The Island Test for Cumulative Culture in the Paleolithic

  • Claudio Tennie
  • David R. Braun
  • L. S. Premo
  • Shannon P. McPherron
Part of the Vertebrate Paleobiology and Paleoanthropology book series (VERT)


Early Stone Age artifacts have long been assumed to reflect the material record of communities whose members possessed the ability to transmit ideas, behaviors, and technologies from individual to individual through high-fidelity transmission (i.e., involving teaching and/or imitation), much like humans do today. Recent experimental work has highlighted marked differences between great apes and modern humans in the capacity and/or motivation for some forms of cultural transmission. In particular, high-fidelity mechanisms of social learning, which are thought to underlie the capacity for cumulative culture, appear to be enhanced in – if not unique to – humans. Taken as a group, these experiments suggest it is plausible that a combination of genetic, environmental, and social factors that do not include high-fidelity social learning mediate the “cultures” described for great ape populations to date. It may be that, while the distribution of great ape behavioral variation in time and space is likely affected by low-fidelity social learning (which is widespread in the animal kingdom), the observed variants were invented (i.e., learned) independently by each individual rather than copied from other individuals. Behaviors that do not require high-fidelity transmission between individuals in order to increase in frequency in a population lie within the so-called “zone of latent solutions.” Here, we begin to grapple with the hypothesis that much of the Early Stone Age archaeological record may reflect deeply “canalized” behaviors of hominin toolmakers – those that reside in each individual’s zone of latent solutions – rather than behaviors that necessarily require high-fidelity transmission between individuals. We explore this possibility while eschewing the simplistic notion that variation in stone tool shape, for example, is entirely determined by the genetic variation found in the toolmakers. Instead, we suggest that the variation observed in Early Stone Age artifacts may simply reflect a heavier reliance on behaviors that reside within the zone of latent solutions than on behaviors that make use of high-fidelity social learning. We discuss a thought experiment, called the Island Test, which may be useful for distinguishing hominin behaviors that require high-fidelity transmission from behaviors that do not. We conclude that the Early Stone Age archaeological record is consistent with the possibility that latent solutions explain the behavioral variation inferred from available material culture. Furthermore, we explore reasons why the assumption of high-fidelity transmission associated with Paleolithic industries is difficult to support.


Behavior Apes Humans Early Stone Age Oldowan Acheulean Tools Social learning High-fidelity transmission 



The authors wish to thank many colleagues who added extensive comments on earlier drafts of this manuscript. In particular, we would like to thank A. Mackay and J. Ferraro. We also thank R. Moore, H. Over, and very helpful anonymous reviewers. DRB would like to thank the Humboldt Foundation for support during his stay at the Max Planck Institute for Evolutionary Anthropology and UCT-URC sabbatical funds. CT would like to thank the Economic and Social Research Council for support (ES/K008625/1). This paper was initially drafted in 2011 based on our presentation at “The Nature of Culture” symposium. We would like to thank Miriam Haidle, Michael Bolus and Nicholas Conard for their invitation and for seeing this volume through to publication.


  1. Acerbi, A., Tennie, C., & Nunn, C. L. (2011). Modelling imitation and emulation in constrained search spaces. Learning and Behavior, 39, 104–114.CrossRefGoogle Scholar
  2. Beyene, Y., Katoh, S., WoldeGabriel, G., Hart, W. K., Uto, K., Sudo, M., et al. (2013). The characteristics and chronology of the earliest Acheulean at Konso, Ethiopia. Proceedings of the National Academy of Sciences of the USA, 110, 1584–1591.Google Scholar
  3. Biro, D., Inoue-Nakamura, N., Tonooka, R., Yamakoshi, G., Sousa, C., & Matsuzawa, T. (2003). Cultural innovation and transmission of tool use in wild chimpanzees: Evidence from field experiments. Animal Cognition, 6, 213–223.CrossRefGoogle Scholar
  4. Boyd, R., & Richerson, P. J. (1985). Culture and the evolutionary process. Chicago: University of Chicago Press.Google Scholar
  5. Braun, D. R., & Harris, J. W. K. (2009). Plio-Pleistocene technological variation: A view from the KBS Mbr., Koobi Fora Formation. In N. Toth & K. Schick (Eds.), The cutting edge: New approaches to the archaeology of human origins (pp. 17–32). Gosport, Ind.: Stone Age Institute Press.Google Scholar
  6. Braun, D. R., Plummer, T., Ditchfield, P., Ferraro, J. V., Maina, D., Bishop, L. C., & Potts, R. (2008). Oldowan behavior and raw material transport: Perspectives from the Kanjera formation. Journal of Archaeological Science, 35, 2329–2345.Google Scholar
  7. Braun, D. R., Plummer, T. W., Ferraro, J., Ditchfield, P., et al. (2009). Raw material quality and Oldowan hominin toolstone preferences: Evidence from Kanjera South, Kenya. Journal of Archaeological Science, 36, 1605–1614.CrossRefGoogle Scholar
  8. Brown, G. R., Dickins, T. E., Sear, R., & Laland, K. N. (2011). Evolutionary accounts of human behavioural diversity. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 313–324.CrossRefGoogle Scholar
  9. Byrne, R. W. (2002). Seeing actions as hierarchically organized structures: Great ape manual skills. In A. N. Meltzoff & W. Prinz (Eds.), The imitative mind: Development, evolution, and brain bases (pp. 122–140). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  10. Carbonell, E., Sala, R., Barsky, D., & Celiberti, V. (2006). From homogeneity to multiplicity: A new approach to the study of archaic stone tools. In E. Hovers & D. R. Braun (Eds.), Interdisciplinary approaches to the Oldowan (pp. 25–37). Dordrecht: Springer.Google Scholar
  11. Carvalho, S., Cunha, E., Sousa, C., & Matsuzawa, T. (2008). Chaînes opératoires and resource-exploitation strategies in chimpanzee (Pan troglodytes) nut cracking. Journal of Human Evolution, 55, 148–163.CrossRefGoogle Scholar
  12. de Lumley, H., Nioradze, M., Barsky, D., Cauche, D., Celiberti, V., Nioradzé, G., et al. (2005). Les industries lithiques préoldowayennes du début du Pléistocène inférieur du site de Dmanisi en Géorgie/Pre-Oldowayen lithic industry from the beginning of the lower Pleistocene at the Dmanisi site in Georgia. L’Anthropologie, 109, 1–182.CrossRefGoogle Scholar
  13. de Waal, F. B. M. (2001). The ape and the Sushi Master: Cultural reflections by a primatologist. New York: Basic Books.Google Scholar
  14. Dean, L. G., Kendal, R. L., Schapiro, S. J., Thierry, B., & Laland, K. N. (2012). Identification of the social and cognitive processes underlying human cumulative culture. Science, 335, 1114–1118.CrossRefGoogle Scholar
  15. Delagnes, A., & Roche, H. (2005). Late Pliocene hominid knapping skills: The case of Lokalalei 2C, West Turkana, Kenya. Journal of Human Evolution, 48, 435–472.CrossRefGoogle Scholar
  16. Fragaszy, D. M., & Perry, S. (2003). The biology of traditions: Models and evidence. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  17. Galef, B. G. (2001). Social influences on foraging in vertebrates: Causal mechanisms and adaptive functions. Animal Behaviour, 61, 3–15.CrossRefGoogle Scholar
  18. Gamble, C., & Porr, M. (Eds.). (2005). The hominid individual in context: Archaeological investigations of Lower and Middle Palaeolithic landscapes, locales and artefacts. New York: Routledge Press.Google Scholar
  19. Goren-Inbar, N. (2011). Culture and cognition in the Acheulian industry: A case study from Gesher Benot Ya’aqov. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 1038–1049.CrossRefGoogle Scholar
  20. Gruber, T., Muller, M. N., Strimling, P., Wrangham, R., & Zuberbühler, K. (2009). Wild chimpanzees rely on cultural knowledge to solve an experimental honey acquisition task. Current Biology, 19, 1806–1810.CrossRefGoogle Scholar
  21. Haidle, M. N. (2010). Working-memory capacity and the evolution of modern cognitive potential: Implications from animal and early human tool use. Current Anthropology, 51, 149–166.CrossRefGoogle Scholar
  22. Haslam, M., Hernandez-Aguilar, A., Ling, V., Carvalho, S., de la Torre, I., DeStefano, A., et al. (2009). Primate archaeology. Nature, 460, 339–344.CrossRefGoogle Scholar
  23. Henrich, J. (2004). Demography and cultural evolution: How adaptive cultural processes can produce maladaptive losses: The Tasmanian case. American Antiquity, 69, 197–214.CrossRefGoogle Scholar
  24. Henrich, J., & Boyd, R. (1998). The evolution of conformist transmission and the emergence of between-group differences. Evolution and Human Behavior, 19, 215–241.CrossRefGoogle Scholar
  25. Hill, K., Barton, C. M., & Hurtado, A. M. (2009). The emergence of human uniqueness: Characters underlying behavioral modernity. Evolutionary Anthropology, 18, 187–200.CrossRefGoogle Scholar
  26. Horner, V., & Whiten, A. (2005). Causal knowledge and imitation/emulation switching in chimpanzees (Pan troglodytes) and children (Homo sapiens). Animal Cognition, 8, 164–181.CrossRefGoogle Scholar
  27. Isaac, G. Ll., Bishop, W. W., Miller, J. A., & Cole, S. (1972). Chronology and the tempo of cultural change during the Pleistocene. In W. W. Bishop & J. A. Miller (Eds.), Calibration of hominoid evolution (pp. 381–430). Edinburgh: Scottish Academic Press.Google Scholar
  28. Kempe, M., Lycett, S. J., & Mesoudi, A. (2012). An experimental test of the accumulated copying error model of cultural mutation for Acheulean handaxe size. PLoS ONE, 7, e48333.CrossRefGoogle Scholar
  29. Kimbel, W. H., Walter, R. C., Johanson, D. C., Reed, K. E., Aronson, J. L., Assefa, Z., et al. (1996). Late Pliocene Homo and Oldowan tools from the Hadar formation (Kada Hadar member), Ethiopia. Journal of Human Evolution, 31, 549–561.CrossRefGoogle Scholar
  30. Kline, M. A., & Boyd, R. (2010). Population size predicts technological complexity in Oceania. Proceedings of the Royal Society B: Biological Sciences, 277, 2559–2564.CrossRefGoogle Scholar
  31. Kuman, K., & Clarke, R. J. (2000). Stratigraphy, artefact industries and hominid associations for Sterkfontein, Member 5. Journal of Human Evolution, 38, 827–847.CrossRefGoogle Scholar
  32. Laland, K. N., & Hoppitt, W. (2003). Do animals have culture? Evolutionary Anthropology, 12, 150–159.CrossRefGoogle Scholar
  33. Laland, K. N., Odling-Smee, J., & Myles, S. (2010). How culture shaped the human genome: Bringing genetics and the human sciences together. Nature Reviews Genetics, 11, 137–148.CrossRefGoogle Scholar
  34. Lepre, C. J., Roche, H., Kent, D. V., Harmand, S., Quinn, R. L., Brugal, J.-P., et al. (2011). An earlier origin for the Acheulian. Nature, 477(7362), 82–85.CrossRefGoogle Scholar
  35. Luncz, L. V., Mundry, R., & Boesch, C. (2012). Evidence for cultural differences between neighboring chimpanzee communities. Current Biology, 22, 922–926.CrossRefGoogle Scholar
  36. Lycett, S. J. (2008). Acheulean variation and selection: Does handaxe symmetry fit neutral expectations? Journal of Archaeological Science, 35, 2640–2648.CrossRefGoogle Scholar
  37. Lycett, S. J., & Gowlett, J. A. J. (2008). On questions surrounding the Acheulean ‘tradition’. World Archaeology, 40, 295–315.CrossRefGoogle Scholar
  38. Lycett, S. J., & Norton, C. (2010). A demographic model for Palaeolithic technological evolution: The case of East Asia and the Movius Line. Quaternary International, 211, 55–65.CrossRefGoogle Scholar
  39. Lycett, S. J., & von Cramon-Taubadel, N. (2008). Acheulean variability and hominin dispersals: A model-bound approach. Journal of Archaeological Science, 35, 553–562.CrossRefGoogle Scholar
  40. Lycett, S. J., Collard, M., & McGrew, W. C. (2007). Phylogenetic analyses of behavior support existence of culture among wild chimpanzees. Proceedings of the National Academy of Sciences of the USA, 104, 17588–17592.Google Scholar
  41. Ludwig, B. V., & Harris, J. W. K. (1998). Towards a technological reassessment of East African Plio-Pleistocene lithic assemblages. In M. Petraglia & K. Paddaya (Eds.), The rise and diversity of the Lower Paleolithic (pp. 84–106). New York: Academic Press.Google Scholar
  42. Marshall-Pescini, S., & Whiten, A. (2008). Chimpanzees (Pan troglodytes) and the question of cumulative culture: An experimental approach. Animal Cognition, 11, 449–456.CrossRefGoogle Scholar
  43. Matsuzawa, T., Biro, D., Humle, T., Inoue-Nakamura, N., Tonooka, R., & Yamakoshi, G. (2001). Emergence of culture in wild chimpanzees: Education by master-apprenticeship. In T. Matsuzawa (Ed.), Primate origins of human cognition and behavior (pp. 557–574). Berlin: Springer.CrossRefGoogle Scholar
  44. McBrearty, S., & Brooks, A. S. (2000). The revolution that wasn’t: A new interpretation of the origin of modern human behavior. Journal of Human Evolution, 39, 453–563.CrossRefGoogle Scholar
  45. McGrew, W. C. (1998). Culture in nonhuman primates? Annual Review of Anthropology, 27, 301–328.CrossRefGoogle Scholar
  46. McNabb, J., Binyon, F., & Hazelwood, L. (2004). The large cutting tools from the South African Acheulean and the question of social traditions. Current Anthropology, 45, 653–677.CrossRefGoogle Scholar
  47. McPherron, S. P. (1999). Ovate and pointed handaxe assemblages: Two points make a line. Préhistoire Européenne, 14, 9–32.Google Scholar
  48. McPherron, S. P. (2000). Handaxes as a measure of the mental capabilities of early hominids. Journal of Archaeological Science, 27, 655–663.CrossRefGoogle Scholar
  49. McPherron, S. P. (2007). What typology can tell us about Acheulian handaxe production. In N. Goren-Inbar & G. Sharon (Eds.), Axe age: Acheulian toolmaking, from quarry to discard (pp. 267–286). Indonesia: Equinox Publishing.Google Scholar
  50. Menzel, C., Fowler, A., Tennie, C., & Call, J. (2013). Leaf surface roughness elicits leaf swallowing behavior in captive chimpanzees (Pan troglodytes) and bonobos (P. paniscus), but not in gorillas (Gorilla gorilla) or orangutans (Pongo abelii). International Journal of Primatology, 34, 533–553.CrossRefGoogle Scholar
  51. Mercader, J., Panger, M., & Boesch, C. (2002). Excavation of a chimpanzee stone tool site in the African rainforest. Science, 296, 1452–1455.CrossRefGoogle Scholar
  52. Nonaka, T., Bril, B., & Rein, R. (2010). How do stone knappers predict and control the outcome of flaking? Implications for understanding early stone tool technology. Journal of Human Evolution, 59, 155–167.CrossRefGoogle Scholar
  53. Odling-Smee, F. J., Laland, K. N., & Feldman, M. W. (2003). Niche construction: The neglected process in evolution. Princeton: Princeton University Press.Google Scholar
  54. Powell, A., Shennan, S., & Thomas, M. G. (2009). Late pleistocene demography and the appearance of modern human behavior. Science, 324, 1298–1301.CrossRefGoogle Scholar
  55. Pradhan, G. R., Tennie, C., & van Schaik, C. (2012). Social organization and the evolution of cumulative technology in apes and hominins. Journal of Human Evolution, 63, 180–190.CrossRefGoogle Scholar
  56. Premo, L. S. (2012). Local extinctions, connectedness, and cultural evolution in structured populations. Advances in Complex Systems, 15, 1150002.CrossRefGoogle Scholar
  57. Premo, L. S., & Kuhn, S. L. (2010). Modeling effects of local extinctions on culture change and diversity in the Paleolithic. PLoS ONE, 5, e15582.CrossRefGoogle Scholar
  58. Rendell, L., Fogarty, L., & Laland, K. N. (2011). Runaway cultural niche construction. Philosophical Transactions of the Royal Society B, 366, 823–835.CrossRefGoogle Scholar
  59. Richerson, P. J., & Boyd, R. (2005). Not by genes alone. Chicago: University of Chicago Press.Google Scholar
  60. Richerson, P. J., Boyd, R., & Henrich, J. (2010). Gene-culture coevolution in the age of genomics. Proceedings of the National Academy of Sciences of the USA, 107, 8985–8992.Google Scholar
  61. Roche, H., Delagnes, A., Brugal, J.-P., Feibel, C. S., Kibunjia, M., Mourre, V., et al. (1999). Early hominid stone tool production and technical skill 2.34 Myr ago in west Turkana. Kenya. Nature, 399, 57–60.CrossRefGoogle Scholar
  62. Roffman, I., Savage-Rumbaugh, S., Rubert-Pugh, E., Ronen, A., & Nevo, E. (2012). Stone tool production and utilization by bonobo-chimpanzees (Pan paniscus). Proceedings of the National Academy of Sciences of the USA, 109, 14500–14503.Google Scholar
  63. Sahnouni, M., Van der Made, J., & Everett, M. (2009). Early North Africa: Chronology, ecology, and hominin behavior: Insights from Ain Hanech and El-Kherba, northeastern Algeria. Quaternary International, 223, 436–438.Google Scholar
  64. Schöning, C., Humle, T., Möbius, Y., & McGrew, W. C. (2008). The nature of culture: Technological variation in chimpanzee predation on army ants revisited. Journal of Human Evolution, 55, 48–59.CrossRefGoogle Scholar
  65. Semaw, S. (2000). The world’s oldest stone artefacts from Gona, Ethiopia: Their implications for understanding stone technology and patterns of human evolution between 2.6–1.5 million years ago. Journal of Archaeological Science, 27, 1197–1214.CrossRefGoogle Scholar
  66. Semaw, S., Renne, P., Harris, J. W. K., Feibel, C. S., Bernor, R. L., Fesseha, N., et al. (1997). 2.5-million-year-old stone tools from Gona Ethiopia. Nature, 385, 333–336.Google Scholar
  67. Sharon, G. (2007). Acheulian large flake industries: Technology, chronology, and significance. British Archaeological Reports International Series 1701. Oxford: Archaeopress.Google Scholar
  68. Sharon, G. (2008). The impact of raw material on Acheulian large flake production. Journal of Archaeological Science, 35, 1329–1344.CrossRefGoogle Scholar
  69. Shipton, C. (2010). Imitation and shared intentionality in the Acheulean. Cambridge Archaeological Journal, 20, 197–210.CrossRefGoogle Scholar
  70. Shipton, C., & Petraglia, M. D. (2010). Inter-continental variation in Acheulean bifaces. In C. J. Norton & D. R. Braun (Eds.), Asian Paleoanthropology (pp. 49–55). Dordrecht: Springer.Google Scholar
  71. Shipton, C., Petraglia, M., & Paddayya, K. (2009). Stone tool experiments and reduction methods at the Acheulean site of Isampur Quarry, India. Antiquity, 83, 769–785.CrossRefGoogle Scholar
  72. Stout, D. (2011). Stone toolmaking and the evolution of human culture and cognition. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 1050–1059.CrossRefGoogle Scholar
  73. Stout, D., Quade, J., Semaw, S., Rogers, M. J., & Levin, N. E. (2005). Raw material selectivity of the earliest stone toolmakers at Gona, Afar, Ethiopia. Journal of Human Evolution, 48, 365–380.CrossRefGoogle Scholar
  74. Stout, D., Semaw, S., Rogers, M. J., & Cauche, D. (2010). Technological variation in the earliest Oldowan from Gona, Afar, Ethiopia. Journal of Human Evolution, 58, 474–491.CrossRefGoogle Scholar
  75. Tebbich, S., Taborsky, M., Fessl, B., & Blomqvist, D. (2001). Do woodpecker finches acquire tool-use by social learning? Proceedings of the Royal Society B: Biological Sciences, 268, 2189–2193.CrossRefGoogle Scholar
  76. Tennie, C., & Hedwig, D. (2009). How latent solution experiments can help to study differences between human culture and primate traditions. In E. Potocki & J. Krasiński (Eds.), Primatology: Theories, methods and research (pp. 95–112). New York: Nova Publishers.Google Scholar
  77. Tennie, C., Hedwig, D., Call, J., & Tomasello, M. (2008). An experimental study of nettle feeding in captive gorillas. American Journal of Primatology, 70, 584–593.CrossRefGoogle Scholar
  78. Tennie, C., Call, J., & Tomasello, M. (2009). Ratcheting up the ratchet: On the evolution of cumulative culture. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 2405–2415.CrossRefGoogle Scholar
  79. Tennie, C., Call, J., & Tomasello, M. (2010). Evidence for emulation in chimpanzees in social settings using the floating peanut task. PLoS ONE, 5, e10544.CrossRefGoogle Scholar
  80. Tennie, C., Call, J., & Tomasello, M. (2012). Untrained chimpanzees (Pan troglodytes schweinfurthii) fail to imitate novel actions. PLoS ONE, 7, e41548.CrossRefGoogle Scholar
  81. Texier, P. J., Porraz, G., Parkington, J., Rigaud, J. P., Poggenpoel, C., Miller, C., et al. (2010). A howiesons poort tradition of engraving ostrich eggshell containers dated to 60,000 years ago at Diepkloof Rock Shelter, South Africa. Proceedings of the National Academy of Sciences of the USA, 107, 6180–6185.Google Scholar
  82. Tomasello, M. (1999). The cultural origins of human cognition. Cambridge, MA & London: Harvard University Press.Google Scholar
  83. Toth, N. (1987). Behavioral inferences from early stone artifact assemblages: An experimental model. Journal of Human Evolution, 16, 763–787.CrossRefGoogle Scholar
  84. Toth, N., Savage-Rumbaugh, E. S., Sevcik, R. A., Rumbaugh, D. M., & Schick, K. D. (1993). Pan the tool-maker: Investigations into the stone tool-making and tool-using capabilities of a Bonobo (Pan paniscus). Journal of Archaeological Science, 20, 81–91.CrossRefGoogle Scholar
  85. Visalberghi, E. (1987). Acquisition of nut-cracking behaviour by 2 capuchin monkeys (Cebus apella). Folia Primatologica, 49, 168–181.CrossRefGoogle Scholar
  86. Walsh, P. T., Hansell, M., Borello, W. D., & Healy, S. D. (2010). Repeatability of nest morphology in African weaver birds. Biology Letters, 6, 149–151.CrossRefGoogle Scholar
  87. White, M. J. (1998). On the significance of acheulian biface variability in Southern Britain. Proceedings of the Prehistoric Society, 64, 15–44.CrossRefGoogle Scholar
  88. Whiten, A. (2000). Primate culture and social learning. Cognitive Science, 24, 477–508.CrossRefGoogle Scholar
  89. Whiten, A., & Ham, R. (1992). On the nature and evolution of imitation in the animal kingdom: Reappraisal of a century of research. Advances in the Study of Behavior, 21, 239–283.CrossRefGoogle Scholar
  90. Whiten, A., & van Schaik, C. P. (2007). The evolution of animal ‘cultures’ and social intelligence. Philosophical Transactions of the Royal Society B: Biological Sciences, 362, 603–620.CrossRefGoogle Scholar
  91. Whiten, A., Goodall, J., McGrew, W. C., Nishida, T., Reynolds, V., Sugiyama, Y., et al. (1999). Cultures in chimpanzees. Nature, 399, 682–685.CrossRefGoogle Scholar
  92. Whiten, A., Horner, V., & Marshall-Pescini, S. (2003). Cultural panthropology. Evolutionary Anthropology, 12, 92–105.CrossRefGoogle Scholar
  93. Whiten, A., McGuigan, N., Marshall-Pescini, S., & Hopper, L. M. (2009a). Emulation, imitation, over-imitation and the scope of culture for child and chimpanzee. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 2417–2428.CrossRefGoogle Scholar
  94. Whiten, A., Schick, K. D., & Toth, N. (2009b). The evolution and cultural transmission of percussive technology: Integrating evidence from paleoanthropology and primatology. Journal of Human Evolution, 57, 420–435.CrossRefGoogle Scholar
  95. Whiten, A., Hinde, R. A., Laland, K. N., & Stringer, C. B. (2011). Culture evolves. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 938–948.CrossRefGoogle Scholar
  96. Wynn, T., & Tierson, F. (1990). Regional comparison of the shapes of later Acheulean handaxes. American Anthropologist, 92, 73–84.CrossRefGoogle Scholar
  97. Yamei, H., Potts, R., Baoyin, Y., Zhengtang, G., Deino, A. L., Wei, W., et al. (2000). Mid-Pleistocene Acheulean-like stone technology of the Bose Basin, South China. Science, 287, 1622–1626.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Claudio Tennie
    • 1
    • 2
  • David R. Braun
    • 3
    • 4
  • L. S. Premo
    • 2
    • 5
  • Shannon P. McPherron
    • 2
  1. 1.School of PsychologyUniversity of BirminghamBirminghamUK
  2. 2.Max Planck Institute for Evolutionary AnthropologyLeipzigGermany
  3. 3.Center for the Advanced Study of Human Paleobiology, Department of AnthropologyGeorge Washington UniversityWashingtonUSA
  4. 4.Department of ArchaeologyUniversity of Cape TownCape TownSouth Africa
  5. 5.Department of AnthropologyWashington State UniversityPullmanUSA

Personalised recommendations