Advertisement

Neurourology pp 395-400 | Cite as

Bladder Re-innervation Procedures

  • Karl-Dietrich SievertEmail author
Chapter

Abstract

In 1967, Carlsson and Sundin reported on a 4-year-old spina bifida patient who underwent rerouting of the thoracic 10–11 ventral (motor) roots to S1–S2 ventral roots. After eight months of recovery, reflex micturition and bladder sensation appeared [1, 2]. Despite this previous interest in nerve rerouting to reinnervate the neurogenic bladder, it was Xiao and Godec who further pursued this concept [3]. Studies were first done in animals, confirming that the bladder could be reinnervated by a somatic nerve and that reflex micturition could occur [4]. This was followed by reports of some early clinical success in humans with spina bifida [5].

Abbreviations

C

Cervical

DO

Detrusor overactivity

DR

Dorsal root

DSD

Detrusor sphincter dyssynergia

EMG

Electromyography

L

Lumbar

LUT

Lower urinary tract

S

Sacral

Th

Thoracic

UMND

Upper motor neuron disease

VR

Ventral root

References

  1. 1.
    Carlsson CA, Sundin T. Reconstruction of efferent pathways to the urinary bladder in a paralegic child. Rev Surg. 1967;24:73–6.PubMedGoogle Scholar
  2. 2.
    Carlsson C, Sundin T. Reconstruction of afferent and efferent nervous pathways to the urinary bladder in two paraplegic patients. Spine. 1980;5:37–41.CrossRefGoogle Scholar
  3. 3.
    Xiao CG, Godec CJ. A possible new reflex pathway for micturition after spinal cord injury. Paraplegia. 1994;32:300–7.PubMedGoogle Scholar
  4. 4.
    Xiao CG, de Groat WC, Godec CJ, Dai C, Xiao Q. Skin-CNS-bladder’ reflex pathway for micturition after spinal cord injury and its underlying mechanisms. J Urol. 1999;162:936–42.CrossRefGoogle Scholar
  5. 5.
    Xiao CG, Du MX, Li B, Liu Z, Chen M, Chen ZH, et al. An artificial somatic autonomic reflex pathway procedure for bladder control in children with spina bifida. J Urol. 2005;173:2112–6.CrossRefGoogle Scholar
  6. 6.
    Network. NRboSCII. Spinal Cord Injury Statistics. 2012.Google Scholar
  7. 7.
    Anderson KD. Targeting recovery: priorities of the spinal cord-injured population. J Neurotrauma. 2004;21:1371–83.CrossRefGoogle Scholar
  8. 8.
    Abrams P, Andersson KE, Birder L, Brubaker L, Cardozo L, Chapple C, et al. Fourth International Consultation on Incontinence. Recommendations of the International Scientific Committee: evaluation and treatment of urinary incontinence, pelvic organ prolapse and faecal incontinence. Neurourol Urodyn. 2010;29:213–40.CrossRefGoogle Scholar
  9. 9.
    Sievert KD, Amend B, Gakis G, Toomey P, Badke A, Kaps HP, et al. Early sacral neuromodulation prevents urinary incontinence after complete spinal cord injury. Ann Neurol. 2010;67:74–84.CrossRefGoogle Scholar
  10. 10.
    Pannek J, Stöhrer M, Blok B, Castro-Diaz D, Del Popolo G, Kramer G, et al. Guidelines on neurogenic lower urinary tract dysfunction. Uroweb. 2011; 2011.Google Scholar
  11. 11.
    Brubaker L, Gousse A, Sand P, Thompson C, Patel V, Zhou J, et al. Treatment satisfaction and goal attainment with onabotulinumtoxinA in patients with incontinence due to idiopathic OAB. Int Urogynecol J. 2012;23:1017–25.CrossRefGoogle Scholar
  12. 12.
    Vorstman B, Schlossberg S, Kass L. Investigations on urinary bladder reinnervation: historical perspective and review. Urology. 1987;30:89–96.CrossRefGoogle Scholar
  13. 13.
    Xiao CG. Reinnervation for neurogenic bladder: historic review and introduction of a somatic-autonomic reflex pathway procedure for patients with spinal cord injury or spina bifida. Eur Urol. 2006;49:22–8. discussion 8-9.CrossRefGoogle Scholar
  14. 14.
    Xiao CG, Du MX, Dai C, Li B, Nitti VW, de Groat WC. An artificial somatic-central nervous system-autonomic reflex pathway for controllable micturition after spinal cord injury: preliminary results in 15 patients. J Urol. 2003;170:1237–41.CrossRefGoogle Scholar
  15. 15.
    Kelley C. Creation of a somatic-autonomic reflex pathway for treatment of neurogenic bladder in patients with spinal cord injury: preliminary results of the first 2 USA patients. J Urol. 2005;173:1132A.CrossRefGoogle Scholar
  16. 16.
    Sievert KD, Xiao CG, Hennenlotter J, Seibold J, Merseburger AS, Kaminskie J, et al. Voluntary micturition after intradural nerve anastomosis. Urologe A. 2005;44:756–61.CrossRefGoogle Scholar
  17. 17.
    Sandler AD. Children with spina bifida: key clinical issues. Pediatr Clin N Am. 2010;57:87–92.CrossRefGoogle Scholar
  18. 18.
    Zheng X, Hou C, Chen A, Xu Z, Wang J, Lin H. Experimental study on reconstruction of physiological reflex arc after medullary cone injury in rats. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2008;22:426–30.PubMedGoogle Scholar
  19. 19.
    Ozawa H. Neural tube defects: prevalence, etiology and prevention. Int J Urol. 2009;16:49–57.CrossRefGoogle Scholar
  20. 20.
    Bhide P, Sagoo GS, Moorthie S, Burton H, Kar A. Systematic review of birth prevalence of neural tube defects in India. Birth Defects Res A Clin Mol Teratol. 2012;97:437–43.CrossRefGoogle Scholar
  21. 21.
    Puri P. Newborn surgery. 3rd ed. London: Hodder Arnold; 2011. p. 811.CrossRefGoogle Scholar
  22. 22.
    Mitchell LE, Adzick NS, Melchionne J, Pasquariello PS, Sutton LN, Whitehead AS. Spina bifida. Lancet. 2004;364:1885–95.CrossRefGoogle Scholar
  23. 23.
    Luff AR. Dynamic properties of fast and slow skeletal muscles in the cat and rat following cross-reinnervation. J Physiol. 1974;248:83–96.CrossRefGoogle Scholar
  24. 24.
    Midha R. Nerve transfers for severe brachial plexus injuries: a review. Neurosurg Focus. 2004;16:e5.CrossRefGoogle Scholar
  25. 25.
    Tuite GF, Homsy Y, Polsky EG, Reilly MA, Carey CM, Winesett SP, Rodriguez LF, et al. Urologic outcome of the Xiao procedure in children with myelomeningocele and lipomyelmoeningocele undergoing spinal cord dethering: results of a randomized prospective double-blind study. J Urol. 2016;196:1735–40.CrossRefGoogle Scholar
  26. 26.
    Li C, Stanton JA, Robertson TM, Suttie JM, Sheard PW, Harris AJ, et al. Nerve growth factor mRNA expression in the regenerating antler tip of red deer (Cervus elaphus). PLoS One. 2007;2:e148.CrossRefGoogle Scholar
  27. 27.
    Ruggieri MS, Braverman A, Bernal R, Lamarre N, Brown J, Barbe M. Reinnervation of urethral and anal sphincters with femoral motor nerve to pudendal nerve transfer. Neurourol Urodyn. 2011;30:1695–704.CrossRefGoogle Scholar
  28. 28.
    Tatagiba M, Matthies C, Samii M. Facial nerve reconstruction in neurofibromatosis 2. Acta Neurochir. 1994;126:72–5.CrossRefGoogle Scholar
  29. 29.
    Peters KM, Gilmer H, Feber K, Girdler BJ, Nantau W, Trock G, et al. US pilot study of lumbar to sacral nerve rerouting to restore voiding and bowel function in spina bifida: 3-year experience. Adv Urol. 2014;2014:863209.CrossRefGoogle Scholar
  30. 30.
    Xiao CG. Xiao procedure for neurogenic bladder in spinal cord injury and spina bifida. Curr Bladder Dysfunct Rep. 2012;7:83–7.CrossRefGoogle Scholar
  31. 31.
    Lin H, Hou C, Chen A, Xu Z. Innervation of reconstructed bladder above the level of spinal cord injury for inducing micturition by contractions of the abdomen-to-bladder reflex arc. Neurosurgery. 2010;66:948–52.PubMedGoogle Scholar
  32. 32.
    Moldenhauer JS. In utero repair of spina bifida. Am J Perinatol. 2014;31:595–604.CrossRefGoogle Scholar
  33. 33.
    Adzick NS. Fetal surgery for spina bifida: past, present, future. Semin Pediatr Surg. 2013;22:10–7.CrossRefGoogle Scholar
  34. 34.
    Livshits A, Catz A, Folman Y, Witz M, Livshits V, Baskov A, et al. Reinnervation of the neurogenic bladder in the late period of the spinal cord trauma. Spinal Cord. 2004;42:211–7.CrossRefGoogle Scholar
  35. 35.
    Su QJ, Wang ZW, Han N, He J, Wang TB. The anatomic study of transferring thoracic nerve roots to lumbar nerve root inside the spinal canal of paraplegia. Zhonghua Wai Ke Za Zhi. 2010;48:1577–80.PubMedGoogle Scholar
  36. 36.
    Lin H, Hou C, Zhen X, Xu Z. Clinical study of reconstructed bladder innervation below the level of spinal cord injury to produce urination by Achilles tendon-to-bladder reflex contractions. J Neurosurg Spine. 2009;10:452–7.CrossRefGoogle Scholar
  37. 37.
    Sievert KD, Amend B, Roser F, Badke A, Toomey P, Baron C, et al. Challenges for restoration of lower urinary tract innervation in patients with spinal cord injury: a European single-center retrospective study with long-term follow-up. Eur Urol. 2016;69:771–4.CrossRefGoogle Scholar
  38. 38.
    Tuite GF, Polsky EG, Homsy Y, Reilly MA, Carey CM, Parrish Winesett S, et al. Lack of efficacy of an intradural somatic-to-autonomic nerve anastomosis (Xiao procedure) for bladder control in children with myelomeningocele and lipomyelomeningocele: results of a prospective, randomized, double-blind study. J Neurosurg Pediatr. 2016;18:150–63.CrossRefGoogle Scholar
  39. 39.
    Rasmussen MM, Rawashdeh YF, Clemmensen D, Tankisi H, Fuglsang-Frederiksen A, Rawashdeh Y, et al. The artificial somato-autonomic reflex arch does not improve lower urinary tract function in patients with spinal cord lesions. J Urol. 2015;193:598–604.CrossRefGoogle Scholar
  40. 40.
    Sievert KD, Winter B, Anastasiadis A, Amend B, Badke A, Kaps HP, et al. 22nd Annual Congress of the European Association of Urology: Video Abstract V1: Intraspinal nerve re-routing to reestablish bladder function in spinal cord injured patients. Eur Urol Suppl. 2007;6:293.CrossRefGoogle Scholar
  41. 41.
    Tuite G, Storrs B, Homsy Z, Gaskill S, Polsky E, Reilly M, et al. Attempted bladder reinnervation and creation of a scratch reflex for bladder emptying through a somatic to autonomic intradural anastomosis. J Neurosurg Pediatr. 2012;12:80–6.CrossRefGoogle Scholar
  42. 42.
    Rasmussen MM, Rawashdeh YF, Clemmensen D, Tankisi H, Fuglsang-Frederiksen A, Krogh K, et al. The artificial somato-autonomic reflex arch does not improve bowel function in subjects with spinal cord injury. Spinal Cord. 2015;53:705–10.CrossRefGoogle Scholar
  43. 43.
    Peters KM, Girdler B, Turzewski C, Trock G, Feber K, Nantau W, et al. Outcomes of lumbar to sacral nerve rerouting for spina bifida. J Urol. 2010;184:702–7.CrossRefGoogle Scholar
  44. 44.
    Brading AF, Ramalingam T. Mechanisms controlling normal defecation and the potential effects of spinal cord injury. Prog Brain Res. 2006;152:345–58.CrossRefGoogle Scholar
  45. 45.
    Stiens SA, Bergman SB, Formal CS. Spinal cord injury rehabilitation. 4. Individual experience, personal adaptation, and social perspectives. Arch Phys Med Rehabil. 1997;78:S65–72.CrossRefGoogle Scholar
  46. 46.
    Barbe MF, Brown JM, Pontari MA, Dean GE, Braverman AS, Ruggieri MR. Feasibility of a femoral nerve motor branch for transfer to the pudendal nerve for restoring continence: a cadaveric study. J Neurosurg Spine. 2011;15:526–31.CrossRefGoogle Scholar
  47. 47.
    Ma J, Zhu Y, Zhu A, Wei Z, Cao X. Experimental study on establishment of physiological micturition reflex arc for atonic bladder after spinal cord injury. Article in Chinese. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2010;24:1361–6.PubMedGoogle Scholar
  48. 48.
    Hou CL, Zhong HB, Liu MX. Experimental study on establishment of artificial bladder reflex arc after spinal cord injury. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2000;14:10–3.PubMedGoogle Scholar
  49. 49.
    Zhong G, Hou C, Wang S. Experimental study on the artificial bladder reflex arc established in therapy of flaccid bladder after spinal cored injury. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2006;20:812–5.PubMedGoogle Scholar
  50. 50.
    Liu Z, Liu CJ, Hu XW, Du MX, Xiao CG. An electrophysiological study on the artificial somato-autonomic pathway for inducing voiding. Zhonghua Yi Xue Za Zhi. 2005;85:1315–8.PubMedGoogle Scholar
  51. 51.
    Jea A. Editorial: the positives of a negative study. J Neurosurg Pediatr. 2016;18:146–7.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Klinik für Urologie, Section NeuroUrology and Reconstructive UrologyKlinikum LippeDetmoldGermany
  2. 2.Department of UrologyUniversity Hospital Tübingen (UKT)TübingenGermany
  3. 3.Department of UrologyMedical University ViennaViennaAustria

Personalised recommendations