Skip to main content

Resource Transfer Between Plants Through Ectomycorrhizal Fungal Networks

  • Chapter
  • First Online:
Mycorrhizal Networks

Abstract

Carbon (C), nutrients and water (H2O) have been known for five decades to flow between plants through ectomycorrhizal (EM) networks. This flux has the potential to affect plant and fungal performance and resource distribution within communities. We asked two questions: (1) What are the pathways and mechanisms for C, nutrient and H2O fluxes between plants through EM networks? (2) What are the magnitude, fate and importance of C, nutrient and H2O transfer among EM plants? Mycorrhizal networks provide a distinct pathway for resource fluxes among plants and mycorrhizal fungi, partitioning them away from other competing soil microbes and plant roots in the soil matrix, and potentially providing a competitive advantage (or disadvantage) for some individuals involved in the network. Carbon and nutrients flow symplastically and apoplastically through mycorrhizal symbionts, hyphae and rhizomorphs along source-sink gradients across the networking mycelia and plant community. EM networks can also facilitate the hydraulic redistribution of soil or plant water following water potential gradients. Carbon fluxes through EM networks have been shown to supply 0–10 % of autotrophic, up to 85 % of partial myco-heterotrophic (MH), and 100 % of fully MH plant C. This C supply has been loosely associated with the increased survival and growth of autotrophic plants, but has been shown to be essential for the survival of MH plants. Network-mediated nitrogen (N) fluxes between N2-fixing and non-N2-fixing plants have supplied up to 40 % of receiver N, and this has been associated with increased plant productivity. Fluxes between non-N2-fixing plants have supplied <5 % of receiver N. Hydraulic redistribution involving EM fungi has supplied up to 50 % of plant water; this has been shown as essential for plant survival in some cases. However, uncertainty remains as to how much of this water transfers through EM networks. Phosphorus transfer through EM networks has not been adequately demonstrated. Overall, this review chapter shows that resource fluxes though EM networks are sufficiently large in some cases to facilitate plant establishment and growth. Resource fluxes through EM networks may thus serve as a method for interactions and cross-scale feedbacks in the development of plant-microbial communities. The outcome of resource transfer through EM networks for the stability of terrestrial ecosystems depends upon the environmental context.

Co-authors listed in alphabetical order.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abuzinadah RA, Read DJ (1989) Carbon transfer associated with assimilation of organic nitrogen sources by silver birch (Betula pendula Roth.). Trees 3:17–23

    Article  Google Scholar 

  • Agerer R (2001) Exploration types of ectomycorrhizae. A proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance. Mycorrhiza 11:107–114

    Article  Google Scholar 

  • Agerer R (2006) Fungal relationships and structural identity of their ectomycorrhizae. Mycol Prog 5:67–107

    Article  Google Scholar 

  • Aitken SN, Yeaman S, Holliday JA, Wang T, Curtis-McLane S (2008) Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol Appl 1:95–111

    Article  PubMed  PubMed Central  Google Scholar 

  • Allen MF (2007) Mycorrhizal fungi: highways for water and nutrients in arid soils. Vadose Zone J 6:291–297

    Article  Google Scholar 

  • Allen MF (2009) Bidirectional water flows through the soil–fungal–plant mycorrhizal continuum. New Phytol 182:290–293

    Article  PubMed  Google Scholar 

  • Anand M, Gonzalez A, Guichard F, Kolasa J, Parrot L (2010) Ecological systems as complex systems: challenges for an emerging science. Diversity 2:395–410

    Article  Google Scholar 

  • Anisimov OA, Vaughan DG, Callaghan TV, Furgal C, Marchant C, Prowse TD, Vilhjalmsson H, Walsh JE (2007) Polar regions (Arctic and Antarctic). In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate Change 2007: impacts, adaptation and vulnerability, Contribution of Working Group II to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 653–685

    Google Scholar 

  • Arnebrant K, Ek H, Finlay RD, Söderström B (1993) Nitrogen translocation between Alnus glutinosa (L.) Gaertn. Seedlings inoculated with Frankia sp. and Pinus contorta Dougl. ex Loud seedlings connected by a common ectomycorrhizal mycelium. New Phytol 24:231–242

    Article  Google Scholar 

  • Asay A (2013) Mycorrhizal facilitation of kin recognition in interior Douglas-fir (Pseudotsuga menziesii var. glauca). Master’s thesis, University of British Columbia, Vancouver, Canada

    Google Scholar 

  • Augé RM, Toler HD, Saxton AM (2014) Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis. Mycorrhiza 25:13–24

    Article  PubMed  Google Scholar 

  • Babikova Z, Gilbert L, Bruce TJA, Birkett M, Caulfield JC, Woodcock C, Pickett JA, Johnson D (2013) Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack. Ecol Lett 16:835–843

    Article  PubMed  CAS  Google Scholar 

  • Bago B, Zipfel W, Williams RM, Jun J, Arreola R, Lammers PJ, Pfeffer PE, Shachar-Hill Y (2002) Translocation and utilization of fungal storage lipid in the arbuscular mycorrhizal symbiosis. Plant Physiol 128:109–124

    Article  CAS  Google Scholar 

  • Bahram M, Põlme S, Kõljalg U, Tedersoo L (2011) A single European aspen (Populus tremula) tree individual may potentially harbour dozens of Cenococcum geophilum ITS genotypes and hundreds of species of ectomycorrhizal fungi. FEMS Microbiol Ecol 75:313–320

    Article  CAS  PubMed  Google Scholar 

  • Barnosky AD, Hadley EA, Bascompte J et al (2012) Approaching a state shift in Earth’s biosphere. Nature 486:52–58

    Article  CAS  PubMed  Google Scholar 

  • Barto EK, Hilker M, Muller F, Mohney BK, Weidenhamer JD, Rillig MC (2011) The fungal fast lane: common mycorrhizal networks extend bioactive zones of allelochemicals in soils. PLoS ONE 6(11):e27195. doi:10.1371/journal.pone.0027195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bascompte J (2009) Mutualistic networks. Front Ecol Env 7(4):29–436

    Google Scholar 

  • Bascompte J, Jordano P, Melian CJ, Olesen JM (2003) The nested assembly of plant-animal mutualistic networks. PNAS 100:9382–9387

    Article  CAS  Google Scholar 

  • Beiler KJ, Durall DM, Simard SW, Maxwell SA, Kretzer AM (2010) Mapping the wood-wide web: mycorrhizal networks link multiple Douglas-fir cohorts. New Phytol 185:543–553

    Article  CAS  PubMed  Google Scholar 

  • Beiler KJ, Simard SW, Durall DM (2015) Topology of tree-mycorrhizal fungus interaction networks in xeric and mesic Douglas-fir forests. J Ecol. doi:10.1111/1365-2745.12387

  • Bertness MD, Callaway R (1994) Positive interactions in communities. Trends Ecol Evol 9:191–193

    Article  CAS  PubMed  Google Scholar 

  • Bethlenfalvay GJ, Reyes-Solis MG, Camel SB et al (1991) Nutrient transfer between the root zones of soybean and maize plants connected by a common mycorrhizal mycelium. Physiol Plant 82:423–432

    Article  CAS  Google Scholar 

  • Bidartondo MI (2005) The evolutionary ecology of myco-heterotrophy. New Phytol 167:335–352

    Article  PubMed  Google Scholar 

  • Biedrzycki ML, Jilany TA, Dudley SA, Bais HP (2010) Root exudates mediate kin recognition in plants. Commun Integr Biol 3:28–35

    Article  PubMed  PubMed Central  Google Scholar 

  • Bingham MA, Simard SW (2011) Do mycorrhizal network benefits to survival and growth of interior Douglas-fir seedlings increase with soil moisture stress? Ecol Evol 306–316

    Google Scholar 

  • Bingham MA, Simard SW (2012a) Ectomycorrhizal networks of old Pseudotsuga menziesii var. glauca trees facilitate establishment of conspecific seedlings under drought. Ecosystems 15:188–199

    Article  CAS  Google Scholar 

  • Bingham MA, Simard SW (2012b) Mycorrhizal networks affect ectomycorrhizal fungal community similarity between conspecific trees and seedlings. Mycorrhiza 22:317–326

    Article  PubMed  Google Scholar 

  • Bingham MA, Simard SW (2013) Seedling genetics and life history outweigh mycorrhizal network potential to improve conifer regeneration under drought. For Ecol Manage 287:132–139

    Google Scholar 

  • Björkman E (1960) Monotropa hypopitys L.—An epiparasite on tree roots. Physiol Plant 13:308–327

    Article  Google Scholar 

  • Bledsoe C, Allen MF, Southworth D (2014) Beyond mutualism: complex mycorrhizal interaction. In: Lüttge U et al (eds) Progress in botany, vol 75. Doi:10.1007/978-3-642-38797-5_10. © Springer, Berlin

  • Boddy L, Jones TH (2007) Mycelial responses in heterogeneous environments: parallels with macroorganisms. In Gadd G, Watkinson SC, Dyer P (eds) Fungi in the environment. Cambridge University Press, Cambridge, pp 112–158

    Google Scholar 

  • Booth MG (2004) Mycorrhizal networks mediate overstorey–understorey competition in a temperate forest. Ecol Lett 7:538–546

    Article  Google Scholar 

  • Booth MG, Hoeksema JD (2010) Ectomycorrhizal networks counteract competitive effects of canopy trees on seedling survival. Ecology 91:2294–2302

    Article  PubMed  Google Scholar 

  • Bornyasz MA, Graham RC, Allen MF (2005) Ectomycorrhizae in a soil-weathered granitic bedrock regolith: linking matrix resources to plants. Geoderma 126:141–160

    Article  Google Scholar 

  • Bougoure JJ, Brundrett MC, Grierson PF (2010) Carbon and nitrogen supply to the underground orchid, Rhizanthella gardneri. New Phytol 186:947–956

    Article  CAS  PubMed  Google Scholar 

  • Bret-Harte MS, Mack MC, Goldsmith GR et al (2008) Plant functional types do not predict biomass responses to removal and fertilization in Alaskan tussock tundra. J Ecol 96:713–726

    Article  PubMed  PubMed Central  Google Scholar 

  • Brooks R, Meinzer FC, Warren JM, Domec J-C, Coulombe R (2006) Hydraulic redistribution in a Douglas-fir forest: lessons from system manipulations. Plant Cell Env 29:138–150

    Article  Google Scholar 

  • Brownlee C, Duddridge JA, Malibari A, Read DJ (1983) The structure and function of mycelial systems of ectomycorrhizal roots with special reference to their role in forming inter-plant connections and providing pathways for assimilate and water transport. Plant Soil 71:433–443

    Article  Google Scholar 

  • Büking H, Heyser W (2001) Microautoradiographic localization of phosphate and carbohydrates in mycorrhizal roots of Populus tremula × Populus alba and the implications for transfer processes in ectomycorrhizal associations. Tree Physiol 21:101–107

    Article  Google Scholar 

  • Butterfield BJ (2009) Effects of facilitation on community stability and dynamics: synthesis and future directions. J Ecol 97:1192–1201

    Article  Google Scholar 

  • Cairney JWG (2005) Basidiomycete mycelia in forest soils: dimensions, dynamics and roles in nutrient distribution. Mycol Res 109:7–20

    Article  PubMed  Google Scholar 

  • Cairney JWG (2012) Extramatrical mycelia of ectomycorrhizal fungi as moderators of carbon dynamics in forest soil. Soil Biol Biochem 37:198–208

    Article  CAS  Google Scholar 

  • Cameron DD, Preiss K, Gebauer G, Read DJ (2009) The chlorophyll-containing orchid Corallorhiza trifida derives little carbon through photosynthesis. New Phytol 183:358–364

    Article  CAS  PubMed  Google Scholar 

  • Cameron DD, Johnson I, Leake JR, Read DJ (2010) Giving and receiving: measuring the carbon cost of mycorrhizas in the green orchid, Goodyera repens. New Phytol 180:176–184

    Article  CAS  Google Scholar 

  • Chapin FS III, Shaver GR, Giblin AE, Nadelhoffer KJ, Laundre JA (1995) Responses of Arctic tundra to experimental and observed changes in climate. Ecology 76:694–711

    Google Scholar 

  • Chiarello NJ, Hickman C, Mooney HA (1982) Endomycorrhizal role in interspecific transfer of phosphorus in a community of annual plants. Science 217:941–943

    Article  Google Scholar 

  • Connell JH, Slatyer RO (1977) Mechanisms of succession in natural communities and their role in community stability and organization. Am Nat 111:1119–1144

    Article  Google Scholar 

  • Dawson TE (1993) Hydraulic lift and water use by plants: implications for water balance, performance and plant–plant interactions. Oecologia 95:565–574

    Article  PubMed  Google Scholar 

  • Deslippe JR, Simard SW (2011) Below-ground carbon transfer among Betula nana may increase with warming in Arctic tundra. New Phytol 192:689–698

    Article  CAS  PubMed  Google Scholar 

  • Deslippe JR, Hartmann M, Mohn WW, Simard SW (2011) Long-term experimental manipulation of climate alters the ectomycorrhizal community of Betula nana in Arctic tundra. Global Change Biol 17:1625–1636

    Article  Google Scholar 

  • Deslippe J, Hartmann M, Grayston SJ, Simard SW, Mohn WW (2015) Stable isotope probing implicates Cortinarius collinitus in carbon transfer through ectomycorrhizal mycelial networks in the field. New Phytologist (submitted)

    Google Scholar 

  • Deveau A, Kohler A, Frey-Klett P, Martin F (2008) The major pathways of carbohydrate metabolism in the ectomycorrhizal basidiomycete Laccaria bicolor S238N. New Phytol 180:379–390

    Article  CAS  PubMed  Google Scholar 

  • Dickie IA, Guza RC, Krazewski SE, Reich PB (2004) Shared ectomycorrhizal fungi between a herbaceous perennial (Helianthemum bicknellii) and oak (Quercus) seedlings. New Phytol 164:375–382

    Article  Google Scholar 

  • Duddridge JA, Malibari A, Read DJ (1980) Structure and function of mycorrhizal rhizomorphs with special reference to their role in water transport. Nature 287:834–836

    Article  Google Scholar 

  • Dudley SA, File AL (2008) Kin recognition in an annual plant. Biol Lett 3:435–438

    Article  Google Scholar 

  • Eason WR, Newman EI (1990a) Rapid cycling of nitrogen and phosphorus from dying roots of Lolium perenne. Oecologia 82:432–436

    Article  CAS  PubMed  Google Scholar 

  • Eason WR, Newman EI (1990b) Rapid loss of phosphorus from dying ryegrass roots: the chemical components involved. Oecologia 84:359–361

    Article  CAS  PubMed  Google Scholar 

  • Egerton-Warburton LM, Graham RC, Hubbert KR (2003) Spatial variability in mycorrhizal hyphae and nutrient and water availability in a soil-weathered bedrock profile. Plant Soil 249:331–342

    Article  CAS  Google Scholar 

  • Egerton-Warburton LM, Querejeta JI, Allen MF (2007) Common mycorrhizal networks provide a potential pathway for the transfer of hydraulically lifted water between plants. J Exp Botany 58:1473–1483

    Article  CAS  Google Scholar 

  • Egerton-Warburton LM, Querejeta JI, Allen MF (2008) Efflux of hydraulically lifted water from mycorrhizal fungal hyphae during imposed drought. Plant Signal Behav 3:68–71

    Article  PubMed  PubMed Central  Google Scholar 

  • Eissenstat DM, Newman EI (1990) A comparison of phosphorus and nitrogen transfer between plants of different phosphorus status. Oecologia 82:342–347

    Article  CAS  PubMed  Google Scholar 

  • Ek H, Andersson S, Soderstrom B (1996) Carbon and nitrogen flow in silver birch and Norway spruce connected by a common mycorrhizal mycelium. Mycorrhiza 6:465–467

    Article  Google Scholar 

  • Ekblad A, Huss-Danell K (1995) Nitrogen fixation by Alnus incana and nitrogen transfer from A. incana to Pinus sylvestris influenced by macronutrient and ectomycorrhiza. New Phytol 131:453–459

    Article  Google Scholar 

  • File AL, Murphy GP, Dudley SA (2011) Fitness consequences of plants growing with siblings: reconciling kin selection, niche partitioning and competitive ability. Proc R Soc B. doi:10.1098/rspb.2011.1995

    PubMed  PubMed Central  Google Scholar 

  • Finlay RD (1989) Functional aspects of phosphorus uptake and carbon translocation in incompatible ectomycorrhizal associations between Pinus sylvestris and Suillus grevillei and Boletinus cavipes. New Phytol 112:185–192

    Article  CAS  Google Scholar 

  • Finlay RD, Read DJ (1986) The structure and function of the vegetative mycelium of ectomycorrhizal plants. II. The uptake and distribution of phosphorus by mycelial strands interconnecting host plants. New Phytol 103:157–165

    Article  Google Scholar 

  • Fitter AH, Hodge A, Daniell TJ, Robinson D (1999) Resource sharing in plant–fungus communities: did the carbon move for you? Trends Ecol Evol 14:70–71

    Article  CAS  PubMed  Google Scholar 

  • Francis R, Read DJ (1984) Direct transfer of carbon between plants connected by vesicular-arbuscular mycorrhizal mycelium. Nature 307:53–56

    Article  CAS  Google Scholar 

  • Fraser EC, Lieffers VJ, Landhäusser SM (2006) Carbohydrate transfer through root grafts to support shaded trees. Tree Physiol 26:1019–1023

    Article  CAS  PubMed  Google Scholar 

  • Frey B, Schuepp H (1993) A role of vesicular-arbuscular (VA) mycorrhizal fungi in facilitating interplant nitrogen transfer. Soil Biol Biochem 25:651–658

    Article  Google Scholar 

  • Fricker MD, Boddy L, Bebber DP (2007) Network organisation of mycelial fungi. In: Howard RJ, Gow NAR (eds) The Mycota. Springer, Berlin, pp 309–330

    Google Scholar 

  • Gai J, Christie P, Cai X, Fan J, Zhang J, Feng G, Li X (2009) Occurrence and distribution of arbuscular mycorrhizal fungal species in three types of grassland community of the Tibetan Plateau. Ecol Res 24:1345–1350

    Article  Google Scholar 

  • Giovannetti M, Sbrana C, Avio L, Stranil P (2004) Patterns of belowground plant interconnections established by means of arbuscular mycorrhizal networks. New Phytol 164:175–181

    Article  Google Scholar 

  • Giovannetti M, Avio L, Fortuna P, Pellegrino E, Sbrana C, Strani P (2005) At the root of the Wood Wide Web: self recognition and non-self incompatibility in mycorrhizal networks. Plant Signal Behav 1:1–5

    Article  Google Scholar 

  • Girlanda M, Segreto R, Cafasso D, Liebel HT, Rodda M, Ercole E, Perotto S (2011) Photosynthetic Mediterranean meadow orchids feature partial mycoheterotrophy and specific mycorrhizal associations. Am J Bot 98:1148–1163

    Article  PubMed  Google Scholar 

  • Gorzelak MA, Asay AK, Pickles BJ, Simard SW (2015) Inter-plant communication through mycorrhizal networks mediates complex adaptive behaviour in plant communities. Ann Bot Plants (in press)

    Google Scholar 

  • Graham B, Bormann F (1966) Natural root grafts. Bot Rev 32:255–292

    Article  Google Scholar 

  • Gyuricza V, Thiry Y, Wannijn J, Declerck S, de Boulois HD (2010) Radiocesium transfer between Medicago truncatula plants via a common mycorrhizal network. Environ Microbiol 12:2180–2189

    CAS  PubMed  Google Scholar 

  • Hamel C, Barrantes-Cartin U, Furlan V et al (1991) Endomycorrhizal fungi in nitrogen transfer from soybean to maize. Plant Soil 138:33–40

    Article  CAS  Google Scholar 

  • Haystead A, Malajczuk N, Grove TS (1988) Underground transfer of nitrogen between pasture plants infected with vesicular-arbuscular mycorrhizal fungi. New Phytol 108:417–423

    Article  Google Scholar 

  • He X-H, Critchley C, Bledsoe C (2003) Nitrogen transfer within and between plants through common mycorrhizal networks (CMNs). Crit Rev Plant Sci 22:531–567

    Article  Google Scholar 

  • He XH, Critchley C, Ng H, Bledsoe C (2004) Reciprocal N (15NH4 + or 15NO3 ) transfer between non-N2-fixing Eucalyptus maculata and N2-fixing Casuarina cunninghamiana linked by the ectomycorrhizal fungus Pisolithus sp. New Phytol 163:629–640

    Article  Google Scholar 

  • He XH, Critchley C, Ng H, Bledsoe C (2005) Nodulated N2-fixing Casuarina cunninghamiana is the sink for net N transfer from non-N2-fixing Eucalyptus maculata via an ectomycorrhizal fungus Pisolithus sp. supplied as ammonium nitrate. New Phytol 167:897–912

    Article  CAS  PubMed  Google Scholar 

  • He XH, Bledsoe CS, Zasoski RJ, Southworth D, Horwath WR (2006) Rapid nitrogen transfer from ectomycorrhizal pines to adjacent ectomycorrhizal and arbuscular mycorrhizal plants in a California oak woodland. New Phytol 170:143–151

    Article  CAS  PubMed  Google Scholar 

  • He XH, Xu M, Qiu GY, Zhou J (2009) Use of 15Nstable isotope to quantify nitrogen transfer between mycorrhizal plants. J Plant Ecol 2:107–118

    Article  Google Scholar 

  • Heaton L, Obara B, Grau V, Jones N, Nakagaki T, Boddy L, Fricker MD (2012) Imaging and analysis of microbial networks. Fung Biol Rev 26:12–29

    Article  Google Scholar 

  • Higuera PE, Brubaker LB, Anderson PM, Brown TA, Kennedy AT, Hu FS (2008) Frequent fires in ancient shrub tundra: implications of paleorecords for arctic environmental change. PLoS One 3(3)

    Google Scholar 

  • Higuera PE, Brubaker LB, Anderson PM, Hu FS, Brown TA (2009) Vegetation mediated the impacts of postglacial climate change on fire regimes in the south-central Brooks Range, Alaska. Ecol Monogr 79:201–219

    Article  Google Scholar 

  • Hobbie EA, Agerer R (2010) Nitrogen isotopes in ectomycorrhizal sporocarps correspond to belowground exploration types. Plant Soil 32:71–83

    Article  CAS  Google Scholar 

  • Hobbie EA, Hobbie JE (2008) Natural abundance of 15N in nitrogen-limited forests and tundra can estimate nitrogen cycling through mycorrhizal fungi: a review. Ecosystems 11:815–830

    Article  CAS  Google Scholar 

  • Horton TR, Bruns TD (2001) The molecular revolution in ectomycorrhizal ecology: peeking into the black-box. Mol Ecol 10:1855–1871

    Article  CAS  PubMed  Google Scholar 

  • Horton TR, Hayward J, Tourtellot SG, Taylor DL (2013) Uncommon ectomycorrhizal networks: richness and distribution of Alnus-associating ectomycorrhizal fungal communities. New Phytol 198:978–980

    Article  PubMed  Google Scholar 

  • Hu FS, Higuera PE, Walsh JE, Chapman WL, Duffy PA, Brubaker LB, Chipman ML (2010) Tundra burning in Alaska: linkages to climatic change and sea ice retreat. J Geophys Res Biogeosci 115

    Google Scholar 

  • Hynson NA, Bruns TD (2010) Fungal hosts for mycoheterotrophic plants: a nonexclusive, but highly selective club. New Phytol 185:598–601

    Article  PubMed  Google Scholar 

  • Hynson NA, Mambelli S, Amend A, Dawson T (2012) Measuring carbon gains from fungal networks in understory plants from the tribe Pyroleae (Ericaceae): a field manipulation and stable isotope approach. Oecologia 169:307–317

    Article  PubMed  Google Scholar 

  • Ikram A, Jensen ES, Jakobsen I (1994) No significant transfer of N and P from Pueraria phaseoloides to Hevea brasiliensis via hyphal links of arbuscular mycorrhiza. Soil Biol Biochem 26:1541–1547

    Article  CAS  Google Scholar 

  • Ishikawa CM, Bledsoe CS (2000) Seasonal and diurnal patterns of soil water potential in the rhizosphere of blue oaks: evidence for hydraulic lift. Oecologia 125:459–465

    Article  PubMed  Google Scholar 

  • Jedd G (2011) Fungal evodevo: organelles and multicellular complexity. Trends Cell Biol 21:12–19

    Article  CAS  PubMed  Google Scholar 

  • Johansen A, Jensen ES (1996) Transfer of N and P from intact or decomposing roots of pea to barley interconnected by an arbuscular mycorrhizal fungus. Soil Biol Biochem 28:73–81

    Article  CAS  Google Scholar 

  • Johnson NC (2009) Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytol 185:631–647

    Article  PubMed  CAS  Google Scholar 

  • Johnson D, Leake JR, Read DJ (2002) Novel in-growth core system enables functional studies of grassland mycorrhizal mycelial networks. New Phytol 152:555–562

    Article  Google Scholar 

  • Kiers ET, Franken O, Hart MM, Duhamel M, Verbruggen E, Bago A, Vandenkoornhuyse P, Beesetty Y, Fellbaum CR, Palmer TM, Jansa J, Mensah JA, Kowalchuk GA, West SA, Bücking H (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880–882

    Article  CAS  PubMed  Google Scholar 

  • Kranabetter JM, MacKenzie WM (2010) Contrasts among mycorrhizal plant guilds in foliar nitrogen concentration and δ15N along productivity gradients of a boreal forest. Ecosystems 13:108–117

    Article  CAS  Google Scholar 

  • Lambers H, Brundrett MC, Raven JA, Hopper SD (2010) Plant mineral nutrition in ancient landscapes: high plant species diversity on infertile soils is linked to functional diversity for nutritional strategies. Plant Soil 334:11–31

    Article  CAS  Google Scholar 

  • Leake JR, Cameron DD (2010) Physiological ecology of mycoheterotrophy. New Phytol 185:601–605

    Article  CAS  PubMed  Google Scholar 

  • Leake J, Johnson D, Donnelly D, Muckle G, Boddy L, Read D (2004) Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can J Bot 82:1016–1045

    Article  Google Scholar 

  • Leffler AJ, Peek MS, Ryel RJ, Ivans CY, Caldwell MM (2005) Hydraulic redistribution through the root systems of senesced plants. Ecology 86:633–642

    Article  Google Scholar 

  • Lerat S, Gauci R, Catford J, Vierheilig H, Piché Y, Lapointe L (2002) 14C transfer between the spring ephemeral Erythronium americanum and sugar maple saplings via arbuscular mycorrhizal fungi in natural stands. Oecologia 132:181–187

    Article  PubMed  Google Scholar 

  • Levin SA (2005) Self-organization and the emergence of complexity in ecological systems. Bioscience 55:1075–1079

    Article  Google Scholar 

  • Lilleskov EA, Bruns TD, Dawson TE, Camacho FJ (2009) Water sources and controls on water loss rates of epigeous ectomycorrhizal fungal sporocarps during summer drought. New Phytol 182:483–494

    Article  PubMed  Google Scholar 

  • Lilleskov EA, Hobbie EA, Horton TR (2011) Conservation of ectomycorrhizal fungi: exploring the linkages between functional and taxonomic responses to anthropogenic N deposition. Fungal Ecol 4:174–183

    Article  Google Scholar 

  • Louw D (2015) Interspecific interactions in mixed stands of paper birch (Betula papyrifera) and interior Douglas-fir (Pseudotsuga menziesii var. glauca). Masters thesis, University of British Columbia, Vancouver, Canada  

    Google Scholar 

  • Lucic E, Fourrey C, Kohler A, Martin F, Chalot M, Brun-Jacob A (2008) A gene repertoire for nitrogen transporters in Laccaria bicolor. New Phytol 180:343–364

    Article  CAS  PubMed  Google Scholar 

  • Ludwig F, Dawson TE, Kroon H, Berendse F, Prins HHT (2003) Hydraulic lift in Acacia tortilis trees on an East African savanna. Oecologia 134:293–300

    Article  CAS  PubMed  Google Scholar 

  • Mack MC, Schuur EAG, Bret-Harte MS, Shaver GR, Chapin FS III (2004) Ecosystem C storage in Arctic tundra reduced by long-term nutrient fertilization. Nature 431:440–443

    Article  CAS  PubMed  Google Scholar 

  • Mack MC, Bret-Harte MS, Hollingsworth TN, Jandt RR, Schuur EAG, Shaver GR, Verbyla DL (2011) Carbon loss from an unprecedented Arctic tundra wildfire. Nature 475(7357):489–492

    Article  CAS  PubMed  Google Scholar 

  • Maestre FT, Callaway RM, Valladares F, Lortie CJ (2009) Refining the stress-gradient hypothesis for competition and facilitation in plant communities. J Ecol 97:199–205

    Article  Google Scholar 

  • Mangan SA, Herre EA, Bever JD (2010) Specificity between Neotropical tree seedlings and their fungal mutualists leads to plant–soil feedback. Ecology 91:2594–2603

    Article  PubMed  Google Scholar 

  • Marschner H, Bell D (1994) Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159:89–102

    Article  CAS  Google Scholar 

  • Martin F, Stewart GR, Genetet I, Le Tacon F (1986) Assimilation of 15NH4 by beech (Fagus sylvatica L.) ectomycorrhizas. New Phytol 102:85–94

    Article  CAS  Google Scholar 

  • Martin F, Aerts A, Ahren D et al (2008) The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452:88–93

    Article  CAS  PubMed  Google Scholar 

  • Martos F, Munoz F, Pailler T, Kottke I, Gonneau C, Selosse M-A (2012) The role of epiphytism in architecture and evolutionary constraint within mycorrhizal networks of tropical orchids. Mol Ecol 21:5098–5109

    Article  PubMed  Google Scholar 

  • McKendrick SL, Leake JR, Read DJ (2000) Symbiotic germination and development of myco-heterotrophic plants in nature: transfer of carbon from ectomycorrhizal Salix repens and Betula pendula to the orchid Corallorhiza trifida through shared hyphal connections. New Phytol 145:539–548

    Article  Google Scholar 

  • Meding SM, Zasoski RJ (2008) Hyphal-mediated transfer of nitrate, arsenic, cesium, rubidium, and strontium between arbuscular mycorrhizal forbs and grasses from a California oak woodland. Soil Biol Biochem 40:126–134

    Article  CAS  Google Scholar 

  • Merckx V, Bidartondo MI, Hynson NA (2009) Myco-heterotrophy: when fungi host plants. Ann Bot 104:1255–1261

    Article  PubMed  PubMed Central  Google Scholar 

  • Molina R, Massicotte H, Trappe JM (1992) Specificity phenomenon in mycorrhizal symbiosis: community-ecological consequences and practical implications. In: Allen MF (ed) Mycorrhizal functioning: an integrative plant-fungal process. Chapman Hall, New York, pp 357–423

    Google Scholar 

  • Motomura H, Selosse M-A, Martos F, Kagawa A, Yukawa T (2010) Mycoheterotrophy evolved from mixotrophic ancestors: evidence in Cymbidium (Orchidaceae). Ann Bot 106:573–581

    Article  PubMed  PubMed Central  Google Scholar 

  • Moyer-Henry KA, Burton JW, Israel D et al (2006) Nitrogen transfer between plants: a 15N natural abundance study with crop and weed species. Plant Soil 282:7–20

    Article  CAS  Google Scholar 

  • Nara K (2006) Ectomycorrhizal networks and seedling establishment during early primary succession. New Phytol 169:169–178

    Article  CAS  PubMed  Google Scholar 

  • Nardini A, Salleo S, Tyree MT, Vertovec M (2000) Influence of the ectomycorrhizas formed by Tuber melanosporum Vitt. on hydraulic conductance and water relations of Quercus ilex L. seedlings. Ann For Sci 57:305–312

    Article  Google Scholar 

  • Nehls U, Grunze B, Willmann M, Reich M, Küster H (2007) Sugar for my honey: carbohydrate partitioning in ectomycorrhizal symbiosis. Phytochemistry 68:82–91

    Article  CAS  PubMed  Google Scholar 

  • Neumann RB, Cardon ZG (2012) The magnitude of hydraulic redistribution by plant roots: a review and synthesis of empirical and modeling studies. New Phytol 194:337–352

    Article  PubMed  Google Scholar 

  • Newman EI (1988) Mycorrhizal links between plants: their functioning and ecological significance. Adv Ecol Res 18:243–270

    Article  Google Scholar 

  • Newman EI, Eason W (1989a) Cycling of nutrients from dying roots to living plants, including the role of mycorrhizas. Plant Soil 115:211–215

    Article  Google Scholar 

  • Newman EI, Eason W (1989b) Rates of phosphorus transfer within and between ryegrass (Lolium perenne) plants. Funct Ecol 7:242–248

    Article  Google Scholar 

  • Newman EI, Eason W, Eissenstat DM, Ramos MIRF (1992) Interactions between plants: the role of mycorrhizae. Mycorrhiza 1:47–53

    Article  Google Scholar 

  • Onguene NA, Kuyper TW (2002) Importance of the ectomycorrhizal network for seedling survival and ectomycorrhiza formation in rain forests of south Cameroon. Mycorrhiza 12:13–17

    Article  CAS  PubMed  Google Scholar 

  • Parke JL, Lindermann RG, Black CH (1983) The role of ectomycorrhizas in drought tolerance of Douglas fir seedlings. New Phytol 95:83–95

    Article  Google Scholar 

  • Parrott L (2010) Measuring ecological complexity. Ecol Indic 10:1069–1076

    Article  Google Scholar 

  • Perry DA (1995) Self-organizing systems across scales. Trends Ecol Evol 19:241–244

    Article  Google Scholar 

  • Perry DA (1998) A moveable feast: the evolution of resource sharing in plant-fungal communities. Trends Ecol Evol 13:432–434

    Article  CAS  PubMed  Google Scholar 

  • Perry DA, Margolis H, Choquette C, Molina R, Trappe JM (1989a) Ectomycorrhizal mediation of competition between coniferous tree species. New Phytol 112:501–511

    Article  Google Scholar 

  • Perry DA, Amaranthus MP, Borchers JG, Borchers SL, Brainerd RE (1989b) Bootstrapping in ecosystems. Bioscience 39:230–237

    Article  Google Scholar 

  • Philip LJ (2006) Carbon transfer between ectomycorrhizal paper birch (Betula papyrifera) and Douglas-fir (Pseudotsuga menziesii). PhD thesis, UBC, Vancouver, Canada

    Google Scholar 

  • Philip LJ, Simard SW, Jones MD (2010) Pathways for below-ground carbon transfer between paper birch and Douglas-fir seedlings. Plant Ecol Divers 3:221–233

    Article  Google Scholar 

  • Pickles BJ, Egger KN, Massicotte HB, Green SG (2011) Mycorrhizas and climate change. Fungal Ecol 5:75–83

    Google Scholar 

  • Pickles BJ, Wilhelm R, Asay AK, Hahn AS, Simard SS, Mohn WW Carbon assimilation by soil communities: mycorrhizae dominate the uptake and sub-surface transfer of carbon between paired Douglas-fir seedlings. ISME J (submitted)

    Google Scholar 

  • Plamboeck AH, Dawson TE, Egerton-Warburton LM, North M, Bruns TD, Querejeta JI (2007) Water transfer via ectomycorrhizal fungal hyphae to conifer seedlings. Mycorrhiza 17:439–447

    Article  PubMed  Google Scholar 

  • Pölme S, Bahram M, Yamanaka T, Nara K, Dai YC, Grebenc T, Kraigher H, Toivonen M, Wang P-H, Matsuda Y, Naadel T, Kennedy PG, Kõljalg U, Tedersoo L (2013) Biogeography of ectomycorrhizal fungi associated with alders (Alnus spp.) in relation to biotic and abiotic variables at the global scale. New Phytol 198:1239–1249

    Article  PubMed  CAS  Google Scholar 

  • Preiss K, Gebauer G (2008) A methodological approach to improve estimates of nutrient gains by partially myco-heterotrophic plants. Isot Environ Health Stud 44:393–401

    Article  CAS  Google Scholar 

  • Preiss K, Adam IKU, Gebauer G (2010) Irradiance governs exploitation of fungi: fine-tuning of carbon gain by two partially myco-heterotrophic orchids. Proc R Soc B 277:1333–1336

    Article  PubMed  PubMed Central  Google Scholar 

  • Prieto I, Armas C, Pugnaire FI (2012) Water release through plant roots: new insights on its consequences at the plant and ecosystem level. New Phytol 193:830–841

    Article  PubMed  Google Scholar 

  • Pringle A (2009) Mycorrhizal networks. Current Biol 19:R838

    Article  CAS  Google Scholar 

  • Querejeta JI, Egerton-Warburton LM, Allen MF (2003) Direct nocturnal water transfer from oaks to their mycorrhizal symbionts during severe soil drying. Oecologia 134:55–64

    Article  PubMed  Google Scholar 

  • Querejeta JI, Egerton-Warburton LM, Allen MF (2007) Hydraulic lift may buffer rhizosphere hyphae against the negative effects of severe soil drying in a California oak savanna. Soil Biol Biochem 39:409–417

    Article  CAS  Google Scholar 

  • Querejeta JI, Egerton-Warburton LM, Prieto I, Vargas R, Allen MF (2012) Changes in soil hyphal abundance and viability can alter the patterns of hydraulic redistribution by plant roots. Plant Soil 355:63–73

    Article  CAS  Google Scholar 

  • Read DJ, Francis R, Finlay RD (1985) Mycorrhizal mycelia and nutrient cycling in plant communities. In: Fitter AH (ed) Ecological interactions in soil. Blackwell Scientific Publications, Oxford, pp 193–217

    Google Scholar 

  • Reid CPP, Woods FW (1969) Translocation of 14C-labeled compounds in mycorrhizae and its implications in interplant nutrient cycling. Ecology 50:179–187

    Article  CAS  Google Scholar 

  • Richard F, Millot S, Gardes M, Selosse M-A (2005) Diversity and specificity of ectomycorrhizal fungi retrieved from an old-growth Mediterranean forest dominated by Quercus ilex. New Phytol 166:1011–1023

    Article  CAS  PubMed  Google Scholar 

  • Richards JH, Caldwell MM (1987) Hydraulic lift: substantial nocturnal water transport between soil layers by Artemisia tridentata roots. Oecologia 73:486–489

    Article  CAS  PubMed  Google Scholar 

  • Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53

    Article  CAS  PubMed  Google Scholar 

  • Roy M, Dubois M-P, Proffit M, Vincenot L, Desmarais E, Selosse M-A (2008) Evidence from population genetics that the ectomycorrhizal basidiomycete Laccaria amethystina is an actual multihost symbiont. Mol Ecol 17:2825–2838

    Article  CAS  PubMed  Google Scholar 

  • Roy M, Rochet J, Manzi S, Jargeat P, Gryta H, Moreau P-A, Gardes M (2013) What determines Alnus-associated ectomycorrhizal community diversity and specificity? A comparison of host and habitat effects at a regional scale. New Phytol 198:1228–1238

    Article  CAS  PubMed  Google Scholar 

  • Schimel JP, Bennett J (2004) Nitrogen mineralization: challenges of a changing paradigm. Ecology 85:591–602

    Article  Google Scholar 

  • Schoonmaker AL, Teste FP, Simard SW, Guy RD (2007) Tree proximity, soil pathways and common mycorrhizal networks: their influence on utilization of redistributed water by understory seedlings. Oecologia 154:455–466

    Article  PubMed  Google Scholar 

  • Schweitzer JA, Bailey JK, Fischer DG, LeRoy CJ, Lonsdorf EV, Whitham TG, Hart SC (2008) Plant-soil-microorganism interactions: heritable relationship between plant genotype and associated soil microorganisms. Ecology 89:773–781

    Article  PubMed  Google Scholar 

  • Selosse M-A, Roy M (2009) Green plants that feed on fungi: facts and questions about mixotrophy. Trends Plant Sci 14:64–70

    Article  CAS  PubMed  Google Scholar 

  • Selosse M-A, Richard F, He X, Simard SW (2006) Mycorrhizal network: des liaisons dangereuses? Trends Ecol Evol 21:621–628

    Article  PubMed  Google Scholar 

  • Shaver GR, Bret-Harte MS, Jones MH, Johnstone J, Gough L, Laundre JA, Chapin FS III (2001) Species changes interact with fertilizer addition to control 15 years of change in tundra. Ecology 82:3163–3181

    Article  Google Scholar 

  • Simard SW (2009) The foundational role of mycorrhizal networks in the self-organization of interior Douglas-fir forests. For Ecol Manage 258S:S95–S107

    Article  Google Scholar 

  • Simard SW, Durall DM (2004) Mycorrhizal networks: a review of their extent, function, and importance. Can J Bot 82:1140–1165

    Article  CAS  Google Scholar 

  • Simard SW, Perry DA, Smith JE, Molina R (1997a) Effects of soil trenching on occurrence of ectomycorrhizae on Pseudotsuga menziesii seedlings grown in mature forests of Betula papyrifera and Pseudotsuga menziesii. New Phytol 136:327–340

    Article  Google Scholar 

  • Simard SW, Perry DA, Jones MD, Myrold DD, Durall DM, Molina R (1997b) Net transfer of carbon between tree species with shared ectomycorrhizal fungi. Nature 388:579–582

    Article  CAS  Google Scholar 

  • Simard SW, Jones MD, Durall DM (2002) Carbon and nutrient fluxes within and between mycorrhizal plants. In: van der Heijden M, Sanders I (eds) Mycorrhizal ecology. Ecological studies, vol 157. Springer, Berlin, pp 33–61

    Google Scholar 

  • Simard SW, Beiler KJ, Bingham MA, Deslippe JR, Philip LJ, Teste FP (2012) Mycorrhizal networks: mechanisms, ecology and modelling. Fungal Biol Rev 26:39–60

    Article  Google Scholar 

  • Simard SW, Martin K, Vyse A, Larson B (2013) Meta-networks of fungi, fauna and flora as agents of complex adaptive systems, Chap 7, pp 133–164. In: Puettmann K, Messier C, Coates KD (eds) Managing world forests as complex adaptive systems: building resilience to the challenge of global change. Routledge, New York, 369 pp. ISBN 978-0-415-51977

    Google Scholar 

  • Smith SE, Read DL (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, London

    Google Scholar 

  • Smith SE, Smith FA (1990) Structure and function of the interfaces in biotrophic symbioses as they relate to nutrient transport. New Phytol 114:1–38

    Article  CAS  Google Scholar 

  • Sole RV, Ferrer-Cancho R, Montoya JM, Valverde S (2002) Selection, tinkering and emergence in complex networks. Complexity 8:20–33

    Article  Google Scholar 

  • Song YY, Zeng RS, Xu JF, Li J, Yihdego WG (2010) Interplant communication of tomato plants through underground common mycorrhizal networks. PLoS ONE 5(10):e13324. doi:10.1371/journal.pone.0013324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Song YY, Simard SW, Carroll A, Mohn WW, Zheng RS (2015) Defoliation of interior Douglas-fir elicits carbon transfer and defense signalling to ponderosa pine neighbors through ectomycorrhizal networks. Sci Rep 5:8495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sturm M, Racine CR, Tape K (2001) Increasing shrub abundance in the Arctic. Nature 411:546–547

    Google Scholar 

  • Taylor AFS (2002) Fungal diversity in ectomycorrhizal communities: sampling effort and species detection. Plant Soil 244:19–28

    Article  CAS  Google Scholar 

  • Taylor AFS, Gebauer G, Read DJ (2004) Uptake of nitrogen and carbon from double-labelled (15N and 13C) glycine by mycorrhizal pine seedlings. New Phytol 164:383–388

    Article  CAS  Google Scholar 

  • Tedersoo L, Pellet P, Koljalg U, Selosse M-A (2007) Parallel evolutionary paths to mycoheterotrophy in understorey Ericaceae and Orchidaceae: ecological evidence for mixotrophy in Pyroleae. Oecologia 151:206–217

    Article  PubMed  Google Scholar 

  • Tedersoo L, Jairus T, Horton BM, Abarenkov K, Suvi T, Saar I, Kõljalg U (2008) Strong host preference of ectomycorrhizal fungi in a Tasmanian wet sclerophyll forest as revealed by DNA barcoding and taxon-specific primers. New Phytol 180:479–490

    Article  CAS  PubMed  Google Scholar 

  • Teste FP, Simard SW, Durall DM, Guy RD, Jones MD (2009) Access to mycorrhizal networks and roots of trees: importance for seedling survival and resource transfer. Ecology 90:2808–2822

    Article  PubMed  Google Scholar 

  • Teste FP, Simard SW, Durall DM, Guy RD, Berch SM (2010) Net carbon transfer between Pseudotsuga menziesii var. glauca seedlings in the field is influenced by soil disturbance. J Ecol 98:429–439

    Article  CAS  Google Scholar 

  • Teste FP, Veneklaas EJ, Dixon KW, Lambers H (2014) Complementary plant nutrient-acquisition strategies promote growth of neighbour species. Funct Ecol 28:819–828

    Article  Google Scholar 

  • Teste FP, Veneklaas EJ, Dixon KW, Lambers H (2015) Is nitrogen transfer among plants enhanced by contrasting nutrient-acquisition strategies? Plant Cell Environ 38:50–60

    Article  CAS  PubMed  Google Scholar 

  • Tlalka M, Bebber DP, Darrah PR, Watkinson SC, Fricker MD (2008) Quantifying dynamic resource allocation illuminates foraging strategy in Phanerochaete velutina. Fungal Genet Biol 45:1111–1121

    Article  CAS  PubMed  Google Scholar 

  • Treseder KK (2004) A meta-analysis of mycorrhizal responses to nitrogen, phosphorus and atmospheric CO2 in field studies. New Phytol 164:347–355

    Google Scholar 

  • Treseder KK, Turner KM, Mack MC (2007) Mycorrhizal responses to nitrogen fertilization in boreal ecosystems: potential consequences for soil carbon storage. Global Change Biol 13:78–88

    Google Scholar 

  • Tuffen F, Eason WR, Scullion J (2002) The effect of earthworms and arbuscular mycorrhizal fungi on growth of and 32P transfer between Allium porrum plants. Soil Biol Biochem 34:1027–1036

    Article  CAS  Google Scholar 

  • Twieg BD, Durall DM, Simard SW (2007) Ectomycorrhizal fungal succession in mixed temperate forests. New Phytol 176:437–447

    Article  PubMed  Google Scholar 

  • van der Heijden MGA, Horton TR (2009) Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. J Ecol 97:1139–1150

    Article  Google Scholar 

  • van der Putten WH (2009) A multitrophic perspective on functioning and evolution of facilitation in plant communities. J Ecol 97:1131–1138

    Article  Google Scholar 

  • Walder F, Niemann H, Natarajan M, Lehmann MF, Boller T, Wiemken A (2012) Mycorrhizal networks: common goods of plants shared under unequal terms of trade. Plant Physiol 159:789–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warren JM, Meinzer FC, Brooks JR, Domec JC, Coulombe R (2007) Hydraulic redistribution of soil water in two old-growth coniferous forests: quantifying patterns and controls. New Phytol 173:753–765

    Article  PubMed  Google Scholar 

  • Warren JM, Brooks JR, Meinzer FC, Eberhart J (2008) Hydraulic redistribution of water from Pinus ponderosa trees to seedlings: evidence for an ectomycorrhizal pathway. New Phytol 178:382–394

    Article  CAS  PubMed  Google Scholar 

  • Waters JR, Borowicz VA (1994) Effect of clipping, benomyl, and genet on 14C transfer between mycorrhizal plants. Oikos 71:246–252

    Article  CAS  Google Scholar 

  • Watkins NK, Fitter AH, Graves JD, Robinson D (1996) Carbon transfer between C3 and C4 plants linked by a common mycorrhizal network, quantified using stable carbon isotopes. Soil Biol Biochem 28:471–477

    Article  CAS  Google Scholar 

  • Whitham TG, Bailey JK, Schweitzer JA, Shuster SM, Bangert RK, LeRoy CJ, Lonsdorf EV, Allan GJ, DiFazio SP, Potts PM, Fischer DG, Gehring KA, Lindroth RL, Marks JC, Hart SC, Wimp GM, Wooley SC (2006) A framework for community and ecosystem genetics: from genes to ecosystems. Nature Rev Genet 7:510–523

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson DM (1998) The evolutionary ecology of mycorrhizal networks. Oikos 82:407–410

    Article  Google Scholar 

  • Wilson GWT, Hartnett DC, Rice CW (2006) Mycorrhizal-mediated phosphorus transfer between tallgrass prairie plants Sorghastrum nutans and Artemisia ludoviciana. Funct Ecol 20:427–435

    Article  Google Scholar 

  • Witzany G (2012) Biocommunication of fungi. Springer, Berlin

    Google Scholar 

  • Woods AJ, Heppner D, Kope HH, Burleigh J, Maclauchlan L (2010) Forest health and climate change: A British Columbia perspective. For Chron 86:412–422

    Article  Google Scholar 

  • Wu, Nara K, Hogetsu T (2001) Can 14 C-labeled photosynthetic products move between Pinus densiflora seedlings linked by ectomycorrhizal mycelia? New Phytol 149:137–146

    Google Scholar 

  • Xu H, Kemppainen M, El Kayal W, Hee Lee S, Pardo AG, Cooke JEK, Zwiazek JJ (2015) Overexpression of Laccaria bicolor aquaporin JQ585595 alters root water transport properties in ectomycorrhizal white spruce (Picea glauca) seedlings. New Phytol 205:757–770

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Bognor M, Steinhoff Y-D, Ludewig U (2010) H+-independent glutamine transport in plant root tips. PLoS ONE 5(1):e8917. doi:10.1371/journal.pone.0008917

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yao Q, Li XL, Ai WD, Christie P (2003) Bi-directional transfer of phosphorus between red clover and perennial ryegrass via arbuscular mycorrhizal hyphal links. Eur J Soil Biol 39:47–54

    Article  CAS  Google Scholar 

  • Zimmer K, Hynson NA, Gebauer G, Allen EB, Allen MF, Read DJ (2007) Wide geographical and ecological distribution of nitrogen and carbon gains from fungi in pyroloids and monotropoids (Ericaceae) and in orchids. New Phytol 175:166–175

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzanne Simard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Simard, S. et al. (2015). Resource Transfer Between Plants Through Ectomycorrhizal Fungal Networks. In: Horton, T. (eds) Mycorrhizal Networks. Ecological Studies, vol 224. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7395-9_5

Download citation

Publish with us

Policies and ethics