Ecological Indicators and Food-Web Models as Tools to Study Historical Changes in Marine Ecosystems

  • Marta CollEmail author
  • Heike K. Lotze


Marine ecosystems have been influenced by human activities throughout history, with a general intensification and diversification of human impacts over time. Yet only recently have we begun to reconstruct the resulting changes in marine populations and ecosystems, and their consequences for human well-being. In this chapter, we present the use of ecological indicators and food-web models as tools to analyse historical changes in marine species and ecosystems. Because marine ecosystems are inherently complex, ecological indicators can help describe them and their changes in simpler terms. Commonly used indicators include species occurrence and abundance, functional group presence such as feeding types, habitat builders or filter feeders, as well as species traits such as body size or trophic ecology. These can be reconstructed for past time periods and used to analyse changes in individual populations or across multiple species over time, thereby providing insight into changes in marine species and ecosystems. A step further, food webs combine multiple species or functional groups and aim to represent the more complex relationships and interactions within marine ecosystems. These can range from qualitative, conceptual food-web illustrations to quantitative modelling approaches that can be used to analyse emerging food-web properties and changes in food-web structure and functioning. We provide a wide range of examples on how different indicators and models have been used and discuss the advantages and disadvantages of different approaches. Finally, we provide an outlook on their potential to advance marine historical research in the future.


Ecological indicators Food web structure Functional groups Trophic levels Historical changes Marine ecosystems Ecosystem modeling 


  1. Ainsworth, C., Pitcher, T., Heymans, J., & Vasconcellos, M. (2008). Reconstructing historical marine ecosystems using food web models: Northern British Columbia from Pre-European contact to present. Ecological Modelling, 216(3), 354–368.CrossRefGoogle Scholar
  2. Airoldi, L., & Beck, M. W. (2007). Loss, status and trends for coastal marine habitats of Europe. Oceanography and Marine Biology – An Annual Review, 45, 345–405.Google Scholar
  3. Allesina, S., Alonso, D., & Pascual, P. (2008). A general model for food web structure. Science, 320, 658–661.CrossRefGoogle Scholar
  4. Anderson, A. (2008). Short and sometimes sharp: Human impacts on marine resources in the archaeology and history of south Polynesia. In T. C. Rick & J. M. Erlandson (Eds.), Human impacts on ancient marine ecosystems: A global perspective (pp. 21–43). Berkeley: University of California Press.Google Scholar
  5. Anticamara, J., Watson, R., Gelchu, A., & Pauly, D. (2011). Global fishing effort (1950–2010): Trends, gaps, and implications. Fisheries Research, 107(1–3), 131–136.CrossRefGoogle Scholar
  6. Bascompte, J., Melian, C. J., & Sala, E. (2005). Interaction strength combinations and the overfishing of a marine food web. Proceedings of the National Academy of Sciences of the United States of America, 102(15), 5443–5447. doi: 10.1073/pnas.0501562102.CrossRefGoogle Scholar
  7. Beck, M. W., Heck, K. L. J., Able, K. W., Childers, D. L., Eggleston, D. B., Gillanders, B. M., Halpern, B., Hays, C. G., Hoshino, K., Minello, T. J., Orth, R. J., Sheridan, P. F., & Weinstein, M. P. (2001). The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates. BioScience, 51(8), 633–641.CrossRefGoogle Scholar
  8. Bourque, B. J., Jahnson, B. J., & Steneck, R. S. (2008). Possible prehistoric fishing effects on coastal marine food webs in the Gulf of Maine. In T. C. Rick & J. M. Erlandson (Eds.), Human impacts on ancient marine ecosystems: A global perspective (pp. 165–186). Berkeley: University of California Press.Google Scholar
  9. Broughton, J. M. (1997). Widening diet breadth declining foraging efficiency and prehistoric harvest pressure: Ichthyofaunal evidence from the Emeryville Shellmound California. Antiguity, 71, 845–862.CrossRefGoogle Scholar
  10. Broughton, J. M. (2002). Prey spatial structure and behavior affect archaeological tests of optimal foraging models: Examples from the Emeryville Shellmound vertebrate fauna. World Archaeology, 34, 60–83.CrossRefGoogle Scholar
  11. Byrnes, J. E., Reynolds, P. L., & Stachowicz, J. J. (2007). Invasions and extinctions reshape coastal food webs. PLoS ONE, 2, e295.CrossRefGoogle Scholar
  12. Christensen, V., & Walters, C. (2004). Ecopath with Ecosim: Methods, capabilities and limitations. Ecological Modelling, 72, 109–139.CrossRefGoogle Scholar
  13. Cohen, A. N., & Carlton, J. T. (1998). Accelerating invasion rate in a highly invaded estuary. Science, 279, 555–558.CrossRefGoogle Scholar
  14. Coll, M., Bundy, A., & Shannon, L. J. (2008a). Ecosystem modelling using the Ecopath with Ecosim approach. In B. Megrey & E. Moksness (Eds.), Computers in fisheries research (pp. 225–291). Berlin: Springer. doi: 10.1007/978-1-4020-8636-6_8.Google Scholar
  15. Coll, M., Lotze, H. K., & Romanuk, T. N. (2008b). Structural degradation in Mediterranean Sea food webs: Testing ecological hypotheses using stochastic and mass-balance modelling. Ecosystems, 11(6), 939–960. doi: 10.1007/s10021-008-9171-y.CrossRefGoogle Scholar
  16. Coll, M., Palomera, I., Tudela, S., & Dowd, M. (2008c). Food-web dynamics in the South Catalan Sea ecosystem (NW Mediterranean) for 1978–2003. Ecological Modelling, 217(1–2), 95–116. doi: 10.1016/j.ecolmodel.2008.06.013.CrossRefGoogle Scholar
  17. Coll, M., Carreras, M., Ciércoles, C., Cornax, M. J., Morote, E., & Saez, R. (2014). Assessing fishing and marine biodiversity changes using fishers’ perceptions: The Spanish Mediterranean and Gulf of Cadiz case study. PLoS ONE, 9(1), e85670. doi: 10.1371/journal.pone.0085670.CrossRefGoogle Scholar
  18. Collins, M. J., Harland, J., Craig, O., Richter, K. K., van Doorn, N., & Trueman. C. (2010). What use are old fish bones in helping to understand the history of marine animal populations? In R. F. T. Gertwagen, O. Giovanardi, S. Libralato, C. Solidoro, & S. Raicevich (eds), When humanities meet ecology: Historic changes in Mediterranean and Black Sea marine biodiversity and ecosystems since the Roman period until nowadays; languages, methodologies and perspectives; HMAP International Summer School, 31 August-4 September 2009, the Abdus Salam International Centre for Theoretical Physics, Trieste (Italy), pp. 61–71. Roma: ISPRA.Google Scholar
  19. Cooper, S. R., & Brush, G. S. (1993). A 2500-year history of anoxia and eutrophication in Chesapeake Bay. Estuaries, 16, 617–626.CrossRefGoogle Scholar
  20. Cooper, S. R., McGlothlin, S. K., Madritch, M., & Jones, D. L. (2004). Paleoecological evidence of human impacts on the Neuse and Pamlico Estuaries of North Carolina USA. Estuaries, 27, 617–633.CrossRefGoogle Scholar
  21. Corbett, D. G., Causey, D., Clementz, M., Koch, P. L., Doroff, A., Lefevre, C., & West, D. (2008). Aleut hunters, sea otters and sea cows: Three thousand years of interactions in the Western Aleutian Islands, Alaska. In T. C. Rick & J. M. Erlandson (Eds.), Human impacts on ancient marine ecosystems: A global perspective (pp. 43–75). Berkeley: University of California Press.Google Scholar
  22. Costanza, R., d’Arge, R., De Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O’Neill, R. V., & Paruelo, J. (1997). The value of the world’s ecosystem services and natural capital. Nature, 387, 253–260.CrossRefGoogle Scholar
  23. Dambacher, J. M., Li, H. W., & Rossignol, P. A. (2002). Relevance of community structure in assessing indeterminacy of ecological predictions. Ecology, 83(5), 1372–1385.CrossRefGoogle Scholar
  24. Dambacher, J. M., Li, H. W., & Rossignol, P. A. (2003). Qualitative predictions in model ecosystems. Ecological Modelling, 161(1–2), 79–93.CrossRefGoogle Scholar
  25. Dambacher, J. M., Gaughan, D. J., Rochet, M. J., Rossignol, P. A., & Trenkel, V. M. (2009). Qualitative modelling and indicators of exploited ecosystems. Fish and Fisheries, 10(3), 305–322.CrossRefGoogle Scholar
  26. Dulvy, N. K., Sadovy, Y., & Reynolds, J. D. (2003). Extinction vulnerability in marine populations. Fish and Fisheries, 4(1), 25–64.CrossRefGoogle Scholar
  27. Dulvy, N. K., Pinnegar, J. K., & Reynolds, J. D. (2009). Holocene extinctions in the sea. In S. T. Turvey (Ed.), Holocene extinctions (pp. 129–150). Oxford: Oxford University Press.CrossRefGoogle Scholar
  28. Dunne, J. A., Williams, R. J., & Martinez, N. D. (2004). Network structure and robustness of marine food webs. Marine Ecology Progress Series, 273, 291–302.CrossRefGoogle Scholar
  29. Dunne, J. A., Williams, R. J., Martinez, N. D., Wood, R. A., & Erwin, D. H. (2008). Compilation and network analyses of Cambrian food webs. PLoS Biology, 6(4), e102.CrossRefGoogle Scholar
  30. Eddy, T. D., Gardner, J. P. A., & Perez-Matus, A. (2010). Applying fishers’ ecological knowledge to construct past and future lobster stocks in the Juan Fernandez Archipelago Chile. PLoS ONE, 5, e13670.CrossRefGoogle Scholar
  31. Essington, T. E., Beaudreau, A. H., & Wiedenmann, J. (2006). Fishing through marine food webs. Proceedings of the National Academy of Sciences of the United States of America, 103(9), 3171–3175.CrossRefGoogle Scholar
  32. FAO. (2012). The state of world fisheries and aquaculture. Rome: FAO.Google Scholar
  33. Ferretti, F., Myers, R. A., Serena, F., & Lotze, H. K. (2008). Loss of large predatory sharks from the Mediterranean Sea. Conservation Biology, 22(4), 952–964. doi: 10.1111/j.1523-1739.2008.00938.x.CrossRefGoogle Scholar
  34. Ferretti, F., Worm, B., Britten, G., Heithaus, M., & Lotze, H. (2010). Patterns and ecosystem consequences of shark declines in the ocean. Ecology Letters, 13, 1055–1071.Google Scholar
  35. Fofonoff, P. W., Ruiz, G. M., Steves, B., Hines, A. H., Carlton, J. T. (2003). National exotic marine and estuarine species information system. In Smithsonian Environmental Research Center. Edgewater.Google Scholar
  36. Fulton, E. A. (2010). Approaches to end-to-end ecosystem models. Journal of Marine Systems, 81, 171–183.CrossRefGoogle Scholar
  37. Halpern, B. S., Walbridge, S., Selkoe, K. A., Kappel, C. V., Micheli, F., D’Agrosa, C., Bruno, J. F., Casey, K. S., Ebert, C., Fox, H. E., Fujita, R., Heinemann, D., Lenihan, H. S., Madin, E. M. P., Perry, M. T., Selig, E. R., Spalding, M., Steneck, R., & Watson, R. (2008). A global map of human impact on marine ecosystems. Science, 319(5865), 948–952. doi: 10.1126/science.1149345.CrossRefGoogle Scholar
  38. Harnik, P. G., Lotze, H. K., Anderson, S. C., Finkel, Z. V., Finnegan, S., Lindberg, D. R., Liow, L. H., Lockwood, R., McClain, C. R., McGuire, J. L., O’Dea, A., Pandolfi, J. M., Simpson, C., & Tittensor, D. P. (2012). Extinctions in ancient and modern seas. Trends in Ecology and Evolution, 27, 608–617.CrossRefGoogle Scholar
  39. Hooper, D. U., Chapin, F. S., Ewel, J. J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J. H., Lodge, D. M., Loreau, M., Naeem, S., Schmid, B., Setala, H., Symstad, A. J., Vandermeer, J., & Wardle, D. A. (2005). Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecological Monographs, 75(1), 3–35.CrossRefGoogle Scholar
  40. Huntington, H. P. (2000). Using traditional ecological knowledge in science: Methods and applications. Ecological Applications, 10(5), 1270–1274.CrossRefGoogle Scholar
  41. Hutchings, J. A., & Reynolds, J. D. (2004). Marine fish population collapses: Consequences for recovery and extinction risk. BioScience, 54, 297–309.CrossRefGoogle Scholar
  42. Jackson, J. B. C., Kirby, M. X., Berger, W. H., Bjorndal, K. A., Botsford, L. W., Bourque, B. J., Bradbury, R. H., Cooke, R., Erlandson, J., Estes, J. A., Hughes, T. P., Kidwell, S., Lange, C. B., Lenihan, H. S., Pandolfi, J. M., Peterson, C. H., Steneck, R. S., Tegner, M. J., & Warner, R. R. (2001). Historical overfishing and the recent collapse of coastal ecosystems. Science, 293(5530), 629–638.CrossRefGoogle Scholar
  43. Jennings, S., & Blanchard, J. (2004). Fish abundance with no fishing: Predictions based on macroecological theory. Journal of Animal Ecology, 73, 632–642.CrossRefGoogle Scholar
  44. Josephson, E., Smith, T. D., & Reeves, R. R. (2008). Depletion within a decade: The American 19th-century North Pacific right whale fishery. In D. J. Starkey & M. Barnard (Eds.), Oceans past: Management insights from the history of marine animal populations (pp. 133–147). London: Earthscan Research Edition.Google Scholar
  45. Kirby, M. X. (2004). Fishing down the coast: Historical expansion and collapse of oyster fisheries along continental margins. Proceedings of the National Academy of Sciences of the United States of America, 101(35), 13096.CrossRefGoogle Scholar
  46. Kittinger, J. N., Pandolfi, J. M., Blodgett, J. H., Hunt, T. L., Jiang, H., Maly, K., McClenachan, L. E., Schultz, J. K., & Wilcox, B. A. (2011). Historical reconstruction reveals recovery in Hawaiian coral reefs. PLoS ONE, 6(10), e25460.CrossRefGoogle Scholar
  47. Layman, C., Araujo, M. S., Boucek, R., Hammerschlag-Peyer, C. M., Harrison, E., Jud, Z. R., & Matich, P. (2011). Applying stable isotopes to examine food-web structure: An overview of analytical tools. Biological Reviews of the Cambridge Philosophical Society, 87(3), 545–562. doi: 10.1111/j.1469-185X.2011.00208.x.CrossRefGoogle Scholar
  48. Levins, R. (1974). The qualitative analysis of partially specified systems. Annals of the New York Academy of Sciences, 231, 123–138.CrossRefGoogle Scholar
  49. Lindeman, R. L. (1942). The trophic-dynamic aspect of ecology. Ecology, 23, 399–418.CrossRefGoogle Scholar
  50. Lotze, H. K. (2005). Radical changes in the Wadden Sea fauna and flora over the last 2,000 years. Helgoland Marine Research, 59(1), 71–83. doi: 10.1007/s10152-004-0208-0.CrossRefGoogle Scholar
  51. Lotze, H. K. (2010). Historical reconstruction of human-induced changes in U.S. Estuaries. Oceanography and Marine Biology: An Annual Review, 48, 267–338.CrossRefGoogle Scholar
  52. Lotze, H. K., & McClenachan, L. (2013). Historical ecology: Informing the future by learning from the past. In M. D. Bertness, J. F. Bruno, & J. J. Stachowicz (Eds.), Marine community ecology and conservation (pp. 165–203). Sunderland: Sinauer Associates.Google Scholar
  53. Lotze, H. K., & Worm, B. (2009). Historical baselines for large marine animals. Trends in Ecology & Evolution, 24(5), 254–262. doi: 10.1016/j.tree.2008.12.004.CrossRefGoogle Scholar
  54. Lotze, H. K., Lenihan, H. S., Bourque, B. J., Bradbury, R. H., Cooke, R. G., Kay, M. C., Kidwell, S. M., Kirby, M. X., Peterson, C. H., & Jackson, J. B. C. (2006). Depletion, degradation, and recovery potential of estuaries and coastal seas. Science, 312(5781), 1806–1809. doi: 10.1126/science.1128035.CrossRefGoogle Scholar
  55. Lotze, H. K., Coll, M., & Dunne, J. (2011a). Historical changes in marine resources, food-web structure and ecosystem functioning in the Adriatic Sea. Ecosystems, 14(2), 198–222.CrossRefGoogle Scholar
  56. Lotze, H. K., Coll, M., Magera, M. A., Ward-Paige, C., & Airoldi, L. (2011b). Recovery of marine animal populations and ecosystems. Trends in Ecology and Evolution, 26(11), 595–605.CrossRefGoogle Scholar
  57. MacKenzie, B. R., Ojaveer, H., & Eero, M. (2010). Historical ecology provides new insights for ecosystem management: Eastern Baltic cod case study. Marine Policy, 35(2), 266–270.CrossRefGoogle Scholar
  58. Magera, A. M., Flemming, J. M., Kaschner, K., Christensen, L. B., & Lotze, H. K. (2013). Recovery trends in marine mammal populations. PLoS ONE, 8(10), e77908. doi: 10.1371/journal.pone.0077908.CrossRefGoogle Scholar
  59. Matson, J. (2012). The dwindling web – How human exploitation has reshaped a marine ecosystem. Scientific American, 306, 88.Google Scholar
  60. McClenachan, L., & Cooper, A. (2008). Extinction rate, historical population structure and ecological role of the Caribbean monk seal. Proceedings of the Royal Society B, 275(1641), 1351–1358.CrossRefGoogle Scholar
  61. McClenachan, L., Jackson, J. B. C., & Newman, M. J. H. (2006). Conservation implications of historic sea turtle nesting beach loss. Frontiers in Ecology and the Environment, 4(6), 290–296.CrossRefGoogle Scholar
  62. McCulloch, M., Fallon, S., Wyndham, T., Hendy, E., Lough, J., & Barnes, D. (2003). Coral record of increased sediment flux to the inner Great Barrier Reef since European settlement. Nature, 421, 727–730.CrossRefGoogle Scholar
  63. Michener, L. K., & Kaufman, L. (2007). Stable isotope ratios as tracers in marine food webs: An update. In R. Michener (Ed.), Stable isotopes and ecology in environmental science (pp. 238–282). Oxford: Blackwell Publishing.CrossRefGoogle Scholar
  64. Morales, A., Antipina, E., Antipina, A., & Roselló, E. (2007). An ichthyoarchaeological survey of the ancient fisheries from the Northern Black Sea Coast. Archaeofauna, 16, 117–172.Google Scholar
  65. Myers, R. A., Baum, J. K., Shepherd, T. D., Powers, S. P., & Peterson, C. H. (2007). Cascading effects of the loss of apex predatory sharks from a coastal ocean. Science, 315(5820), 1846–1850. doi: 10.1126/science.1138657.CrossRefGoogle Scholar
  66. Navarro, J., Coll, M., Louzao, M., Forero, M. G., Oro, D., & Palomera, I. (2010). Investigating the food web in the NW Mediterranean Sea with stable isotopes and modelling results. 39th CIESM congress, Venice (Italy).Google Scholar
  67. Navarro, J., Coll, M., Louzao, M., Palomera, I., Delgado, A., & Forero, M. G. (2011). Comparison of ecosystem modelling and isotopic approach as ecological tools to investigate food webs in the NW Mediterranean Sea. Journal of Experimental Marine Biology and Ecology, 401, 97–104.CrossRefGoogle Scholar
  68. Neubauer, P., Jensen, O. P., Hutchings, J. A., & Baum, J. K. (2013). Resilience and recovery of overexploited marine populations. Science, 340(6130), 347–349.CrossRefGoogle Scholar
  69. Newell, R. I. E. (1988). Ecological changes in Chesapeake Bay are they a results of overharvesting the American oyster Crassostrea virginica? In M. D. Solomons (Ed.), Understanding the estuary: Advances in Chesapeake Bay research; Proceedings of a Conference (pp. 536–546). Baltimore: Chesapeake Research Consortium.Google Scholar
  70. Occhipinti-Ambrogi, A. (2002). Susceptibility to invasion: Assessing scale and impact of alien biota in the Northern Adriatic. CIESM Workshop Monographs, 20, 67–73.Google Scholar
  71. Orton, D. (2015). Archaeological methodologies to understand past marine resource use. In K. S. Máñez & B. Poulsen (Eds.), A handbook of marine environmental history: Perspectives on oceans past. New York: Springer.Google Scholar
  72. Pandolfi, J. M., Bradbury, R. H., Sala, E., Hughes, T. P., Bjorndal, K. A., Cooke, R. G., McArdle, D., McClenachan, L., Newman, M. J. H., & Paredes, G. (2003). Global trajectories of the long-term decline of coral reef ecosystems. Science, 301(5635), 955.CrossRefGoogle Scholar
  73. Pauly, D., Christensen, V., Dalsgaard, J., Froese, R., & Torres, F. (1998). Fishing down marine food webs. Science, 279(5352), 860–863.CrossRefGoogle Scholar
  74. Petersen, K. S., Rasmussen, K., Heinemeier, J., & Rud, N. (1992). Clams before Columbus. Nature, 359, 679.CrossRefGoogle Scholar
  75. Pitcher, T. J. (2005). Back–to–the–future: A fresh policy initiative for fisheries and a restoration ecology for ocean ecosystems. Philosophical Transactions of the Royal Society, B: Biological Sciences, 360(1453), 107.CrossRefGoogle Scholar
  76. Pitcher, T., Heymans, J. J., & Vasconcellos, M. (2002). Ecosystem models of Newfoundland for the time periods 1995, 1985, 1900, 1450. Fisheries Centre Research Report, 10(5), 76.Google Scholar
  77. Plagányi, É. E., Punt, A. E., Hillary, R., Morello, E. B., Thébaud, O., Hutton, T., Pillans, R. D., Thorson, J. T., Fulton, E. A., & Smith, A. D. M. (2012). Multispecies fisheries management and conservation: Tactical applications using models of intermediate complexity. Fish and Fisheries, 15(1), 1–22.CrossRefGoogle Scholar
  78. Planque, B., Fromentin, J. M., Cury, P., Drinkwater, K. F., Jennings, S., Perry, R. I., & Kifani, S. (2010). How does fishing alter marine populations and ecosystems sensitivity to climate? Journal of Marine Systems, 79(3–4), 403–417.CrossRefGoogle Scholar
  79. Post, D. M. (2002). Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology, 83, 703–718.CrossRefGoogle Scholar
  80. Rick, T. C., & Erlandson, J. M. (2008). Human impacts on ancient marine ecosystems: A global perspective. Berkeley: University of California Press.Google Scholar
  81. Rochet, M.-J., & Trenkel, V. M. (2003). Which community indicators can measure the impact of fishing? A review and proposals. Canadian Journal of Fisheries and Aquatic Sciences, 60, 86–99.CrossRefGoogle Scholar
  82. Rothschild, B. J., Ault, J. S., Goulletquer, P., & Héral, M. (1994). Decline of the Chesapeake Bay oyster population: A century of habitat destruction and overfishing. Marine Ecology Progress Series, 111, 29–39.CrossRefGoogle Scholar
  83. Ruiz, G. M., Carlton, J. T., Grosholz, E. D., & Hines, A. H. (1997). Global invasions of marine and estuarine habitats by non-indigenous species: Mechanisms extent and consequences. American Zoologist, 37, 621–632.CrossRefGoogle Scholar
  84. Sáenz-Arroyo, A., Roberts, C. M., Torre, J., Cariño-Olvera, M., & Enríquez-Andrade, E. A. (2005). Rapidly shifting environmental baselines among fishers of the Gulf of California. Proceedings of the Royal Society B, 22(272), 1957–1962.CrossRefGoogle Scholar
  85. Sáenz–Arroyo, A., Roberts, C. M., Torre, J., & Cariño-Olvera, M. (2005). Using fishers’ anecdotes, naturalists’ observations and grey literature to reassess marine species at risk: The case of the Gulf grouper in the Gulf of California, Mexico. Fish and Fisheries, 6(2), 121–133.CrossRefGoogle Scholar
  86. Sala, E. (2004). The past and present topology and structure of Mediterranean subtidal rocky-shore food webs. Ecosystems, 7(4), 333–340. doi: 10.1007/s10021-003-0241-x.CrossRefGoogle Scholar
  87. Schmidt, A. L. (2012). The role of marine macrophytes in providing essential ecosystem services: Their relative contribution and how services are impacted by eutrophication. PhD Dissertation, Dalhousie University, Halifax, Nova Scotia, Canada.Google Scholar
  88. Smith, I. (2005). Retreat and resilience: Fur seals and human settlement in New Zealand. In G. Monks (Ed.), The exploitation and cultural importance of sea mammals (pp. 6–18). Oxford: Oxbow Books.Google Scholar
  89. Stachowicz, J. J., Fried, H., Osman, R. W., & Whitlatch, R. B. (2002). Biodiversity, invasion resistance, and marine ecosystem function: Reconciling pattern and process. Ecology, 83, 2575–2590.CrossRefGoogle Scholar
  90. Steele, J. H. (1996). Regime shifts in fisheries management. Fisheries Research, 25(1), 19–23.CrossRefGoogle Scholar
  91. Steneck, R. S., Vavrinec, J., & Leland, A. V. (2004). Accelerating trophic-level dysfunction in kelp forest ecosystems of the Western North Atlantic. Ecosystems, 7(4), 323–332.CrossRefGoogle Scholar
  92. Stergiou, K. I. (2010). Mediterranean ecosystems, shifting baselines and databases. In R. F. T. Gertwagen, O. Giovanardi, S. Libralato, C. Solidoro, & S. Raicevich (Eds.), When humanities meet ecology: Historic changes in Mediterranean and Black Sea marine biodiversity and ecosystems since the Roman period until nowadays; Languages, methodologies and perspectives (pp. 95–102). Rome: ISPRA.Google Scholar
  93. Thurstan, R., & Buckley, S. (2015). Oral history and written testimonies. In K. S. Máñez & B. Poulsen (Eds.), A handbook of marine environmental history: Perspectives on oceans past. New York: Springer.Google Scholar
  94. Wainright, S., Fogarty, M., Greenfield, R., & Fry, B. (1993). Long-term changes in the Georges Bank food web: Trends in stable isotopic compositions of fish scales. Marine Biology, 115, 481–493.CrossRefGoogle Scholar
  95. Watermeyer, K. E., Shannon, L. J., & Griffiths, C. L. (2008a). Changes in the trophic structure of the southern Benguela before and after the onset of industrial fishing. African Journal of Marine Science, 30(2), 351–382.CrossRefGoogle Scholar
  96. Watermeyer, K. E., Shannon, L. J., Roux, J. P., & Griffiths, C. L. (2008b). Changes in the trophic structure of the northern Benguela before and after the onset of industrial fishing. African Journal of Marine Science, 30(2), 383–403.CrossRefGoogle Scholar
  97. Wiley, A. E., Ostrom, P. H., Welch, A. J., Fleischer, R. C., Gandhi, H., Southon, J. R., Stafford, T. W., Penniman, J. F., Hu, D., Duvall, F. P., & James, H. F. (2013). Millennial-scale isotope records from a wide-ranging predator show evidence of recent human impact to oceanic food webs. Proceedings of the National Academy of Sciences, 110(22), 8972–8977.CrossRefGoogle Scholar
  98. Williams, R. J., & Martinez, N. D. (2000). Simple rules yield complex food webs. Nature, 404, 180–183.CrossRefGoogle Scholar
  99. Worm, B., & Duffy, J. E. (2003). Biodiversity, productivity and stability in real food webs. Trends in Ecology & Evolution, 18(12), 628–632.CrossRefGoogle Scholar
  100. Worm, B., Lotze, H. K., Hillebrand, H., & Sommer, U. (2002). Consumer versus resource control of species diversity and ecosystem functioning. Nature, 417(6891), 848–851.CrossRefGoogle Scholar
  101. Worm, B., Barbier, E. B., Beaumont, N., Duffy, J. E., Folke, C., Halpern, B. S., Jackson, J. B. C., Lotze, H. K., Micheli, F., Palumbi, S. R., Sala, E., Selkoe, K. A., Stachowicz, J. J., & Watson, R. (2006). Impacts of biodiversity loss on ocean ecosystem services. Science, 314, 787–790.CrossRefGoogle Scholar
  102. Zenetos, A., Gofas, S., Russo, G., & Templado, J. (2004). Molluscs. In F. Brian (Ed.), CIESM atlas of exotic species in the Mediterranean (Vol. 3, p. 376). Monaco: CIESM Publishers.Google Scholar
  103. zu Ermgassen, P. S. E., Spalding, M. D., Blake, B., Coen, L., Dumbauld, B., Geiger, G., Grabowski, J. H., Grizzle, R., Luckenbach, M., McGraw, K., Rodney, W., Ruesink, J. L., Power, S. P., & Brumbaugh, R. D. (2012). Historical ecology with real numbers: Past and present extent and biomass of an imperilled estuarine ecosystem. Proceedings of the Royal Society B, 279, 3393–3400.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Institut de Recherche pour le Développement, UMR MARBEC (MARine Biodiverity Exploitation & Conservation), Institut de Ciències del Mar (ICM-CSIC)Ecopath International Initiative Research AssociationBarcelonaSpain
  2. 2.Department of BiologyDalhousie UniversityHalifaxCanada

Personalised recommendations