Wave Packet Dynamical Calculations for Carbon Nanostructures

  • Géza I. Márk
  • Péter Vancsó
  • László P. Biró
  • Dmitry G. Kvashnin
  • Leonid A. Chernozatonskii
  • Andrey Chaves
  • Khamdam Yu. Rakhimov
  • Philippe Lambin

Abstract

Wave packet dynamics is an efficient method of computational quantum mechanics. Understanding the dynamics of electrons in nanostructures is important in both interpreting measurements on the nano-scale and for designing nanoelectronics devices. The time dependent dynamics is available through the solution of the time dependent Schrödinger- or Dirac equation. The energy dependent dynamics can be calculated by the application of the time-energy Fourier transform. We performed such calculations for various sp2 carbon nanosystems, e.g. graphene grain boundaries and nanotube networks. We identified the global- and local structural properties of the system which influence the transport properties, such as the structures, sizes, and relative angles of the translation periodic parts, and the microstructure of the interfaces between them. Utilizing modified dispersion relations makes it possible to extend the method to graphene like materials as well.

Keywords

Graphene Wave packet dynamics Quantum tunneling 

References

  1. 1.
    Garraway BM, Suominen K-A (1995) Wave-packet dynamics: new physics and chemistry in femto-time. Rep Prog Phys 58:365–419ADSCrossRefGoogle Scholar
  2. 2.
    Varga G (2002) Computer simulation by the quantum mechanical time-dependent wavepacket method, especially for atom/molecule-solid-surface interaction. J Phys Condens Matter 14:6081–6107Google Scholar
  3. 3.
    Lucas AA, Morawitz H, Henry GR, Vigneron J-P, Lambin P, Cutler PH, Feuchtwang TE (1988) Scattering-theoretic approach to elastic one-electron tunneling through localized barriers: application to scanning tunneling microscopy. Phys Rev B 37:10708–10720ADSCrossRefGoogle Scholar
  4. 4.
    Feit MD, Fleck JA, Steiger A (1982) Solution of the Schrödinger equation by a spectral method. J Comput Phys 47:412–433ADSMathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Márk GI, Biró LP, Gyulai J (1998) Simulation of STM images of 3D surfaces and comparison with experimental data: carbon nanotubes. Phys Rev B 58:12645–12648ADSCrossRefGoogle Scholar
  6. 6.
    Márk GI, Biró LP, Lambin Ph (2004) Calculation of axial charge spreading in carbon nanotubes and nanotube Y-junctions during STM measurement. Phys Rev B 70, 115423-1-11Google Scholar
  7. 7.
    Vancsó P, Márk GI, Lambin P, Hwang C, Biró LP (2012) Time and energy dependent dynamics of the STM tip — graphene system. Eur Phys J B 85:142–149ADSCrossRefGoogle Scholar
  8. 8.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200ADSCrossRefGoogle Scholar
  9. 9.
    Cserti J, Dávid Gy (2006) Unified description of Zitterbewegung for spintronic, graphene, and superconducting systems. Phys Rev B 74, 172305-1-4Google Scholar
  10. 10.
    Castro AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109–162ADSCrossRefGoogle Scholar
  11. 11.
    Degani MH, Leburton JP (1991) Single-electron states and conductance in lateral-surface superlattices. Phys Rev B 44:10901–10904ADSCrossRefGoogle Scholar
  12. 12.
    Martin J, Akerman N, Ulbricht G, Lohmann T, Smet JH, von Klitzing K, Yacoby A (2008) Observation of electron–hole puddles in graphene using a scanning single-electron transistor. Nat Phys 4:144–148CrossRefGoogle Scholar
  13. 13.
    Schubert G, Fehske H (2012) Metal-to-insulator transition and electron-hole puddle formation in disordered graphene nanoribbons. Phys Rev Lett 108 066402-1-5Google Scholar
  14. 14.
    Yu Kh, Rakhimov AC, Farias GA (2013) Low-dimensional functional materials. Egger R, Matrasulov D, Rakhimov Kh (eds). Springer, DordrechtGoogle Scholar
  15. 15.
    Matulis A, Peeters FM (2008) Quasibound states of quantum dots in single and bilayer graphene. Phys Rev B 77, 115423-1-11Google Scholar
  16. 16.
    Yu Kh, Rakhimov A, Chaves G, Farias A, Peeters FM (2011) Wavepacket scattering of Dirac and Schrödinger particles on potential and magnetic barriers. A. J. Phys Condens Matter 23, 275801Google Scholar
  17. 17.
    Mayer A (2004) Band structure and transport properties of carbon nanotubes using a local pseudopotential and a transfer-matrix technique. Carbon 42:2057–2066CrossRefGoogle Scholar
  18. 18.
    Márk GI, Vancsó P, Hwang C, Lambin Ph, Biró LP (2012) Anisotropic dynamics of charge carriers in graphene. Phys Rev B 85, 125443-1-12Google Scholar
  19. 19.
    Nemes-Incze P, Yoo KJ, Tapasztó L, Dobrik G, Lábár J, Horváth ZE, Hwang C, Biró LP (2011) Revealing the grain structure of graphene grown by chemical vapor deposition. Appl Phys Lett 99, 023104-1-3Google Scholar
  20. 20.
    Biró LP, Lambin Ph (2013) Grain boundaries in graphene grown by chemical vapor deposition. New J Phys 15, 035024-1-3Google Scholar
  21. 21.
    Nemes-Incze P, Vancsó P, Osváth Z, Márk GI, Jin X, Kim Y-S, Hwang C, Lambin P, Chapelier C, Biró LP (2013) Electronic states of disordered grain boundaries in graphene prepared by chemical vapor deposition. Carbon 64:178–186CrossRefGoogle Scholar
  22. 22.
    Vancsó P, Márk GI, Lambin P, Mayer A, Kim Y-S, Hwang C, Biró LP (2013) Electronic transport through ordered and disordered graphene grain boundaries. Carbon 64:101–110CrossRefGoogle Scholar
  23. 23.
    Vancsó P, Márk GI, Lambin P, Mayer A, Hwang C, Biró LP (2014) Effect of the disorder in graphene grain boundaries: a wave packet dynamics study. Appl Surf Sci 291:58–63ADSCrossRefGoogle Scholar
  24. 24.
    Kvashnin DG, Vancsó P, Yu L, Antipina, Márk GI, Biró LP, Sorokin PB, Chernozatonskii LA (2015) Bilayered semiconductor graphene nanostructures with periodically arranged hexagonal holes. Nano Res 8:1250–1258Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Géza I. Márk
    • 1
  • Péter Vancsó
    • 1
  • László P. Biró
    • 1
  • Dmitry G. Kvashnin
    • 2
  • Leonid A. Chernozatonskii
    • 2
  • Andrey Chaves
    • 3
  • Khamdam Yu. Rakhimov
    • 4
  • Philippe Lambin
    • 4
  1. 1.Institute of Technical Physics and Materials ScienceCentre for Energy ResearchBudapestHungary
  2. 2.Emanuel Institute of Biochemical PhysicsMoscowRussia
  3. 3.Departamento de FísicaUniversidade Federal do CearáFortalezaBrazil
  4. 4.Department of PhysicsUniversity of NamurNamurBelgium

Personalised recommendations