 2006. Enzyme treatment of wool and specialty hair fibers. Textile Research Journal 76 (2): 126-133.Google Scholar
  14. Dickson, P. R. 1984. Effect of a fleecy woollen underlay on sleep. The Medical Journal of Australia 140: 87-89.Google Scholar
  15. Elkeeb, R., Hui, X., Chan, H., Tian, L. and Maibach, H. I. 2010. Correlation of transepidermal water loss with skin barrier properties in vitro: comparison of three evaporimeters. Skin Research and Technology 16 (1): 9-15.Google Scholar
  16. Euler, R. D. 1985. Creating “comfort” socks for the U.S. consumer. Knitting Times (May): 47-50.Google Scholar
  17. Filingeri, D., Redortier, B., Hodder, S. and Havenith, G. 2014. Thermal and tactile interactions in the perception of local skin wetness at rest and during exercise in thermo-neutral and warm environments. Neuroscience 258: 121-130.Google Scholar
  18. Filingeri, D., Redortier, B., Hodder, S. and Havenith, G. 2015. Warm temperature stimulus suppresses the perception of skin wetness during initial contact with a wet surface. Skin Research and Technology 21 (1): 9-14.Google Scholar
  19. Fluhr, J. W., Feingold, K. R. and Elias, P. M. 2006. Transepidermal water loss reflects permeability barrier status: validation in human and rodent in vivo and ex vivo models. Experimental Dermatology 15 (7): 483-492.Google Scholar
  20. Freddi, I., Arai, T., Colonna, G. M., Boschi, A. and Tsukada, M. 2001. Binding of metal cations to chemically modified wool and antimicrobial properties of the wool-metal complexes. Journal of Applied Polymer Science 82 (14): 3513-3519.Google Scholar
  21. Fujimura, T., Takagi, Y., Sugano, I., Sano, Y., Yamaguchi, N., Kitahara, T., Takema, Y. and Rizer, R. L. 2011. Real-life use of underwear treated with fabric softeners improves skin dryness by decreasing the friction of fabrics against skin. International Journal of Cosmetic Science 33: 566-571.Google Scholar
  22. Gan, Y., Cheng, L., Ding, X. and Pan, N. 2010. Blood flow fluctuation underneath human forearm skin caused by local thermal stimuli of different fabrics. Journal of Thermal Biology 35 (7): 372-377.Google Scholar
  23. Gao, Y. and Cranston, R. 2008. Recent advances in antimicrobial treatments of textiles. Textile Research Journal 78 (1): 60-72.Google Scholar
  24. Garnsworthy, R. K., Gully, R. L., Kandiah, R. P., Kenins, P., Mayfield, R. J. and Westerman, R. A. 1988. Understanding the causes of prickle and itch from the skin contact of fabrics. Australasian Textiles 4 (88): 26-29.Google Scholar
  25. Gwosdow, A. R., Stevens, J. C., Berglund, L. G. and Stolwijk, J. A. J. 1986. Skin friction and fabric sensations in neutral and warm environments. Textile Research Journal 56 (9): 574-580.Google Scholar
  26. Harnett, P. 1984a. Functions and properties of ‘thermal’ underwear. Wool Science Review 60: 3-11.Google Scholar
  27. Harnett, P. 1984b. Wool underwear for warmth and comfort. Wool Science Review 60: 47-60.Google Scholar
  28. Hatch, K. L. and Maibach, H. I. 1985. Textile fiber dermatitis. Contact Dermatitis 12 (1): 1-11.Google Scholar
  29. Hatch, K. L. and Maibach, H. I. 1995. Textile dermatitis: an update. Contact Dermatitis 32 (6): 319-326.Google Scholar
  30. Hatch, K. L., Markee, N. L., Maibach, H. I., Barker, R. L., Woo, S. S. and Radhakrishnaiah, P. 1990. In vivo cutaneous and perceived comfort response to fabric Part III: Water content and blood flow in human skin under garments worn by exercising subjects in a hot, humid environment. Textile Research Journal 60 (9): 510-519.Google Scholar
  31. Hatch, K. L., Wilson, D. R. and Maibach, H. I. 1987. Fabric-caused changes in human skin: in vivo stratum corneum water content and water evaporation. Textile Research Journal 57 (10): 583-591.Google Scholar
  32. Herring, K. M. and Richie, D. H. 1990. Friction blisters and sock fiber composition: a double-blind study. Journal of the American Podiatry Association 80 (2): 63-71.Google Scholar
  33. Herring, K. M. and Richie, D. H. 1993. Comparison of cotton and acrylic socks using a generic cushion sole design for runners. Journal of the American Podiatric Medical Association 83 (9): 515-522.Google Scholar
  34. Howarth, S. J. and Rome, K. 1996. A short-term study of shock-attenuation in different sock types. The Foot 6 (1): 5-9.Google Scholar
  35. Hseih, S. H., Huang, Z. K., Huang, Z. Z. and Tseng, Z. S. 2004. Antimicrobial and physical properties of woolen fabrics cured with citric acid and chitosan. Journal of Applied Polymer Science 94 (5): 1999-2007.Google Scholar
  36. Kanda, F., Yagi, E., Fukuda, M., Nakajima, K., Ohta, T. and Nakata, O. 1990. Elucidation of chemical compounds responsible for foot malodour. British Journal of Dermatology 122 (6): 771-776.Google Scholar
  37. Kiyak, E. K. 2009. A new nonpharmacological method in fibromyalgia: the use of wool. The Journal of Alternative and Complementary Medicine 15 (4): 399-405.Google Scholar
  38. Kloos, W. E. and Musselwhite, M. S. 1975. Distribution and persistance of Staphylococcus and Micrococcus species and other aerobic bacteria on human skin. Applied Microbiology 30 (3): 381-395.Google Scholar
  39. Laing, R., Wilson, C., Dunn, L. and Niven, B. 2015. Detection of fiber effects on the skin health of the human foot. Textile Research Journal 85 (17): 1849-1863.Google Scholar
  40. Laing, R. M. 2009. Assessing fabrics for cold weather apparel: the case of wool. In Textiles for Cold Weather Apparel, edited by Williams, J. T., 33-55. Woodhead Publishing Limited.Google Scholar
  41. Laing, R. M., Niven, B. E., Barker, R. L. and Porter, J. 2007. Response of wool knit apparel fabrics to water vapor and water. Textile Research Journal 77 (3): 165-171.Google Scholar
  42. Laing, R. M., Sims, S. T., Wilson, C. A., Niven, B. E. and Cruthers, N. M. 2008. Differences in wearer response to garments for outdoor activity. Ergonomics 51 (4): 492-510.Google Scholar
  43. Lambers, H., Piessens, S., Bloem, A., Pronk, H. and Finkel, P. 2006. Natural skin surface pH is on average below 5, which is beneficial for its resident flora. International Journal of Cosmetic Science 28 (5): 359-370.Google Scholar
  44. Leeder, J. D. 1984. Structure of the wool fibre. In Wool - Nature’s Wonder Fibre, 8-12. Ocean Grove, Victoria: Australasian Textiles Publishers and J.D. Leeder.Google Scholar
  45. Li, W.-R., Xie, X.-B., Shi, Q.-S., Zeng, H.-Y., Ou-Yang, Y.-S. and Chen, Y.-B. 2010. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Applied Microbiology and Biotechnology 85 (4): 1115-1122.Google Scholar
  46. Li, Y. 2005. Perceptions of temperature, moisture and comfort in clothing during environmental transients. Ergonomics 48 (3): 234-248.Google Scholar
  47. Li, Y., Holcombe, B. V. and Apcar, F. 1992. Moisture buffering behavior of hygroscopic fabric during wear. Textile Research Journal 62 (11): 619-627.Google Scholar
  48. Marshall, J., Holland, K. and Gribbon, E. 1988. A comparative study of the cutaneous microflora of normal feet with low and high levels of odour. Journal of Applied Bacteriology 65 (1): 61-68.Google Scholar
  49. Marshall, J., Leeming, J. P. and Holland, K. T. 1987. The cutaneous microbiology of normal human feet. Journal of Applied Bacteriology 62 (2): 139-146.Google Scholar
  50. McGregor, B. A., Naebe, M., Stanton, J., Speijers, J., Beilby, J., Peruzzini, S. and Tester, D. 2013. Relationship between wearer prickle response with fiber and garment properties and Wool ComfortMeter assessment. Journal of The Textile Institute 104 (6): 618-627.Google Scholar
  51. McQueen, R. H., Laing, R. M., Brooks, H. J. L. and Niven, B. E. 2007a. Odor intensity in apparel fabrics and the link with bacterial populations. Textile Research Journal 77 (7): 449-456.Google Scholar
  52. McQueen, R. H., Laing, R. M., Delahunty, C. M., Brooks, H. J. L. and Niven, B. E. 2008. Retention of axillary odour on apparel fabrics. Journal of The Textile Institute 99 (6): 515-523.Google Scholar
  53. McQueen, R. H., Laing, R. M., Wilson, C. A., Niven, B. E. and Delahunty, C. M. 2007b. Odor retention on apparel fabrics: development of test methods for sensory detection. Textile Research Journal 77 (9): 645-652.Google Scholar
  54. Miao, M., Collie, S. R., Watt, J. D. and Glassey, H. E. 2005. Prickle and pilling reduction by modified yarn structures. In11th International Wool Textile Research Conference. Leeds, England.Google Scholar
  55. Morris, M. A., Prato, H. H. and White, N. L. 1984. Relationship of fiber content and fabric properties to comfort of socks. Clothing and Textiles Research Journal 3 (1): 14-19.Google Scholar
  56. Muzet, A., Ehrhart, J., Candas, V., Libert, J. P. and Vogt, J. J. 1983. REM sleep and ambient temperature in man. International Journal of Neuroscience 18 (1-2): 117-125.Google Scholar
  57. Naebe, M., McGregor, B. A., Swan, P. and Tester, D. 2015. Associations between the physiological basis of fabric-evoked prickle, fiber and yarn characteristics and Wool ComfortMeter value. Textile Research Journal 85 (11): 1122-1130.Google Scholar
  58. Naylor, G. R. S. 1992. The role of coarse fibres in fabric prickle using blended acrylic fibres of different diameters. Wool Technology and Sheep Breeding 40 (1): 14-18.Google Scholar
  59. Naylor, G. R. S. 1997. Fabric-evoked prickle in worsted spun single jersey fabrics Part II: the role of fiber length, yarn count, and fabric cover factors. Textile Research Journal 67 (5): 354-358.Google Scholar
  60. Naylor, G. R. S., Phillips, D. G., Veitch, C. J., Dolling, M. and Marland, D. J. 1997. Fabric-evoked prickle in worsted spun single jersey fabrics Part I: the role of fiber end diameter characteristics. Textile Research Journal 67 (4): 288-295.Google Scholar
  61. Naylor, G. R. S., Veitch, C. J., Mayfield, R. J. and Kettlewell, R. 1992. Fabric-evoked prickle. Textile Research Journal 62 (8): 487-493.Google Scholar
  62. Okamoto-Mizuno, K., Mizuno, K., Michie, S., Maeda, A. and Lizuka, S. 1999. Effects of humid heat exposure on human sleep stages and body temperature. Sleep 22 (6): 767-773.Google Scholar
  63. Percival, S. L., Bowler, P. G. and Russell, D. 2005. Bacterial resistance to silver in wound care. Journal of Hospital Infection 60 (1): 1-7.Google Scholar
  64. Potts, R. O., Buras, E. M. and Chrisman, D. A. 1984. Changes with age in the moisture content of human skin. Journal of Investigative Dermatology 82 (1): 97-100.Google Scholar
  65. Raheel, M. 1991. Pesticide transmission in fabrics: effect of perspiration. Bulletin of Environmental Contamination and Toxicology 46 (6): 837-844.Google Scholar
  66. Rawlings, A. V. and Harding, C. R. 2004. Moisturization and skin barrier function. Dermatologic Therapy 17 (s1): 43-48.Google Scholar
  67. Richdale, A. 2013. Bedding, diet and sleep in children aged 2 to 5 years. Melbourne, Australia: La Trobe.Google Scholar
  68. Roberts, S. B., Savage, J. and Lucas, A. 1986. Does lambswool promote growth in preterm infants? The Lancet 327 (8486): 921-922.Google Scholar
  69. Scheurell, D. M., Spivak, S. M. and Hollies, N. R. S. 1985. Dynamic surface wetness of fabrics in relation to clothing comfort. Textile Research Journal 55 (7): 394-399.Google Scholar
  70. Schmid-Wendtner, M.-H. and Korting, H. C. 2006. The pH of the skin surface and its impact on the barrier function. Skin Pharmacology and Physiology 19 (6): 296-302.Google Scholar
  71. Schneider, A. M., Holcombe, B. V. and Stephens, L. G. 1996. Enhancement of coolness to the touch by hygroscopic fibers: part 1 subjective trials. Textile Research Journal 66 (8): 515-520.Google Scholar
  72. Schneider, A. M., Hoschke, B. N. and Goldsmid, H. J. 1992. Heat transfer through moist fabrics. Textile Research Journal 62 (2): 61-66.Google Scholar
  73. Scott, S., Cole, T., Lucas, P. and Richards, M. 1983. Weight gain and movement patterns of very low birthweight babies nursed on lambswool. The Lancet 322 (8357): 1014-1016.Google Scholar
  74. Shelley, W. B., Hurley, H. J. and Nichols, A. C. 1953. Axillary odor - experimental study of the role of bacteria, apocrine sweat, and deodorants. Archives of Dermatology 68 (4): 430-446.Google Scholar
  75. Shin, M., Swan, P. and Chow, C. M. 2014 The effects of textile fabrics for sleeping apparel and bedding on sleep quality at ambient conditions of 17°C and 22°C. personal communication.Google Scholar
  76. Sneddon, J. N., Lee, J. A. and Soutar, G. N. 2012a. Exploring consumer beliefs about wool apparel in the USA and Australia. Journal of The Textile Institute 103 (1): 40-47.Google Scholar
  77. Sneddon, J. N., Lee, J. A. and Soutar, G. N. 2012b. Making sense of consumers’ wool apparel preferences. Journal of The Textile Institute 103 (4): 405-415.Google Scholar
  78. Stanton, A. N. 1984. Overheating and cot death. The Lancet 324 (8413): 1199-1201.Google Scholar
  79. Stanton, J. H., Speijers, J., Naylor, G. R. S., Pieruzzini, S., Beilby, J., Barsden, E. and Clarke, A. 2014. Skin comfort of base layer knitted garments. Part 1 Description and evaluation of wearer test protocol. Textile Research Journal 84 (13): 1385-1399.Google Scholar
  80. Starick, L. 2013. Global fabric tracker study. Sydney, Australia: Australian Wool Innovation in association with Nielsen.Google Scholar
  81. Tang, B., Wang, J., Xu, S., Afrin, T., Xu, W., Sun, L. and Wang, X. 2011. Application of anisotropic silver nanoparticles: multifunctionalization of wool fabrics. Journal of Colloid and Interface Science 356 (2): 513-518.Google Scholar
  82. Umbach, K. H. 1986. Comparative thermophysiological test on blankets made from wool and acrylic-fibre-cotton blends. Journal of The Textile Institute 77 (3): 212-222.Google Scholar
  83. van Amber, R. R. 2013. Sock fabrics: the effect of fibre type, yarn type and fabric structure on selected properties. In Dunedin, New Zealand: University of Otago.Google Scholar
  84. van Amber, R. R., Lowe, B. E., Niven, B. E., Laing, R. M. and Wilson, C. A. 2015a. Sock fabrics: relevance of fiber type, yarn, fabric structure and moisture on cyclic compression. Textile Research Journal 85 (1): 26-35.Google Scholar
  85. van Amber, R. R., Lowe, B. E., Niven, B. E., Laing, R. M., Wilson, C. A. and Collie, S. R. 2015b. The effect of fiber type, yarn structure and fabric structure on the frictional characteristics of sock fabrics. Textile Research Journal 85 (2): 115-127.Google Scholar
  86. Wakelin, S. H., Smith, H., White, I. R., Rycroft, R. J. G. and McFadden, J. P. 2001. A retrospective analysis of contact allergy to lanolin. British Journal of Dermatology (1951) 145 (1): 28-31.Google Scholar
  87. Wang, G., Zhang, W., Postle, R. and Phillips, D. 2003. Evaluating wool shirt comfort with wear trials and the forearm test. Textile Research Journal 73 (2): 113-119.Google Scholar
  88. Wilson, C., Laing, R. and Niven, B. 2000. Multi-layer bedding materials and the effect of air spaces on ‘wet’ thermal resistance of dry materials. Journal of the Human-Environment System 4 (1): 23-32.Google Scholar
  89. Wilson, C. A., Laing, R. M. and Carr, D. J. 2002. Air and air spaces - the invisible addition to thermal resistance. Journal of the Human-Environment System 5 (2): 69-77.Google Scholar
  90. Wilson, C. A., Taylor, B. J., Laing, R. M., Williams, S. M., Mitchell, E. A. and New Zealand Cot Death Study Group 1994. Clothing and bedding and its relevance to sudden infant death syndrome: further results from the New Zealand Cot Death Study. Journal of Paediatrics and Child Health 30 (6): 506-512.Google Scholar
  91. Yao, L., Laing, R. M., Bremer, P. J., Silcock, P. J. and Leus, M. J. 2015. Measuring textile adsorption of body odor compounds using proton-transfer-reaction mass spectrometry. Textile Research Journal 85 (17): 1817-1826.Google Scholar
  92. Yao, L., Tokura, H., Li, Y., Newton, E., Gohel, M. D. I. and Chung, W. J. 2007. Mechanism of pajama material on stratum corneum water content under mild cold conditions: explored by hierarchical linear regression. Skin Research and Technology 13 (4): 412-416.Google Scholar
  93. Zhao, T. and Sun, G. 2006. Antimicrobial finishing of wool fabrics with quaternary aminopyridinium salts. Journal of Applied Polymer Science 103 (1): 482-486.Google Scholar
  94. Zhu, P. and Sun, G. 2004. Antimicrobial finishing of wool fabrics using quaternary ammonium salts. Journal of Applied Polymer Science 93 (3): 1037-1041.Google Scholar

Copyright information

© RILEM 2016

Authors and Affiliations

  1. 1.University of OtagoDunedinNew Zealand
  2. 2.Australian Wool InnovationSydneyAustralia

Personalised recommendations