Advertisement

Neurourology pp 195-198 | Cite as

Renal Function Evaluation

  • Nuno Grilo
  • Brigitte SchurchEmail author
Chapter

Abstract

Renal function evaluation is a key factor in the long-term follow-up of patients with neurogenic bladder dysfunction. It is as crucial as complex, since many of the tests available nowadays, lack accuracy, particularly in this group of patients [1]. Lawrenson et al. showed that patients with neural tube defects have an eightfold greater risk of developing renal failure, whereas spinal cord injury patients present a fivefold greater risk [2]. As it would be expected, this risk increases exponentially with age. In multiple sclerosis, the overall risk of upper tract damage is considerably lower, being almost similar to the general population [3–5]. Whatever the neurological condition, an accurate renal function evaluation is then key to early diagnosis and follow-up of various kidney diseases in this group of patients.

References

  1. 1.
    Castro MJ, Apple DF, Hillegass EA, Dudley GA. Influence of complete spinal cord injury on skeletal muscle cross-sectional area within the first 6 months of injury. Eur J Appl Physiol. 1999;80:373–8.Google Scholar
  2. 2.
    Lawrenson R, Wyndaele JJ, Vlachonikolis I, Farmer C, Glickman S. Renal failure in patients with neurogenic lower urinary tract dysfunction. Neuroepidemiology. 2001;20:138–43.Google Scholar
  3. 3.
    Sirls LT, Zimmern PE, Leach GE. Role of limited evaluation and aggressive medical management in multiple sclerosis: a review of 113 patients. J Urol. 1994;151:946–50.Google Scholar
  4. 4.
    Collins CW, Winters JC, American Urological Association, Society of Urodynamics Female Pelvic Medicine and Urogenital Reconstruction. AUA/SUFU adult urodynamics guideline: a clinical review. Urol Clin North Am. 2014;41:353–62.Google Scholar
  5. 5.
    Fletcher SG, Dillon BE, Gilchrist AS, Haverkorn RM, Yan J, Frohman EM, et al. Renal deterioration in multiple sclerosis patients with neurovesical dysfunction. Mult Scler. 2013;19:1169–74.Google Scholar
  6. 6.
    Blok B, et al. EAU guidelines on neuro-urology. Uroweb. 2015 [cited 2017 Mar 15]. http://uroweb.org/guideline/neuro-urology/.
  7. 7.
    Ruffion A, de Sèze M, Denys P, Perrouin-Verbe B, Chartier-Kastler E, Groupe d’Etudes de Neuro-Urologie de Langue Française. Groupe d’Etudes de Neuro-Urologie de Langue Française (GENULF) guidelines for the management of spinal cord injury and spina bifida patients. Prog Urol. 2007;17:631–3.Google Scholar
  8. 8.
    Traynor J, Mactier R, Geddes CC, Fox JG. How to measure renal function in clinical practice. BMJ. 2006;333:733–7.Google Scholar
  9. 9.
    Bröchner-Mortensen J, Rödbro P. Selection of routine method for determination of glomerular filtration rate in adult patients. Scand J Clin Lab Invest. 1976;36:35–43.Google Scholar
  10. 10.
    Michels WM, Grootendorst DC, Verduijn M, Elliott EG, Dekker FW, Krediet RT. Performance of the Cockcroft-Gault, MDRD, and new CKD-EPI formulas in relation to GFR, age, and body size. Clin J Am Soc Nephrol. 2010;5:1003–9.Google Scholar
  11. 11.
    Chasis H, Smith HW. The excretion of urea in normal man and in subjects with glomerulonephritis. J Clin Invest. 1938;17:347–58.Google Scholar
  12. 12.
    Deinum J, Derkx FH. Cystatin for estimation of glomerular filtration rate? Lancet. 2000;356:1624–5.Google Scholar
  13. 13.
    Risch L, Herklotz R, Blumberg A, Huber AR. Effects of glucocorticoid immunosuppression on serum cystatin C concentrations in renal transplant patients. Clin Chem. 2001;47:2055–9.Google Scholar
  14. 14.
    Kos J, Stabuc B, Cimerman N, Brünner N. Serum cystatin C, a new marker of glomerular filtration rate, is increased during malignant progression. Clin Chem. 1998;44:2556–7.Google Scholar
  15. 15.
    Collé A, Tavera C, Prévot D, Leung-Tack J, Thomas Y, Manuel Y, et al. Cystatin C levels in sera of patients with human immunodeficiency virus infection. A new avidin-biotin ELISA assay for its measurement. J Immunoassay. 1992;13:47–60.Google Scholar
  16. 16.
    Mingat N, Villar E, Allard J, Castel-Lacanal E, Guillotreau J, Malavaud B, et al. Prospective study of methods of renal function evaluation in patients with neurogenic bladder dysfunction. Urology. 2013;82:1032–7.Google Scholar
  17. 17.
    Boubaker A, Prior JO, Meuwly J-Y, Bischof-Delaloye A. Radionuclide investigations of the urinary tract in the era of multimodality imaging. J Nucl Med. 2006;47:1819–36.Google Scholar
  18. 18.
    Taylor AT. Radionuclides in nephrourology, part 2: pitfalls and diagnostic applications. J Nucl Med. 2014;55:786–98.Google Scholar
  19. 19.
    Gordon I, Colarinha P, Fettich J, Fischer S, Frökier J, Hahn K, et al. Guidelines for standard and diuretic renography in children. Eur J Nucl Med. 2001;28:BP21–30.Google Scholar
  20. 20.
    Piepsz A, Ismaili K, Hall M, Collier F, Tondeur M, Ham H. How to interpret a deterioration of split function? Eur Urol. 2005;47:686–90.Google Scholar
  21. 21.
    Wang Y-T, Chiu N-T, Chen M-J, Huang J-J, Chou H-H, Chiou Y-Y. Correlation of renal ultrasonographic findings with inflammatory volume from dimercaptosuccinic acid renal scans in children with acute pyelonephritis. J Urol. 2005;173:190–4.Google Scholar
  22. 22.
    Kovanlikaya A, Okkay N, Cakmakci H, Ozdoğan O, Degirmenci B, Kavukcu S. Comparison of MRI and renal cortical scintigraphy findings in childhood acute pyelonephritis: preliminary experience. Eur J Radiol. 2004;49:76–80.Google Scholar
  23. 23.
    Ritchie G, Wilkinson AG, Prescott RJ. Comparison of differential renal function using technetium-99m mercaptoacetyltriglycine (MAG3) and technetium-99m dimercaptosuccinic acid (DMSA) renography in a paediatric population. Pediatr Radiol. 2008;38:857–62.Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Urology Department, DSCAUniversity Hospital LausanneLausanneSwitzerland
  2. 2.Neurourology Unit, Department of NeuroscienceUniversity Hospital LausanneLausanneSwitzerland

Personalised recommendations