Advertisement

Neurourology pp 499-510 | Cite as

Parkinson’s Disease

  • Ryuji SakakibaraEmail author
Chapter

Abstract

Parkinson’s disease (PD) is a common movement disorder associated with the degeneration of dopaminergic neurons in the substantia nigra. In addition to the movement disorder, patients with PD often show non-motor disorders. The non-motor problems of PD include neuropsychiatric disorders, sleep disorders, sensory symptoms, and autonomic disorders [1]. Bladder dysfunction is one of the most common autonomic disorders [2, 3]. Studies have shown that the bladder dysfunction has great significance in relation to quality-of-life measures, early institutionalization, and health economics [4, 5]. It is particularly important to note that, unlike motor disorder, bladder dysfunction is sometimes non-responsive to levodopa, suggesting that they occur through a complex patho-physiology [6]. This is because pathology of PD is not confined to the degeneration of dopaminergic neurons in the substantia nigra, and involves other locations in the brain and other neurotransmitter systems than the dopaminergic system. For this reason, add-on therapy is required to maximize patients’ quality of life. We here review bladder function and its management of patients with PD, with an understanding of brain-bladder relationship.

References

  1. 1.
    Goldstein DS, Sewell L, Sharabi Y. Autonomic dysfunction in PD: a window to early detection? J Neurol Sci. 2011;310(1–2):118–22.Google Scholar
  2. 2.
    Sakakibara R, Uchiyama T, Yamanishi T, Shirai K, Hattori T. Bladder and bowel dysfunction in Parkinson’s disease. J Neural Transm. 2008;115:443–60.Google Scholar
  3. 3.
    Jain S. Multi-organ autonomic dysfunction in Parkinson disease. Parkinsonism Relat Disord. 2011;17:77–83.Google Scholar
  4. 4.
    McGrother CW, Jagger C, Clarke M, Castleden CM. Handicaps associated with incontinence: implications for management. J Epidemiol Community Health. 1990;44:246–8.Google Scholar
  5. 5.
    Sakakibara R, Shinotoh H, Uchiyama T, Sakuma M, Kashiwado M, Yoshiyama M, et al. Questionnaire-based assessment of pelvic organ dysfunction in Parkinson’s disease. Auton Neurosci. 2001;92:76–85.Google Scholar
  6. 6.
    Uchiyama T, Sakakibara R, Hattori T, Yamanishi T. Short-term effect of a single levodopa dose on micturition disturbance in Parkinson’s disease patients with the wearing-off phenomenon. Mov Disord. 2003;18:573–8.Google Scholar
  7. 7.
    de Groat WC. Integrative control of the lower urinary tract: preclinical perspective. BJP. 2006;147:S25–40.Google Scholar
  8. 8.
    Sakakibara R, Fowler CJ. Chapter 9: brain disease. In: Fowler CJ, editor. Seminars in Clinical Neurology (by World Federation of Neurology). Neurologic bladder, bowel, and sexual function. Boston: Elsevier; 2001. p. 229–43.Google Scholar
  9. 9.
    Sakakibara R, Mori M, Fukutake T, Kita K. Orthostatic hypotension in a case with multiple sclerosis. Clin Auton Res. 1997;7:163–5.Google Scholar
  10. 10.
    Abrams P, Cardozo L, Fall M, Griffiths D, Rosier P, Ulmsten U, et al. The standardization of terminology of lower urinary tract function: report from the Standardization Sub-committee of the International Continence Society. Neurourol Urodyn. 2002;21:167–78.Google Scholar
  11. 11.
    Blok BF, Holstege G. The central control of micturition and continence: implications for urology. Br J Urol Int. 1999;83:1–6.Google Scholar
  12. 12.
    Sakakibara R, Nakazawa K, Shiba K, Nakajima Y, Uchiyama T, Yoshiyama M, et al. Firing patterns of micturition-related neurons in the pontine storage centre in cats. Auton Neurosci. 2002;99:24–30.Google Scholar
  13. 13.
    Kavia RBC, Dasgupta R, Fowler CJ. Functional imaging and the central control of the bladder. J Comp Neurol. 2005;493:27–32.Google Scholar
  14. 14.
    Sakakibara R, Hattori T, Yasuda K, Yamanishi T, Tojo M, Mori M. Micturitional disturbance in Wernicke’s encephalopathy. Neurourol Urodyn. 1997;16:111–5.Google Scholar
  15. 15.
    Matsuura S, Downie JW, Allen GV. Volume-evoked micturition reflex is mediated by the ventrolateral periaqueductal gray in anesthetized rat. Am J Physiol. 1998;275:R2049–R55.Google Scholar
  16. 16.
    Liu Z, Sakakibara R, Nakazawa K, Uchiyama T, Yamamoto T, Ito T, et al. Micturition-related neuronal firing in the periaqueductal gray area in cats. Neuroscience. 2004;126:1075–82.Google Scholar
  17. 17.
    Yaguchi H, Soma H, Miyazaki Y, Tashiro J, Yabe I, Kikuchi S, et al. A case of acute urinary retention caused by periaqueductal grey lesion. J Neurol Neurosurg Psychiatry. 2004;75:1202–3.Google Scholar
  18. 18.
    Betts CD, Kapoor R, Fowler CJ. Pontine pathology and voiding dysfunction. Br J Urol. 1992;70:100–2.Google Scholar
  19. 19.
    Sakakibara R, Hattori T, Yasuda K, Yamanishi T. Micturitional disturbance and pontine tegmental lesion; urodynamic and MRI analyses of the vascular cases. J Neurol Sci. 1996;141:105–10.Google Scholar
  20. 20.
    Sasaki M. Role of Barrington’s nucleus in micturition. J Comp Neurol. 2005;493:21–6.Google Scholar
  21. 21.
    Matsumoto G, Hisamitsu T, De Groat WC. Role of glutamate and NMDA receptors in the descending limb of the spinobulbospinal micturition reflex pathway of the rat. Neurosci Lett. 1995;183:58–61.Google Scholar
  22. 22.
    Blok BF, de Weerd H, Holstege G. The pontine micturition center projects to sacral cord GABA immunoreactive neurons in the cat. Neurosci Lett. 1997;233:109–12.Google Scholar
  23. 23.
    Fowler CJ. Integrated control of lower urinary tract: clinical perspective. BJP. 2006;147:S14–24.Google Scholar
  24. 24.
    Steers WD. Pathophysiology of overactive and urge urinary incontinence. Rev Urol. 2002;4:S7–S18.Google Scholar
  25. 25.
    Andersson KE. Mechanisms of disease: central nervous system involvement in overactive bladder syndrome. Nat Clin Pract Urol. 2004;1:103–8.Google Scholar
  26. 26.
    Yokoyama O, Yotsuyanagi S, Akino H, Moriyama H, Matsuta Y, Namiki M. RNA synthesis in pons necessary for maintenance of bladder overactivity after cerebral infarction in rat. J Urol. 2003;169:1878–84.Google Scholar
  27. 27.
    Yokoyama O, Yoshiyama M, Namiki M, de Groat WC. Changes in dopaminergic and glutamatergic excitatory mechanisms of micturition reflex after middle cerebral artery occlusion in conscious rats. Exp Neurol. 2002;173:129–35.Google Scholar
  28. 28.
    Seki S, Igawa Y, Kaidoh K, Ishizuka O, Nishizawa O, Andersson KE. Role of dopamine D1 and D2 receptors in the micturition reflex in conscious rats. Neurourol Urodyn. 2001;20:105–13.Google Scholar
  29. 29.
    Yoshimura N, Kuno S, Chancellor MB, de Groat WC, Seki S. Dopaminergic mechanisms underlying bladder hyperactivity in rats with a unilateral 6-hydroxydopamine (6-OHDA) lesion of the nigrostriatal pathway. Br J Pharmacol. 2003;139:1425–32.Google Scholar
  30. 30.
    Yoshimura N, Mizuta E, Yoshida O, Kuno S. Therapeutic effects of dopamine D1/D2 receptor agonists on detrusor hyperreflexia in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned parkinsonian cynomolgus monkeys. J Pharmacol Exp Ther. 1998;286:228–33.Google Scholar
  31. 31.
    Nour S, Svarer C, Kristensen JK, Paulson OB, Law I. Cerebral activation during micturition in normal men. Brain. 2000;123:781–9.Google Scholar
  32. 32.
    Kitta T, Kakizaki H, Furuno T, Moriya K, Tanaka H, Shiga T, et al. Brain activation during detrusor overactivity in patients with Parkinson’s disease: a PET study. J Urol. 2006;175:994–8.Google Scholar
  33. 33.
    Sakakibara R, Shinotoh H, Uchiyama T, Yoshiyama M, Hattori T, Yamanishi T. SPECT imaging of the dopamine transporter with [123I]-beta-CIT reveals marked decline of nigrostriatal dopaminergic function in Parkinson’s disease with urinary dysfunction. J Neurol Sci. 2001;187:55–9.Google Scholar
  34. 34.
    Winge K, Friberg L, Werdelin L, Nielsen KK, Stimpel H. Relationship between nigrostriatal dopaminergic degeneration, urinary symptoms, and bladder control in Parkinson’s disease. Eur J Neurol. 2005;12:842–50.Google Scholar
  35. 35.
    Yoshimura N, Sasa M, Yoshida O, Takaori S. Dopamine D-1 receptor mediated inhibition of micturition reflex by central dopamine from the substantia nigra. Neurourol Urodyn. 1992;11:535–45.Google Scholar
  36. 36.
    Sakakibara R, Nakazawa K, Uchiyama T, Yoshiyama M, Yamanishi T, Hattori T. Micturition-related electrophysiological properties in the substantia nigra pars compacta and the ventral tegmental area in cats. Auton Neurosci. 2002;102:30–8.Google Scholar
  37. 37.
    Yamamoto T, Sakakibara R, Hashimoto K, Nakazawa K, Uchiyama T, Liu Z, et al. Striatal dopamine level increases in the urinary storage phase in cats: an in vivo microdialysis study. Neuroscience. 2005;135:299–303.Google Scholar
  38. 38.
    Smith Y, Bevan MD, Shink E, Bolam JP. Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience. 1998;86:353–87.Google Scholar
  39. 39.
    Sakakibara R, Nakazawa K, Uchiyama T, Yoshiyama M, Yamanishi T, Hattori T. Effects of subthalamic nucleus stimulation on the micturation reflex in cats. Neuroscience. 2003;120:871–5.Google Scholar
  40. 40.
    Dalmose AL, Bjarkam CR, Sorensen JC, Djurhuus JC, Jorgensen TM. Effects of high frequency deep brain stimulation on urine storage and voiding function in conscious minipigs. Neurourol Urodyn. 2004;23:265–72.Google Scholar
  41. 41.
    Kitta T, Matsumoto M, Tanaka H, Mitsui T, Yoshioka M, Nonomura K. GABAergic mechanism mediated via D receptors in the rat periaqueductal gray participates in the micturition reflex: an in vivo microdialysis study. Eur J Neurosci. 2008;27:3216–25.Google Scholar
  42. 42.
    Hashimoto K, Oyama T, Ukay Y, Kimura K, Sugiyama T, Park YC, et al. Selective destruction of dopamine neurones of the ventral tegmental area, but not the substantia nigra, impairs reflex micturition in rats. Neurourol Urodyn. 1997;16:470–1.Google Scholar
  43. 43.
    Hashimoto K, Oyama T, Sugiyama T, Park YC, Kurita T. Neuronal excitation in the ventral tegmental area modulates the micturition reflex mediated via the dopamine D(1) and D(2) receptors in rats. J Pharmacol Sci. 2003;92:143–8.Google Scholar
  44. 44.
    Yamamoto T, Sakakibara R, Nakazawa K, Uchiyama T, Shimizu E, Hattori T, et al. Neuronal activities of forebrain structures with respect to bladder contraction in cats. Neurosci Lett. 2010;473:42–7.Google Scholar
  45. 45.
    Andrew J, Nathan PW. Lesions of the anterior frontal lobes and disturbances of micturition and defaecation. Brain. 1964;87:233–62.Google Scholar
  46. 46.
    Andrew J, Nathan PW. The cerebral control of micturition. Proc R Soc Med. 1965;58:553–5.Google Scholar
  47. 47.
    Dasgupta R, Kavia RB, Fowler CJ. Cerebral mechanisms and voiding function. BJU Int. 2007;99:731–4.Google Scholar
  48. 48.
    Griffiths D, Tadic SD. Bladder control, urgency, and urge incontinence: evidence from functional brain imaging. Neurourol Urodyn. 2008;27:466–74.Google Scholar
  49. 49.
    Yamamoto T, Sakakibara R, Nakazawa K, Uchiyama T, Shimizu E, Hattori T. Effects of electrical stimulation of the striatum on bladder activity in cats. Neurourol Urodyn. 2009;28:549–54.Google Scholar
  50. 50.
    Herzog J, Weiss PH, Assmus A, Wefer B, Seif C, Braun PM, et al. Subthalamic stimulation modulates cortical control of urinary bladder in Parkinson’s disease. Brain. 2006;129:3366–75.Google Scholar
  51. 51.
    Herzog J, Weiss PH, Assmus A, Wefer B, Seif C, Braun PM, et al. Improved sensory gating of urinary bladder afferents in Parkinson’s disease following subthalamic stimulation. Brain. 2008;131:132–45.Google Scholar
  52. 52.
    Murnaghan GF. Neurogenic disorders of the bladder in Parkinsonism. Br J Urol. 1961;33:403–9.Google Scholar
  53. 53.
    Hattori T, Yasuda K, Kita K, Hirayama K. Voiding dysfunction in Parkinson’s disease. Jpn J Psychiatry Neurol. 1992;46:181–6.Google Scholar
  54. 54.
    Gray R, Stern G, Malone-Lee J. Lower urinary tract dysfunction in Parkinson’s disease: changes relate to age and not disease. Age Ageing. 1995;24:499–504.Google Scholar
  55. 55.
    Hald T, We B. The urinary bladder, neurology and dynamics. Baltimore, MD: Williams and Wilkins; 1982.Google Scholar
  56. 56.
    Andersen JT. Disturbances of bladder and urethral function in Parkinson’s disease. Int Urol Nephrol. 1985;17:35–41.Google Scholar
  57. 57.
    Berger Y, Blaivas JG, DeLaRocha ER, Salinas JM. Urodynamic findings in Parkinson’s disease. J Urol. 1987;138:836–8.Google Scholar
  58. 58.
    Sakakibara R, Hattori T, Uchiyama T, Yamanishi T. Urinary function in the elderly with and without leukoaraiosis; in relation to cognitive and gait function. J Neurol Neurosurg Psychiatry. 1999;67:658–60.Google Scholar
  59. 59.
    Gilman S, Low PA, Quinn N, Albanese A, Ben-Shlomo Y, Fowler CJ, et al. Consensus statement on the diagnosis of multiple system atrophy. J Auton Nerv Syst. 1998;74:189–92.Google Scholar
  60. 60.
    Araki I, Kuno S. Assessment of voiding dysfunction in Parkinson’s disease by the international prostate symptom score. J Neurol Neurosurg Psychiatry. 2000;68:429–33.Google Scholar
  61. 61.
    Lemack GE, Dewey RB, Roehrborn CG, O’Suilleabhain PE, Zimmern PE. Questionnaire-based assessment of bladder dysfunction in patients with mild to moderate Parkinson’s disease. Urology. 2000;56:250–4.Google Scholar
  62. 62.
    Campos-Sousa RN, Quagliato E, da Silva BB, De CR Jr, Ribeiro SC, de Carvalho DF. Urinary symptoms in Parkinson’s disease: prevalence and associated factors. Arq Neuropsiquiatr. 2003;61:359–63.Google Scholar
  63. 63.
    Araki I, Kitahara M, Oida T, Kuno S. Voiding dysfunction and Parkinson’s disease: urodynamic abnormalities and urinary symptoms. J Urol. 2000;164:1640–3.Google Scholar
  64. 64.
    Stocchi F, Carbone A, Inghilleri M, Monge A, Ruggieri S, Berardelli A, et al. Urodynamic and neurophysiological evaluation in Parkinson’s disease and multiple system atrophy. J Neurol Neurosurg Psychiatry. 1997;62:507–11.Google Scholar
  65. 65.
    Sakakibara R, Hattori T, Uchiyama T, Yamanishi T. Videourodynamic and sphincter motor unit potential analyses in Parkinson’s disease and multiple system atrophy. J Neurol Neurosurg Psychiatry. 2001;71:600–6.Google Scholar
  66. 66.
    Pavlakis AJ, Siroky MB, Goldstein I, Krane RJ. Neurourologic findings in Parkinson’s disease. J Urol. 1983;129:80–3.Google Scholar
  67. 67.
    Fitzmaurice H, Fowler CJ, Rickards D, Kirby RS, Quinn NP, Marsden CD, et al. Micturition disturbance in Parkinson’s disease. Br J Urol. 1985;57:652–6.Google Scholar
  68. 68.
    Uchiyama T, Sakakibara R, Hattori T. Lower urinary tract dysfunctions of Parkinson’s disease model rat (6-hydroxydopamine treated rat) and effects of drugs. Autonom Nerv Syst. 2006;43:302–8.Google Scholar
  69. 69.
    Palleschi G, Pastore AL, Stocchi F, Bova G, Inghilleri M, Sigala S, et al. Correlation between the overactive bladder questionnaire (OAB-q) and urodynamic data of Parkinson disease patients affected by neurogenic detrusor overactivity during antimuscarinic treatment. Clin Neuropharmacol. 2006;29:220–9.Google Scholar
  70. 70.
    Yamamoto T, Sakakibara R, Uchiyama T, Liu Z, Ito T, Awa Y, et al. Neurological diseases that cause detrusor hyperactivity with impaired contractile function. Neurourol Urodyn. 2006;25:356–60.Google Scholar
  71. 71.
    Galloway NT. Urethral sphincter abnormalities in Parkinsonism. Br J Urol. 1983;55:691–3.Google Scholar
  72. 72.
    Chandiramani VA, Palace J, Fowler CJ. How to recognize patients with parkinsonism who should not have urological surgery. Br J Urol. 1997;80:100–4.Google Scholar
  73. 73.
    O’Sullivan SS, Holton JL, Massey LA, Williams DR, Revesz T, Lees AJ. Parkinson’s disease with Onuf’s nucleus involvement mimicking multiple system atrophy. J Neurol Neurosurg Psychiatry. 2008;79:232–4.Google Scholar
  74. 74.
    McKeith IG, Dickson DW, Lowe J, Emre M, O’Brien JT, Feldman H, et al. Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology. 2005;65:1863–72.Google Scholar
  75. 75.
    Sakakibara R, Ito T, Uchiyama T, Asahina M, Liu Z, Yamamoto T, et al. Lower urinary tract function in dementia of Lewy body type (DLB). J Neurol Neurosurg Psychiatry. 2005;76:729–32.Google Scholar
  76. 76.
    Routh JC, Crimmins CR, Leibovich BC, Elliott DS. Impact of Parkinson’s disease on continence after radical prostatectomy. Urology. 2006;68:575–7.Google Scholar
  77. 77.
    Roth B, Studer UE, Fowler CJ, Kessler TM. Benign prostatic obstruction and Parkinson’s disease–should transurethral resection of the prostate be avoided? J Urol. 2009;181:2209–13.Google Scholar
  78. 78.
    Magerkurth C, Schnitzer R, Braune S. Symptoms of autonomic failure in Parkinson’s disease: prevalence and impact on daily life. Clin Auton Res. 2005;15:76–82.Google Scholar
  79. 79.
    Matsui H, Nishinaka K, Oda M, Komatsu K, Kubori T, Udaka F. Does cardiac metaiodobenzylguanidine (MIBG) uptake in Parkinson’s disease correlate with major autonomic symptoms? Parkinsonism Relat Disord. 2006;12:284–8.Google Scholar
  80. 80.
    Balash Y, Peretz C, Leibovich G, Herman T, Hausdorff JM, Giladi N. Falls in outpatients with Parkinson’s disease: frequency, impact and identifying factors. J Neurol. 2005;252:1310–5.Google Scholar
  81. 81.
    Aranda B, Cramer P. Effect of apomorphine and L-dopa on the parkinsonian bladder. Neurourol Urodyn. 1993;12:203–9.Google Scholar
  82. 82.
    Sakakibara R, Uchiyama T, Hattori T, Yamanishi T. Urodynamic evaluation in Parkinson’s disease before and after levodopa treatment. 9th international catechecholamine symposium, Kyoto, Japan, 2001.Google Scholar
  83. 83.
    Kuno S, Mizuta E, Yamasaki S, Araki I. Effects of pergolide on nocturia in Parkinson disease: three female cases selected from over 400 patients. Parkinsonism Relat Disord. 2004;10:181–7.Google Scholar
  84. 84.
    Yamamoto M. Pergolide improves neurogenic bladder in patients with Parkinson’s disease. Mov Disord. 1997;12:328.Google Scholar
  85. 85.
    Benson GS, Raezer DM, Anderson JR, Saunders CD, Corrierie JN Jr. Effect of levodopa on urinary bladder. Urology. 1976;7:24–8.Google Scholar
  86. 86.
    Christmas TJ, Chapple CR, Lees AJ, Kempster PA, Frankel JP, Stern GM. Role of subcutaneous apomorphine in parkinsonian voiding dysfunction. Lancet. 1998;2:1451–3.Google Scholar
  87. 87.
    Winge K, Werdelin LM, Nielsen KK, Stimpel H. Effects of dopaminergic treatment on bladder function in Parkinson’s disease. Neurourol Urodyn. 2004;23:689–96.Google Scholar
  88. 88.
    Brusa L, Petta F, Pisani A, Miano R, Stanzione P, Moschella V, et al. Central acute D2 stimulation worsens bladder function in patients with mild Parkinson’s disease. J Urol. 2006;175:202–6.Google Scholar
  89. 89.
    Brusa L, Petta F, Pisani A, Moschella V, Iani C, Stanzione P, et al. Acute vs. chronic effects of L-dopa on bladder function in patients with mild Parkinson disease. Neurology. 2007;68:1455–9.Google Scholar
  90. 90.
    Uchiyama T, Sakakibara R, Yamamoto T, Ito T, Yamaguchi C, Awa Y, et al. Comparing bromocriptine effects with levodopa effects on bladder function in Parkinson’s disease. Mov Disord. 2009;24:2386–90.Google Scholar
  91. 91.
    Ishizuka O, Igawa Y, Nishizawa O, Andersson KE. Role of supraspinal tachykinins for volume- and L-dopa-induced bladder activity in normal conscious rats. Neurourol Urodyn. 2000;19:101–9.Google Scholar
  92. 92.
    Cooper JR, Bloom FE, Roth RH. The biochemical basis of neuropharmacology. Chapter 9, Dopamine. 8th ed. Oxford: Oxford University Press; 2003. p. 225–70.Google Scholar
  93. 93.
    Obeso JA, Olanow CW, Nutt JG. Levodopa motor complications in Parkinson’s disease. Trends Neurosci. 2000;23:S2–7.Google Scholar
  94. 94.
    Gibb WR, Lees AJ, Jenner P, Marsden CD. The dopamine neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) produces histological lesions in the hypothalamus of the common marmoset. Neurosci Lett. 1986;65:79–83.Google Scholar
  95. 95.
    Clemens S, Rye D, Hochman S. Restless legs syndrome: revisiting the dopamine hypothesis from the spinal cord perspective. Neurology. 2006;67:125–30.Google Scholar
  96. 96.
    Ishizuka O, Mizusawa H, Nishizawa O. Roles of dopaminergic receptors in bladder and erectile function at the spinal level. Asian J Androl. 2002;4:287–90.Google Scholar
  97. 97.
    El-Masu MM, Elmallah AI, Omar AG, Sharabi F. Dopamine modulates peripheral purinergic neurotransmission through multiple presynaptic receptors: tissue-dependent effects. Pharmacol Res. 1999;39:11–9.Google Scholar
  98. 98.
    Uchiyama T, Sakakibara R, Yoshiyama M, Yamamoto T, Ito T, Liu Z, et al. Biphasic effect of apomorphine, an anti-parkinsonian drug, on bladder function in rats. Neuroscience. 2009;162:1333–8.Google Scholar
  99. 99.
    Wein AJ, Rackley RR. Overactive bladder: a better understanding of pathophysiology, diagnosis and management. J Urol. 2006;175:S5–S10.Google Scholar
  100. 100.
    Abrams P, Andersson KE, Buccafusco JJ, Chapple C, de Groat WC, Fryer AD, et al. Muscarinic receptors: their distribution and function in body systems, and the implications for treating overactive bladder. Br J Pharmacol. 2006;148:565–78.Google Scholar
  101. 101.
    Donnellan CA, Fook L, McDonald P, Playfer JR. Oxybutynin and cognitive dysfunction. BMJ. 1997;315:1363–4.Google Scholar
  102. 102.
    Scheife R, Takeda M. Central nervous system safety of anticholinergic drugs for the treatment of overactive bladder in the elderly. Clin Ther. 2005;27:144–53.Google Scholar
  103. 103.
    Sakakibara R, Uchiyama T, Yamanishi T, Kishi M. Dementia and lower urinary dysfunction: with a reference to anticholinergic use in elderly population. Int J Urol. 2008;15:778–88.Google Scholar
  104. 104.
    Kono M, Nakamura Y, Ishiura Y, Komatsu K, Kontani H, Namiki M. Central muscarinic receptor subtypes regulating voiding in rats. J Urol. 2006;175:353–7.Google Scholar
  105. 105.
    Sakakibara R, Uchiyama T, Yoshiyama M, Yamanishi T, Hattori T. Preliminary communication: urodynamic assessment of donepezil hydrochloride in patients with Alzheimer’s disease. Neurourol Urodyn. 2005;24:273–5.Google Scholar
  106. 106.
    Sakakibara R, Ogata T, Uchiyama T, Kishi M, Ogawa E, Isaka S, et al. How to manage overactive bladder in elderly individuals with dementia? A combined use of donepezil, a central AChE inhibitor, and propiverine, a peripheral muscarine receptor antagonist. J Am Geriatr Soc. 2009;57:1515–7.Google Scholar
  107. 107.
    Yoshida A, Fujino T, Maruyama S, Ito Y, Taki Y, Yamada S. The forefront for novel therapeutic agents based on the pathophysiology of lower urinary tract dysfunction: bladder selectivity based on in vivo drug–receptor binding characteristics of antimuscarinic agents for treatment of overactive bladder. J Pharmacol Sci. 2010;112:142–50.Google Scholar
  108. 108.
    Kanai A, Zabbarova I, Oefelein M, Radziszewski P, Ikeda Y, Andersson KE. Mechanisms of action of botulinum neurotoxins, β3-adrenergic receptor agonists, and PDE5 inhibitors in modulating detrusor function in overactive bladders: ICI-RS 2011. Neurourol Urodyn. 2012;31:300–8.Google Scholar
  109. 109.
    Igawa Y, Michel MC. Pharmacological profile of β3-adrenoceptor agonists in clinical development for the treatment of overactive bladder syndrome. Naunyn Schmiedeberg’s Arch Pharmacol. 2013;386:177–83.Google Scholar
  110. 110.
    Proietti S, Giannantoni A, Sahai A, Khan MS, Dasgupta P. Overactive bladder and sexual function: a nightmare couple. BJU Int. 2012;110:921–4.Google Scholar
  111. 111.
    Lee CR, Tepper JM. Basal ganglia control of substantia nigra dopaminergic neurons. J Neural Transm Suppl. 2009;73:71–90.Google Scholar
  112. 112.
    Quik M, Wonnacott S. 62 and 42 nicotinic acetylcholine receptors as drug targets for Parkinson’s disease. Pharmacol Rev. 2011;63:938–66.Google Scholar
  113. 113.
    Fink-Jensen A, Schmidt LS, Dencker D, Schülein C, Wess J, Wörtwein G, et al. Antipsychotic-induced catalepsy is attenuated in mice lacking the M4 muscarinic acetylcholine receptor. Eur J Pharmacol. 2011;656:39–44.Google Scholar
  114. 114.
    Haraguchi K, Ito K, Kotaki H, Sawada Y, Iga T. Prediction of drug-induced catalepsy based on dopamine D1, D2, and muscarinic acetylcholine receptor occupancies. Drug Metab Dispos. 1997;25:675–84.Google Scholar
  115. 115.
    Hauser RA, Olanow CW. Orobuccal dyskinesia associated with trihexyphenidyl therapy in a patient with Parkinson’s disease. Mov Disord. 1993;8:512–4.Google Scholar
  116. 116.
    Matsuo H, Matsui A, Nasu R, Takanaga H, Inoue N, Hattori F, et al. Propiverine-induced Parkinsonism: a case report and a pharmacokinetic pharmacodynamic study in mice. Pharm Res. 2000;17:565–71.Google Scholar
  117. 117.
    Sugiyama Y. Parkinsonism induced by propiverine hydrochloride–report of 3 cases. Rinsho Shinkeigaku. 1997;37:873–5.Google Scholar
  118. 118.
    Yoshiyama Y, Kojima A, Itoh K, Uchiyama T, Arai K. Anticholinergics boost the pathological process of neurodegeneration with increased inflammation in a tauopathy mouse model. Neurobiol Dis. 2012;45:329–36.Google Scholar
  119. 119.
    Vaughan CP, Juncos JL, Burgio KL, Goode PS, Wolf RA, Johnson TM 2nd. Behavioral therapy to treat urinary incontinence in Parkinson disease. Neurology. 2011;76:1631–4.Google Scholar
  120. 120.
    Ito T, Sakakibara R, Nakazawa K, Uchiyama T, Yamamoto T, Liu Z, et al. Effects of electrical stimulation of the raphe area on the micturition reflex in cats. Neuroscience. 2006;142:1273–80.Google Scholar
  121. 121.
    Halliday GM, Blumbergs PC, Cotton RG, Blessing WW, Geffen LB. Loss of brainstem serotonin- and substance P-containing neurons in Parkinson’s disease. Brain Res. 1990;510:104–7.Google Scholar
  122. 122.
    Sakakibara R, Ito T, Uchiyama T, Awa Y, Yamaguchi C, Hattori T. Effects of milnacipran and paroxetine on overactive bladder due to neurologic diseases: a urodynamic assessment. Urol Int. 2008;81:335–9.Google Scholar
  123. 123.
    Hineno T, Mizobuchi M, Hiratani K, Inami Y, Kakimoto Y. Disappearance of circadian rhythms in Parkinson’s disease model induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in dogs. Brain Res. 1992;580:92–9.Google Scholar
  124. 124.
    Suchowersky O, Furtado S, Rohs G. Beneficial effect of intranasal desmopressin for nocturnal polyuria in Parkinson’s disease. Mov Disord. 1995;10:337–40.Google Scholar
  125. 125.
    Dostrovsky JO, Lozano AM. Mechanisms of deep brain stimulation. Mov Disord. 2002;3:S63–8.Google Scholar
  126. 126.
    Finazzi-Agro E, Peppe A, d’Amico A, Petta F, Mazzone P, Stanzione P, et al. Effects of subthalamic nucleus stimulation on urodynamic findings in patients with Parkinson’s disease. J Urol. 2003;169:1388–91.Google Scholar
  127. 127.
    Seif C, Herzog J, van der HC, Schrader B, Volkmann J, Deuschl G, et al. Effect of subthalamic deep brain stimulation on the function of the urinary bladder. Ann Neurol. 2004;55:118–20.Google Scholar
  128. 128.
    Winge K, Nielsen KK, Stimpel H, Lokkegaard A, Jensen SR, Werdelin L. Lower urinary tract symptoms and bladder control in advanced Parkinson’s disease: effects of deep brain stimulation in the subthalamic nucleus. Mov Disord. 2007;22:220–5.Google Scholar
  129. 129.
    Fritsche HM, Ganzer R, Schlaier J, Wieland WF, Brawanski A, Lange M. Acute urinary retention in two patients after subthalamic nucleus deep brain stimulation (STN-DBS) for the treatment of advanced Parkinson’s disease. Mov Disord. 2009;24:1553–4.Google Scholar
  130. 130.
    Kabay SC, Kabay S, Yucel M, Ozden H. Acute urodynamic effects of percutaneous posterior tibial nerve stimulation on neurogenic detrusor overactivity in patients with Parkinson’s disease. Neurourol Urodyn. 2009;28:62–7.Google Scholar
  131. 131.
    Brusa L, Finazzi Agrò E, Petta F, Sciobica F, Torriero S, Lo Gerfo E, et al. Effects of inhibitory rTMS on bladder function in Parkinson’s disease patients. Mov Disord. 2009;24:445–8.Google Scholar
  132. 132.
    Giannantoni A, Rossi A, Mearini E, Del Zingaro M, Porena M, Berardelli A. Botulinum toxin A for overactive bladder and detrusor muscle overactivity in patients with Parkinson’s disease and multiple system atrophy. J Urol. 2009;182:1453–7.Google Scholar
  133. 133.
    Kulaksizoglu H, Parman Y. Use of botulinim toxin-A for the treatment of overactive bladder symptoms in patients with Parkinson’s disease. Parkinsonism Relat Disord. 2010;16:531–4.Google Scholar
  134. 134.
    Sakakibara R, Panicker J, Finazziagro E, Iacovelli V, Bruschini H. A guideline for the management of bladder dysfunction in Parkinson’s disease and other gait disorders. Neurourol Urodyn. 2016;35:551.Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Neurology, Internal Medicine, Sakura Medical CenterToho UniversitySakuraJapan

Personalised recommendations