New Research Perspectives to Address Climate Challenges Facing Agriculture Worldwide

  • Emmanuel Torquebiau
  • Dominique Berry
  • Patrick Caron
  • Jean-Yves Grosclaude

Abstract

A broad span of knowledge is needed to analyse the relationship between agriculture and climate change, from international or local governance, to stakeholders’ practices, to biology and genomics. The uncertainty related to climate hazards complicates adaptation and mitigation strategies. It is essential for adaptation and mitigation not to be separated in practice, even where analysis does deal with them separately. Climate-smart innovations can be stimulated by analyses and participatory learning approaches, which are all the more necessary in that the scientific standards are very incomplete. To meet the challenges, innovative solutions as well as those already available will also require political, institutional and financial backing. Future research must come up with new climate-smart options to strengthen stakeholders’ and systems’ resilience and to create an environment conducive to change. Work on improving agricultural production alone will not be sufficient—the whole food system must be considered.

References

  1. Affholder F, Tittonell P, Corbeels M, Roux S, Motisi N, Tixier P, Wery J (2012) Ad hoc modeling in agronomy: what have we learned in the last 15 years? Agron J 104(3):735–748CrossRefGoogle Scholar
  2. Altizer S, Ostfeld RS, Johnson PT, Kutz S, Harvell CD (2013) Climate change and infectious diseases: from evidence to a predictive framework. Science 341(6145):514–519CrossRefPubMedGoogle Scholar
  3. Boserup E (2005) The conditions of agricultural growth: the economics of agrarian change under population pressure. Transaction Publishers, Piscataway, 137 pGoogle Scholar
  4. Callon M, Barthe Y (2005) Décider sans trancher. Négociations, 2(4):115–129. www.cairn.info/revue-negociations-2005-2-page-115.htm, doi:10.3917/neg.004.115
  5. Caron P (2011) Ré-concilier agricultures et sociétés: dévoiler le territoire et repenser les limites. Habilitation à diriger des recherches, vol. 3, Paris-Ouest-Nanterre-La Défense, 238 pGoogle Scholar
  6. Caron P, Bienabé E, Hainzelin E (2014) Making transition towards ecological intensification of agriculture a reality: the gaps in and the role of scientific knowledge. Curr Opin Environ Sustain 8:44–52CrossRefGoogle Scholar
  7. Caron P, Reig E, Roep D, Hediger W, Le Cotty T, Barthélémy D, Hadynska A, Hadynski J, Oostindie H, Sabourin E (2008) Multifunctionality: refocusing a spreading, loose and fashionable concept for looking at sustainability? Int J Agric Resour Gov Ecol 7(4/5):301–318Google Scholar
  8. Druyan LM (2011) Studies of 21st-century precipitation trends over West Africa A review. Int J Climatol 31:1415–1424CrossRefGoogle Scholar
  9. FAO (2013) Climate-smart agriculture source book. Food and Agriculture Organization of the United Nations, Rome 570 pGoogle Scholar
  10. FAO (2014) Perrenial crops for food security. FAO, Rome, Italy 409 pGoogle Scholar
  11. Godfray HCJ, Crute IR, Haddad L, Lawrence D, Muir JF, Nisbett N, Whiteley R (2010) The future of the global food system. Philos Trans R Soc B Biol Sci 365(1554):2769–2777CrossRefGoogle Scholar
  12. Grafton RQ, Pittock J, Davis R, Williams J, Fu G, Warburton M, Udall B, McKenzie R, Yu X, Che N, Connell D, Jiang Qiang, Kompas T, Lynch A, Norris R, Possingham H, Quiggin J (2013) Global insights into water resources, climate change and governance. Nat Clim Change 3(4):315–321CrossRefGoogle Scholar
  13. Grau R, Kuemmerle T, Macchi L (2013) Beyond “land sparing versus land sharing”: environmental heterogeneity, globalization and the balance between agricultural production and nature conservation. Curr Opin Environ Sustain 5:477–483CrossRefGoogle Scholar
  14. Griffon M (2013) Qu’est-ce que l’agriculture écologiquement intensive ?, Versailles, Éditions Quæ, 221 pGoogle Scholar
  15. Hallé F (2010) La condition tropicale, Actes Sud, 576 pGoogle Scholar
  16. Harvey CA, Chacón M, Donatti CI, Garen E, Hannah L, Andrade A, Bede L, Brown D, Calle A, Chara J, Clement C, Gray E, Hoang MH, Minang P, Rodrıguez AM, Seeberg-Elverfeldt C, Semroc B, Shames S, Smukler S, Somarriba E, Torquebiau E, van Etten J, Wollenberg E (2014) Climate-smart landscapes: opportunities and challenges for integrating adaptation and mitigation in tropical agriculture. Conserv Lett 7(2):77–90CrossRefGoogle Scholar
  17. Hickman JE, Scholes RJ, Rosenstock TS, Pérez García-Pando C, Nyamangara J (2014) Assessing non-CO2 climate-forcing emissions and mitigation in sub-Saharan Africa. Curr Opin Environ Sustain 9–10:65–72. http://dx.doi.org/10.1016/j.cosust.2014.07.010
  18. ICRAF (2014) Climate-smart landscapes: multifunctionality in practice. ICRAF, Nairobi 144 pGoogle Scholar
  19. Lipper L, Thornton P, Campbell BM, Baedeker T, Braimoh A, Bwalya M, Caron P, Cattaneo A, Garrity D, Henry K, Hottle R, Jackson L, Jarvis A, Kossam F, Mann W, McCarthy N, Meybeck A, Neufeldt H, Remington T, Sen PT, Sessa R, Shula R, Tibu F, Torquebiau EF (2014) Climate-smart agriculture for food security. Nat Clim Change 4(12):1068–1072CrossRefGoogle Scholar
  20. Lybbert TJ, Skerritt JH, Henry RJ (2013) Facilitation of future research and extension through funding and networking support. Genomics and breeding for climate-resilient crops. Springer, Berlin, Heidelberg, pp 415–432CrossRefGoogle Scholar
  21. Munang R, Andrews J, Alverson K, Mebratu D (2014) Harnessing ecosystem-based adaptation to address the social dimensions of climate change. Environ Sci Policy Sustain Dev 56(1):18–24. doi:10.1080/00139157.2014.861676 CrossRefGoogle Scholar
  22. Ostrom E (2008) The challenge of common-pool resources. Environ Sci Policy Sustain Dev 50(4):8–21CrossRefGoogle Scholar
  23. Scherr SJ, Shames S, Friedman R (2012) From climate-smart agriculture to climate-smart landscapes. Agric Food Secur 1(12):1–15Google Scholar
  24. Sendzimir J, Reij CP, Magnuszewski P (2011) Rebuilding resilience in the Sahel: regreening in the Maradi and Zinder regions of Niger. Ecol Soc 16(3):1. http://dx.doi.org/10.5751/ES-04198-160301
  25. State of the Tropics (2014) State of the Tropics 2014 Report. James Cook University, Cairns, AustraliaGoogle Scholar
  26. Steenwerth KL, Hodson AK, Bloom AJ, Carter MR, Cattaneo A, Chartres CJ, Jackson LE (2014) Climate-smart agriculture global research agenda: scientific basis for action. Agric Food Secur 3(1):11CrossRefGoogle Scholar
  27. Thornton PK, Ericksen PJ, Herrero M, Challinor AJ (2014) Climate variability and vulnerability to climate change: a review. Glob Change Biol 20(11):3313–3328Google Scholar
  28. Torquebiau E (2015) Whither landscapes? Compiling requirements of the landscape approach. In: Minang et al. (eds) Climate-smart landscapes: multifunctionality in practice. Nairobi, Kenya: World Agroforestry Centre (ICRAF), pp 21–36Google Scholar
  29. Traoré SB, Reyniers FN, Vaksmann M, Bather K, Sidibe A, Yorote A, Yattara K, Kouressy M (2001) Adaptation à la sécheresse des écotypes locaux de sorghos du Mali. Science et changements planétaires – Sécheresse, 11(4):227–237Google Scholar
  30. Vignola R, Locatelli B, Martinez C, Imbach P (2009) Ecosystem-based adaptation to climate change: what role for policy-makers, society and scientists? Mitig Adapt Strat Glob Change 14(8):691–696CrossRefGoogle Scholar

Copyright information

© Éditions Quæ 2016

Authors and Affiliations

  • Emmanuel Torquebiau
    • 1
  • Dominique Berry
    • 2
  • Patrick Caron
    • 3
  • Jean-Yves Grosclaude
    • 4
  1. 1.CIRAD, UPR AIDAMontpellierFrance
  2. 2.CIRAD, BIOSMontpellierFrance
  3. 3.CIRAD, DGD-RSMontpellierFrance
  4. 4.MAAF, CGAAERParisFrance

Personalised recommendations