Life Cycle Assessment to Understand Agriculture-Climate Change Linkages

  • Cécile Bessou
  • Claudine Basset-Mens
  • Anthony Benoist
  • Yannick Biard
  • Julien Burte
  • Pauline Feschet
  • Sandra Payen
  • Thierry Tran
  • Sylvain Perret
Chapter

Abstract

As one of the most comprehensive environmental assessment methodologies, life cycle assessment enables evaluation of the environmental impacts of anthropogenic activities along a supply chain. Its implementation raises many scientific questions. In the case of tropical cropping systems, researchers are working to understand and model environmental emissions based on the diversity of environments and systems. They are also focusing on the relationship between emissions and impacts. Cropping system life cycle assessments show that the impact on climate change varies by crop, environment and type of practice. Life cycle assessment can help guide production methods so as to reduce their environmental impacts. But the choices are not always clearcut.

References

  1. Adnot J, Marchio D, Rivière P (eds) (2012) Cycle de vie des systèmes énergétiques, Paris, Presses des Mines, 224 p., http://www.pressesdesmines.com/cycles-de-vie-des-systemes-energetiques.html
  2. Bellon-Maurel V, Aissani L, Bessou C et al (2013) What scientific issues in life cycle assessment applied to waste and biomass valorization? Editorial. Waste Biomass Valorization 4:377–383. doi:10.1007/s12649-012-9189-4 CrossRefGoogle Scholar
  3. Benoist A, Meneghel Fonseca L, Pirot R (2011) Application of environmental life cycle assessment in West Africa: case study on straight Jatropha oil combustion for electricity generation in Mali. In: 3rd international conference on biofuels in Africa, Ouagadougou, Burkina FasoGoogle Scholar
  4. Bessou C, Basset-Mens C, Tran T, Benoist A (2013a) LCA applied to perennial cropping systems: a review focused on the farm stage. Int J Life Cycle Assess 18:340–361. doi:10.1007/s11367-012-0502-z CrossRefGoogle Scholar
  5. Bessou C, Lehuger S, Gabrielle B, Mary B (2013b) Using a crop model to account for the effects of local factors on the LCA of sugar beet ethanol in Picardy region, France. Int J Life Cycle Assess 18:24–36. doi:10.1007/s11367-012-0457-0 CrossRefGoogle Scholar
  6. Bessou C, Chase LDC, Henson IE, Abdul-Manan AN, Canals LMI, Agus F, Sharma M, Chin M (2014) Pilot application of PalmGHG, the roundtable on sustainable palm oil greenhouse gas calculator for oil palm products. J Clean Prod 73:136–145. doi:10.1016/j.jclepro.2013.12.008 CrossRefGoogle Scholar
  7. Boulard T, Raeppel C, Brun R, Lecompte F, Hayer F, Carmassi G, Gaillard G (2011) Environmental impact of greenhouse tomato production in France. Agron Sustain Dev 31:757–777CrossRefGoogle Scholar
  8. Bouwman AF, Boumans LJM, Batjes NH (2002a) Emissions of N2O and NO from fertilized fields: summary of available measurement data. Global Biogeochem Cycles 16:1058Google Scholar
  9. Bouwman AF, Boumans LJM, Batjes NH (2002b) Modeling global annual N2O and NO emissions from fertilized fields. Global Biogeochem Cycles 16:11. doi:10.1029/2001GB001812 Google Scholar
  10. Chapuis A (2014) Sustainable design of oilseed-based biofuel supply chains. The case of Jatropha in Burkina Faso. Doctorat, génie des procédés et de l’environnement, université de Toulouse, École nationale supérieure des Mines d’Albi-Carmaux, 203 pGoogle Scholar
  11. Crutzen PJ, Mosier AR, Smith KA, Winiwarter W (2008) N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos Chem Phys 8:389–395CrossRefGoogle Scholar
  12. European Union (2009) Directive 2009/28/EC of the European parliament and of the council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing directives 2001/77/EC and 2003/30/EC. Off J Euro Union 140:17–62Google Scholar
  13. Feschet P (2014) Analyse de cycle de Vie Sociale. Pour un nouveau cadre conceptuel et théorique (Social life cycle assessment. Towards a new conceptual and theoretical framework). Thèse de doctorat, Sciences économiques, UM1, Montpellier, XXIV-352 pGoogle Scholar
  14. IPCC (2006) Guidelines for national greenhouse gas inventories. 4. Agriculture, forestry and other land use, WMO/UNEP, http://www.GIEC-nggip.iges.or.jp/public/2006gl/index.html
  15. ISCC (2010) ISCC 205 GHG emissions calculation methodology and GHG audit, V1.15 ISCC 10-04-19, ISCC System GmbH, Koeln, GermanyGoogle Scholar
  16. Jolliet O, Saadé M, Crettaz P, Shaked S (2010) Analyse du cycle de vie: comprendre et réaliser un écobilan. PPUR, Lausanne, SuisseGoogle Scholar
  17. Macombe E, Falque A, Feschet P, Garrabé M, Gillet C, Lagarde V, Loeillet D, Macombe C (2013) ACV sociales. Effects socio-économiques des chaînes de valeurs. FruitTrop, coll. Thema de l’Observatoire des marchés du Cirad, MontpellierGoogle Scholar
  18. Payen S, Basset-Mens C, Follain S, Grünberger O, Marlet S, Núñez M, Perret S (2014) Pass the salt please! From a review to a theoretical framework for integrating salinization impacts in food LCA. In: 9th international conference on LCA in the agri-food sector, 8–10 Oct 2014, San Francisco, USAGoogle Scholar
  19. Payen S, Basset-Mens C, Perret S (2015) LCA of local and imported tomato: does the inclusion of freshwater use impacts change the environmental ranking? J Clean Prod 87:139–148CrossRefGoogle Scholar
  20. Thanawong K, Perret SR, Basset-Mens C (2014) Ecoefficiency of paddy rice production in Northeastern Thailand: a comparison of rainfed and irrigated cropping systems. J Clean Prod 73:204–217CrossRefGoogle Scholar
  21. Tran T, Hansupalak N, Piromkraipak P, Tamthirat P, Manitsorasak A, Sriroth K (2014) Biogas reduces the carbon footprint of cassava starch: a comparative assessment with fuel oil. In: Conference on 3rd LCA agrifood, Asia 2014, Bangkok, ThailandGoogle Scholar
  22. Tuomisto HL, Hodge ID, Riordan P, Macdonald DW (2012) Does organic farming reduce environmental impacts? A meta-analysis of European research. J Environ Manage 112:309–320CrossRefPubMedGoogle Scholar

Copyright information

© Éditions Quæ 2016

Authors and Affiliations

  • Cécile Bessou
    • 1
  • Claudine Basset-Mens
    • 2
  • Anthony Benoist
    • 3
  • Yannick Biard
    • 2
  • Julien Burte
    • 4
  • Pauline Feschet
    • 5
  • Sandra Payen
    • 2
  • Thierry Tran
    • 6
  • Sylvain Perret
    • 7
  1. 1.CIRAD, UPR Tree Crop-Based SystemsMontpellierFrance
  2. 2.CIRAD, UPR HORTSYSMontpellierFrance
  3. 3.CIRAD, UPR BioWooEBMontpellierFrance
  4. 4.CIRAD, UMR G-EAUTunisTunisia
  5. 5.Inra, UMR LAENancy, ColmarFrance
  6. 6.CIRAD, UMR QUALISUDBangkokThailand
  7. 7.CIRAD, ESMontpellierFrance

Personalised recommendations