Electrodynamics of Graphene/Polymer Multilayers in the GHz Frequency Domain

  • Philippe Lambin
  • Michael Lobet
  • Konstantin Batrakov
  • Polina Kuzhir
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)


The electromagnetic properties of graphene/PMMA multilayers are calculated by electrodynamics techniques. It is shown that an optimum number of layers exists for which the absorption of GHz radiations by the graphene planes is maximum. Numerical calculations using the rigorous coupled wave analysis method demonstrate that the absorption of GHz radiations by the optimum graphene/PMMA multilayer is robust in the sense that it does not depend on defects of the graphene planes to first order in concentration.


Graphene Multilayers Surface electrodynamics Electromagnetic shielding 



The research leading to this work has received funding from the European Union Seventh Framework Program under grant agreement no. 604391 Graphene Flagship and grant agreement no. 318617 Marie Curie International Research Staff Exchange Scheme Fellowship (MC-IRSES FAEMCAR project). Helpful discussions of the authors with Prof. Yu. Svirko, Dr. T. Kaplas, Prof. A.V. Lavrinenko and Dr. F. Joucken are greatly acknowledged.


  1. 1.
    Land TA, Michely T, Behm RJ, Hemminger JC, Comsa G (1992) STM investigation of single layer graphite structures produced on Pt(111) by hydrocarbon decomposition. Surf Sci 264:261–270ADSCrossRefGoogle Scholar
  2. 2.
    Hwang Y, Aizawa T, Hayami W, Otani S, Ishizawa Y, Park SJ (1992) Surface phonon and electronic structure of a graphite monolayer formed on ZrC(111) and (001) surfaces. Surf Sci 271:299–307ADSCrossRefGoogle Scholar
  3. 3.
    Nagashima A, Nuka K, Itoh H, Ichinokawa T, Oshima C, Otani S (1993) Electronic states of monolayer graphite formed on TiC(111) surface. Surf Sci 291:93–98ADSCrossRefGoogle Scholar
  4. 4.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669ADSCrossRefGoogle Scholar
  5. 5.
    Paul CR (2006) Introduction to electromagnetic compatibility. Wiley, Hoboken, 980 ppGoogle Scholar
  6. 6.
    Chung DDL (2001) Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39:279–285CrossRefGoogle Scholar
  7. 7.
    Kuzhir P, Paddubskaya A, Bychanok D, Nemilentsau A, Shuba M, Plusch A, Maksimenko S, Bellucci S, Coderoni L, Micciulla F, Sacco I, Rinaldi G, Macutkevic J, Seliuta D, Valusis G, Banys J (2011) Microwave probing of nanocarbon based epoxy resin composite films: toward electromagnetic shielding. Thin Solid Film 519:4114–4118Google Scholar
  8. 8.
    Singh VK, Shukla A, Patra MK, Saini L, Jani RK, Vadera SR, Kumar N (2012) Microwave absorbing properties of a thermally reduced graphene oxide/nitrile butadiene rubber composite. Carbon 50:2202–2208Google Scholar
  9. 9.
    Kuzhir PP, Paddubskaya AG, Maksimenko SA, Kuznetsov VL, Moseenkov S, Romanenko AI, Shenderova OA, Macutkevic J, Valusis G, Lambin P (2012) Carbon onion composites for EMC applications. IEEE Trans Electromagn Compat 54:6–16Google Scholar
  10. 10.
    Kuzhir P, Paddubskaya A, Shuba M, Maksimenko S, Celzard A, Fierro V, Amaral-Labat G, Pizzi A, Macutkevic J, Valusis G, Banys J, Bistarelli S, Mastrucci M, Micciulla F, Sacco I, Bellucci S (2012) Electromagnetic shielding efficiency in Ka-band: carbon foam versus epoxy/CNT composites. J Nanophotonics 6:061715.1–061715.18CrossRefGoogle Scholar
  11. 11.
    Bychanok D, Kuzhir P, Maksimenko S, Bellucci S, Brosseau C (2013) Characterizing epoxy composites filled with carbonaceous nanoparticles from dc to microwave. J Appl Phys 113:124103.1CrossRefGoogle Scholar
  12. 12.
    Gao RXK, Hoefer WJR, Low TS, Li EP (2013) Robust design of electromagnetic wave absorber using the Taguchi method. IEEE Trans Electromagn Compat 55:1076–1083CrossRefGoogle Scholar
  13. 13.
    Landau LD, Lifshitz EM (1960) Electrodynamics of continuous media. Pergamon Press ltd, Oxford, pp 279–283MATHGoogle Scholar
  14. 14.
    Weston DA (2001) Electromagnetic compatibility: principles and applications, chapter 6, 2nd edn. Marcel Dekker, New YorkGoogle Scholar
  15. 15.
    Saville P (2005) Review of radar absorbing materials, Defence R&D Canada – Atlantic TM 2005-003, 5–6Google Scholar
  16. 16.
    Batrakov K, Kuzhir P, Maksimenko S, Paddubskaya A, Voronovich S, Kaplas T, Svirko Y (2013) Enhanced microwave shielding effectiveness of ultrathin pyrolytic carbon films. Appl Phys Lett 103:073117.1–073117.3CrossRefGoogle Scholar
  17. 17.
    Buron JD, Pizzocchero F, Jessen BS, Booth TJ, Nielsen PF, Hansen O, Hilke M, Whiteway E, Jepsen PU, Boggild P, Petersen DH (2014) Electrically continuous graphene from single crystal copper verified by terahertz conductance spectroscopy and micro four-point probe. Nano Lett 14:6348–6355Google Scholar
  18. 18.
    Batrakov K, Kuzhir P, Maksimenko S, Paddubskaya A, Voronovich S, Lambin P, Kaplas T, Svirko Y (2014) Flexible transparent graphene/polymer multilayers for efficient electromagnetic field absorption. Sci Rep 4:7191.1–7191.5CrossRefGoogle Scholar
  19. 19.
    Yan H, Li X, Chandra B, Tulevski G, Wu Y, Freitag M, Zhu W, Avouris P, Xia F (2012) Tunable infrared plasmonic devices using graphene/insulator stacks. Nature Nanotechnology 7:330–334ADSCrossRefGoogle Scholar
  20. 20.
    Gusynin VP, Sharapov SG, Carbotte JP (2006) Unusual microwave response of Dirac quasiparticles in graphene. Phys Rev Lett 96:256802.1–256802.4ADSCrossRefGoogle Scholar
  21. 21.
    Falkovsky LA (2008) Optical properties of graphene. J Phys Conf Ser 129:012004.1–012004.7CrossRefGoogle Scholar
  22. 22.
    Mak KF, Ju L, Wang F, Heinz TF (2012) Optical spectroscopy of graphene: from the far infrared to the ultraviolet. Solid St Commun 152:1341–1349ADSCrossRefGoogle Scholar
  23. 23.
    Low T, Avouris P (2014) Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano 8:1086–1101CrossRefGoogle Scholar
  24. 24.
    Othman MAK, Guclu C, Capolino F (2013) Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption. Opt Express 21:7614–7632ADSCrossRefGoogle Scholar
  25. 25.
    Othman MAK, Guclu C, Capolino F (2013) Graphene–dielectric composite metamaterials: evolution from elliptic to hyperbolic wavevector dispersion and the transverse epsilon-near-zero condition. J Nanophotonics 7:073089.1–073089.15CrossRefGoogle Scholar
  26. 26.
    Rouhi N, Capdevila S, Jain D, Zand K, Wang YY, Brown E, Jofre L, Burke P (2012) Terahertz graphene optics. Nano Res 5:667–678CrossRefGoogle Scholar
  27. 27.
    Gomez-Diaz JS, Moldovan C, Capdevila S, Romeu J, Bernard LS, Magrez A, Ionescu AM, Perruisseau-Carrier J (2015) Self-biased reconfigurable graphene stacks for terahertz plasmonics. Nature Commun 6:6334.1–6334.7CrossRefGoogle Scholar
  28. 28.
    Balci O, Polat EO, Kakenov N, Kocabas C (2015) Graphene-enabled electrically switchable radar-absorbing surfaces. Nature Commun 6:6628.1–6628.9Google Scholar
  29. 29.
    Barkoskii LM, Borzdov GN, Lavrinenko AV (1987) Fresnel’s reflection and transmission operators for stratified gyroanisotropic media. J Phys A Math Gen 20:1095–1106ADSCrossRefGoogle Scholar
  30. 30.
    Lambin P, Vigneron JP, Lucas AA, Dereux A (1987) Electrodynamics of a plane-stratified medium, with applications to electron-energy-loss spectroscopy, infrared reflectivity measurement, and attenuated total reflection. Phys Scr 35:343–353ADSCrossRefGoogle Scholar
  31. 31.
    Wall HS (2000) Analytic theory of continued fractions. AMS Chelsea Publishing, Providence, 433 ppGoogle Scholar
  32. 32.
    Dereux A, Vigneron J-P, Lambin P, Lucas AA (1987) Polariton structure and spectral reflectance of multilayered semiconducting materials. Phys Scr 35:338–342ADSCrossRefGoogle Scholar
  33. 33.
    Lobet M, Reckinger N, Henrard L, Lambin P (2015) Robust electromagnetic absorption by graphene/polymer heterostructures. Nanotechnology 26:285702.1–285702.9CrossRefGoogle Scholar
  34. 34.
    Andryieuski A, Lavrinenko AV (2013) Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach. Opt Express 21:9144–9155ADSCrossRefGoogle Scholar
  35. 35.
    Asti G, Coïsson R (2011) Electrodynamics in one-dimension: radiation and reflection. Eur J Phys 32:459–466CrossRefMATHGoogle Scholar
  36. 36.
    Apell SP, Hanson GW, Hägglund C (2012) eprint arXiv:1201.3071, High optical absorption in graphene, 16 ppGoogle Scholar
  37. 37.
    Lamb JW (1996) Miscellaneous data on materials for millimetre and submillimetre optics. Int J Infrared Millim Waves 17:1997–2030ADSCrossRefGoogle Scholar
  38. 38.
    Rouhi N, Jain D, Capdevila S, Jofre L, Brown E, Burke PJ (2011) Broadband conductivity of graphene from DC to THz. In: 11th IEEE international conference on nanotechnolgy, Portland, 1205–1207Google Scholar
  39. 39.
    Batrakov K, Kuzhir P, Maksimenko S, Paddubskaya A, Volynets N, Voronovich S, Lambin P, Kaplas T, Svirko Y (2016, Submitted) Perfect absorption of microwaves in graphene. Appl Phys LettGoogle Scholar
  40. 40.
    Liu HX, Yao BF, Li L, Shi XW (2011) Analysis and design of thin planar absorbing structure using Jerusalem cross slot. Prog Electromagn Res B 31:261–281CrossRefGoogle Scholar
  41. 41.
    Biró LP, Lambin P (2013) Grain boundaries in graphene grown by chemical vapor deposition. New J Phys 15:035024.1–035024.37CrossRefGoogle Scholar
  42. 42.
    Moharam M, Gaylord T (1981) Rigorous coupled-wave analysis of planar-grating diffraction. J Opt Soc Am 71:811ADSCrossRefGoogle Scholar
  43. 43.
    Tapaszto L, Nemes-Incze P, Dobrik G, Jae Yoo K, Hwang C, Biró LP (2012) Mapping the electronic properties of individual graphene grain boundaries. Appl Phys Lett 100:053114.1–053114.4CrossRefGoogle Scholar
  44. 44.
    Nemes-Incze P, Yoo KJ, Tapaszto L, Dobrik G, Labar J, Horvath ZE, Hwang C, Biró LP (2011) Revealing the grain structure of graphene grown by chemical vapor deposition. Appl Phys Lett 99:023104.1–023104.3CrossRefGoogle Scholar
  45. 45.
    Kuzhir P et al (2016) Graphene/polymer multilayers at high frequencies: no effect of graphene grain size on the electromagnetic shielding effectiveness. CarbonGoogle Scholar
  46. 46.
    Lamberti P, Tucci V (2007) Interval approach to robust design. COMPEL Int J Comput Math Electr Electron Eng 26:285–297MATHGoogle Scholar
  47. 47.
    Bae S, Kim H, Lee Y, Xu X, Park JS, Zheng Y, Balakrishnan J, Lei T, Kim HR, Song YI, Kim YJ, Kim KS, Özyilmaz B, Ahn JH, Hong BH, Iijima S (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnology 5:574–578ADSCrossRefGoogle Scholar
  48. 48.
    Wu B, Tuncer HM, Katsounaros A, Wu W, Cole MT, Ying K, Zhang L, Milne WI, Hao Y (2014) Microwave absorption and radiation from large-area multilayer CVD graphene. Carbon 77:814–822CrossRefGoogle Scholar
  49. 49.
    Riedl C, Coletti C, Starke U (2010) Structural and electronic properties of epitaxial graphene on SiC(0001): a review of growth, characterization, transfer doping and hydrogen intercalation. J Phys D Appl Phys 43:374009.1–374009.27CrossRefGoogle Scholar
  50. 50.
    Ji SH, Hannon JB, Tromp RM, Perebeinos V, Tersoff J, Ross FM (2012) Atomic-scale transport in epitaxial graphene. Nat Mater 11:114–119ADSCrossRefGoogle Scholar
  51. 51.
    Sprinkle M, Siegel D, Hu Y, Hicks J, Tejeda A, Taleb-Ibrahimi A, Le Fèvre P, Bertran F, Vizzini S, Enriquez H, Chiang S, Soukiassian P, Berger C, de Heer WA, Lanzara A, Conrad EH (2009) First direct observation of a nearly ideal graphene band structure. Phys Rev Lett 103:226803.1–226803.4ADSCrossRefGoogle Scholar
  52. 52.
    Xuebin Li (2008) PhD thesis, Epitaxial graphene films on SiC: growth, characterization and devices, Georgia Institute of Technology, Atlanta, 145 ppGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Philippe Lambin
    • 1
  • Michael Lobet
    • 1
  • Konstantin Batrakov
    • 2
  • Polina Kuzhir
    • 2
  1. 1.University of NamurNamurBelgium
  2. 2.Institute for Nuclear ProblemsBelarusian State UniversityMinskBelarus

Personalised recommendations