Coffee and Cocoa Production in Agroforestry—A Climate-Smart Agriculture Model

  • Philippe Vaast
  • Jean-Michel Harmand
  • Bruno Rapidel
  • Patrick Jagoret
  • Olivier Deheuvels

Abstract

Agroforestry should be a major climate-smart agriculture option as it combines sustainable production with adaptation and mitigation of climate change. In recent decades, cocoa and coffee cultivation have been responsible for the loss of more than 30 million ha of primary and secondary forests, and thus for increased greenhouse gas emissions. However, they also have a substantial mitigation potential via the 20 million ha currently in production, only part of which is managed under agroforestry. These agroforestry plantations are more stable over time and resilient against climate change and price volatility of agricultural products, by combining ecological services with diversified production. This chapter illustrates these features through research results obtained on three continents and proposes recommendations on the management of these systems and on public policies—from the farm to the territory.

References

  1. Cannavo P, Sansoulet J, Harmand JM, Siles Gutierrez P, Dreyer E, Vaast P (2011) Agroforestry associating coffee and Inga densiflora results in complementarity for water uptake and decreases deep drainage in Costa Rica. Agric Ecosyst Environ 140(1–2):1–13CrossRefGoogle Scholar
  2. Cerda R, Deheuvels O, Calvache D, Niehaus L, Saenz Y, Kent J, Vilchez S, Villota A, Martinez C, Somarriba E (2014) Contribution of cocoa agroforestry systems to family income and domestic consumption: looking toward intensification. Agrofor Syst 88:957–981. doi: 10.1007/s10457-014-9691-8 CrossRefGoogle Scholar
  3. Cerdán CR, Rebolledo MC, Soto G, Rapidel B, Sinclair FL (2012) Local knowledge of impacts of tree cover on ecosystem services in smallholder coffee production systems. Agric Syst 110:119–130CrossRefGoogle Scholar
  4. Chethana AN, Raghavendra HN, Gracy CP, Nagaraj N, Marie-Vivien D, Garcia CA, Vaast P (2009) Shade trees and income diversification from coffee agroforestry farms: field evidence from Kodagu district, South India (abstract). In: 2nd World congress of agroforestry. agroforestry, the future of global land use, 23–28 Aug 2009, Nairobi, Kenya (book of abstracts), p 474Google Scholar
  5. Clough Y, Faust H, Tscharntke T (2009) Cacao boom and bust: sustainability of agroforests and opportunities for biodiversity conservation. Conserv Lett 2:197–205CrossRefGoogle Scholar
  6. Deheuvels O, Rousseau GX, Soto Quiroga G, Decker Franco M, Cerda R, Vilchez Mendoza SJ, Somarriba E (2014) Biodiversity is affected by changes in management intensity of cocoa-based agroforests. Agrofor Syst 88:1081–1099. doi: 10.1007/s10457-014-9710-9 CrossRefGoogle Scholar
  7. FAO (2014) FAOSTAT Online database, FAO-UN. http://faostat.fao.org (consulté en juillet 2014)
  8. Fischer J, Batary P, Bawa KS, Brussaard L, Chappell MJ, et al (2011) Conservation: limits of land sparing. Science 334:593–593Google Scholar
  9. Harmand JM, Hergoualc’h K, De Miguel S, Dzib B, Siles P, Vaast P (2007) Carbon sequestration in coffee agroforestry plantations of Central America. In: Proceedings of the 21st ASIC Colloquium, Montpellier, ASIC, Paris, pp 1071–1074Google Scholar
  10. Hergoualc’h K, Skiba U, Harmand JM, Hénault C (2008) Fluxes of greenhouse gases from andosols in coffee monoculture or shaded by Inga densiflora in Costa Rica. Biogeochemistry 89(3):329–345CrossRefGoogle Scholar
  11. Hergoualc’h K, Blanchart E, Skiba U, Hénault C, Harmand JM (2012) Changes in carbon stock and greenhouse gas balance in a coffee (Coffea arabica) monoculture versus an agroforestry system with Inga densiflora, in Costa Rica. Agric Ecosyst Environ 148(1):102–110CrossRefGoogle Scholar
  12. IPCC, Climate Change (2013) The physical science basis. Contribution of working group I to the fifth assessment report of IPCC, WMO, UNEP. http://www.ipcc.ch/report/ar5/wg1
  13. Jagoret P, Michel-Dounias I, Malezieux E (2011) Long-term dynamics of cocoa agroforests: a case study in central Cameroon. Agrofor Syst 81(3):267–278CrossRefGoogle Scholar
  14. Jagoret P, Michel-Dounias I, Snoeck D, Todem Ngnogué H, Malézieux E (2012) Afforestation of savannah with cocoa agroforestry systems: a small-farmer innovation in central Cameroon. Agrofor Syst 86:493–504CrossRefGoogle Scholar
  15. Jagoret P, Kwesseu J, Messie C, Michel-Dounias I, Malézieux E (2014) Farmers’ assessment of the use value of agrobiodiversity in complex cocoa agroforestry systems in central Cameroon. Agrofor Syst 88:983–1000. doi: 10.1007/s10457-014-9698-1 CrossRefGoogle Scholar
  16. Jha S, Bacon CM, Philpott SM, Mendez VE, Läderach P, Rice RA (2014) Shade coffee: update on a disappearing refuge for biodiversity. Bioscience 64(5):416–428CrossRefGoogle Scholar
  17. Läderach P, Martinez-Valle A, Schroth G, Castro N (2013a) Predicting the future climatic suitability for cocoa farming of the world’s leading producer countries, Ghana and Côte d’Ivoire. Clim Change 119:841–854CrossRefGoogle Scholar
  18. Läderach P, Haggar J, Lau C, Eitzinger A, Ovalle O, Baca M, Jarvis A, Lundy M (2013b) Mesoamerican coffee: building a climate change adaptation strategy. CIAT, policy brief, 4 pGoogle Scholar
  19. Lin BB, Perfecto I, Vandermeer J (2008) Synergies between agricultural intensification and climate change could create surprising vulnerabilities for crops. Bioscience 58:847–854CrossRefGoogle Scholar
  20. Noponen MRA, Haggar J, Edwards-Jones G, Healey J (2013) Intensification of coffee systems can increase the effectiveness of REDD mechanisms. Agric Syst 119:1–9CrossRefGoogle Scholar
  21. Nygren P, Fernandez MP, Harmand JM, Leblanc HA (2012) Symbiotic dinitrogen fixation by trees: an underestimated resource in agroforestry systems? Nutr Cycl Agroecosyst 94(2–3):123–160. http://dx.doi.org/10.1007/s10705-012-9542-9
  22. Phalan B, Onial M, Balmford A, Green RE (2011) Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science 333:1289–1291CrossRefPubMedGoogle Scholar
  23. Ruf F (2011) The myth of complex cocoa agroforests: the case of Ghana. Human Ecol 39(3):373–388. doi: 10.1007/s10745-011-9392-0 CrossRefGoogle Scholar
  24. Saj S, Jagoret P, Todem Ngogue H (2013) Carbon storage and density dynamics of associated trees in three contrasting Theobroma cacao agroforests of Central Cameroon. Agrofor Syst 87(6):1309–1320. doi: 10.1007/s10457-013-9639-4 CrossRefGoogle Scholar
  25. Schwendenmann L, Veldkamp E, Moser G, Hölscher D, Köhler M, Clough Y, Anas I, Djajakirana G, Erasmi S, Hertel D, Leitner D, Leuschner C, Michalzik B, Propastin P, Tjoa A, Tscharntke T, van Straaten O (2010) Effects of an experimental drought on the functioning of a cacao agroforestry system, Sulawesi, Indonesia. Glob Change Biol 16:1515–1530CrossRefGoogle Scholar
  26. Siles P, Harmand JM, Vaast P (2010) Effects of Inga densiflora on the microclimate of coffee (Coffea arabica L.) and overall biomass under optimal cultivation conditions in Costa Rica. Agrofor Syst 78(3):269–286CrossRefGoogle Scholar
  27. Vaast P, Somarriba E (2014) Trade-offs between crop intensification and ecosystem services: the role of agroforestry in cocoa cultivation. Agrofor Syst 88:947–956. doi: 10.1007/s10457-014-9762-x CrossRefGoogle Scholar
  28. Vaast P, Bertrand B, Perriot JJ, Guyot B, Génard M (2006) Fruit thinning and shade improve bean characteristics and beverage quality of coffee (Coffea arabica L.) under optimal conditions. J Sci Food Agric 86(2):197–204CrossRefGoogle Scholar
  29. Vaast P, Guillemot J, Vignault C, Charbonnier F, Manjunatha M, Devakumar AS (2011) Shade level and species composition affect carbon sequestration in coffee agroforestry systems of the Kodagu district, South-Western India. In: 23rd International conference on coffee science (ASIC 2010), 3–8 Oct 2010, Bali, IndonesiaGoogle Scholar
  30. Vaast P, Martínez M, Boulay A, Dzib Castillo B, Harmand JM (2013) Diversification dans les caféières d’Amérique centrale avec des arbres d’ombrage et de rapport. In: Ruf F, Schroth G (eds) Cultures pérennes tropicales: enjeux économiques et écologiques de la diversification. Éditions Quæx, Versailles, pp 223–230Google Scholar

Copyright information

© Éditions Quæ 2016

Authors and Affiliations

  • Philippe Vaast
    • 1
    • 2
  • Jean-Michel Harmand
    • 1
  • Bruno Rapidel
    • 3
    • 4
  • Patrick Jagoret
    • 3
  • Olivier Deheuvels
    • 3
    • 5
  1. 1.CIRAD, UMR ECO&SOLSMontpellierFrance
  2. 2.ICRAFNairobiKenya
  3. 3.CIRAD, UMR SYSTEMMontpellierFrance
  4. 4.CATIETurrialbaCosta Rica
  5. 5.ICRAFLimaPeru

Personalised recommendations