Synthetic Structures with Parity-Time Symmetry

  • Tsampikos Kottos
  • Alejandro B. Aceves
Part of the Springer Series in Optical Sciences book series (SSOS, volume 199)


Parity-time (PT) symmetric wave mechanics is a rapidly developed field with applications in various areas of physics and mathematics. Although originally proposed in the framework of Quantum Field Theory, it was recently recognized to be a natural mathematical language necessary to describe novel wave transport phenomena in synthetic structures where balanced gain and loss mechanisms coexist. Examples of its successful implementation can be found in areas ranging from integrated photonics and electronic circuitry to antenna theory and meta-materials. The objective of this chapter is to highlight some of these successes, both in modeling and experimental implementations, of PT-symmetric optical and electronic systems.


Parity-time Symmetries Couplers Meta-materials Electronics Modulation Bifurcation 



The authors want to particularly thank our colleagues Hui Cao, Demetrios Christodoulides and Greg Salamo with whom we have had fruitful collaborations on this research topic. TK also acknowledge many useful discussions with F. Ellis on PT-electronics. Many of the results reviewed here is the outcome of fruitful collaboration with N. Bender, D. Christodoulides, F. Ellis, Z. Lin, H. Ramezani, J. Schindler, D. Wang, M. Zheng. The National Science Foundation through the ECCS-1128593 IDR grant has supported this collaborative work.


  1. 1.
    S. Longhi, Quantum-optical analogies using photonic structures. Laser Photonic Rev. 3(3), 243–261 (2009)MathSciNetCrossRefGoogle Scholar
  2. 2.
    C.M. Bender, S. Boettcher, S. Phys. Rev. Lett. 80, 5243 (1998)zbMATHMathSciNetCrossRefADSGoogle Scholar
  3. 3.
    R. El-Ganainy, K.G. Makris, D.N. Christodoulides, Z.H. Musslimani, Theory of coupled optical PT-symmetric structures. Opt. Lett. 32, 2632 (2007)CrossRefADSGoogle Scholar
  4. 4.
    A. Guo, G.J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G.A. Siviloglou, D.N. Christodoulides, Observation of P T symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902 (2009)CrossRefADSGoogle Scholar
  5. 5.
    C.E. Ruter et al., Observation of parity–time symmetry in optics. Nat. Phys. 6, 192 (2010)CrossRefGoogle Scholar
  6. 6.
    T. Kottos, Nat. Phys. 6, 166 (2010)CrossRefGoogle Scholar
  7. 7.
    C.M. Bender, D.C. Brody, H.F. Jones, Phys. Rev. Lett. 89, 270401 (2002)MathSciNetCrossRefGoogle Scholar
  8. 8.
    C.M. Bender, Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 70, 947 (2007)CrossRefADSGoogle Scholar
  9. 9.
    H. Ramezani, T. Kottos, R. El-Ganainy, D.N. Christodoulides, Unidirectional nonlinear PT-symmetric optical structures. Phys. Rev. A 82, 043803 (2010)CrossRefADSGoogle Scholar
  10. 10.
    S.M. Jensen, IEEE J. Q. Electron. 18, 1580 (1982)CrossRefADSGoogle Scholar
  11. 11.
    B.E.A. Saleh, M.C. Teich, Fundamentals of Photonics (Wiley, NY, 1991)CrossRefGoogle Scholar
  12. 12.
    A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov, D.N. Christodoulides, U. Peschel, Parity-time synthetic photonic lattices. Nature 488(7410), 167 (2012)CrossRefADSGoogle Scholar
  13. 13.
    T. Eichelkraut, R. Heilmann, S. Weimann, S. Stutzer, F. Dreisow, D.N. Christodoulides, S. Nolte, A. Szameit, Mobility transition from ballistic to diffusive transport in non-Hermitian lattices. Nat. Commun. 4, 2533 (2013)CrossRefADSGoogle Scholar
  14. 14.
    J. Schindler, A. Li, M.C. Zheng, F.M. Ellis, T. Kottos, Experimental study of active LRC circuits with PT-symmetries. Phys. Rev. A 84, 040101(R) (2011)CrossRefADSGoogle Scholar
  15. 15.
    M.C. Zheng, D.N. Christodoulides, R. Fleischmann, T. Kottos, Phys. Rev. A 82, 010103 (2010)CrossRefADSGoogle Scholar
  16. 16.
    H. Ramezani, J. Schindler, F.M. Ellis, U. Gunther, T. Kottos, Bypassing the bandwidth theorem with PT symmetry. Phys. Rev. A 85, 062122 (2012)CrossRefADSGoogle Scholar
  17. 17.
    Z. Lin, J. Schindler, F.M. Ellis, T. Kottos, Experimental observation of the dual behavior of PT-symmetric scattering. Phys. Rev. A 85, 050101(R) (2012)CrossRefADSGoogle Scholar
  18. 18.
    J. Schindler, Z. Lin, J.M. Lee, H. Ramezani, F.M. Ellis, T. Kottos, PT-symmetric electronics. J. Phys. A Math. Theor. 45, 444029 (2012)CrossRefADSGoogle Scholar
  19. 19.
    N. Bender, S. Factor, J.D. Bodyfelt, H. Ramezani, D.N. Christodoulides, F.M. Ellis, T. Kottos, Observation of asymmetric transport in structures with PT-symmetric nonlinearities. Phys. Rev. Lett. 110, 234101 (2013)CrossRefADSGoogle Scholar
  20. 20.
    A.A. Sukhorukov, S.V. Dmitriev, S.V. Suchkov, Y.S. Kivshar, Nonlocality in PT-symmetric waveguide arrays with gain and loss. Opt. Lett. 37(11), 2148–2150 (2012)CrossRefADSGoogle Scholar
  21. 21.
    S. Longhi, Convective and absolute PT symmetry breaking in tight-binding lattices. arXiv:1310.5004v1 [quant-ph] (2013)Google Scholar
  22. 22.
    K.G. Makris, R. El-Ganainy, D.N. Christodoulides, Z.H. Musslimani, PT-symmetric optical lattices. Phys. Rev. A 81, 063807 (2010)CrossRefADSGoogle Scholar
  23. 23.
    S. Nixon, L. Ge, J. Yang, Stability analysis for solitons in PT-symmetric optical lattices. Phys. Rev. A 85, 023822 (2012)CrossRefADSGoogle Scholar
  24. 24.
    H. Ramezani, D.N. Christodoulides, V. Kovanis, I. Vitebskiy, T. Kottos, PT-symmetric Talbot effect. Phys. Rev. Lett. 109, 033902 (2012)CrossRefADSGoogle Scholar
  25. 25.
    H. Ramezani, T. Kottos, V. Kovanis, D.N. Christodoulides, Exceptional-point dynamics in photonic honeycomb lattices with PT symmetry. Phys. Rev. A 85, 013818 (2012)CrossRefADSGoogle Scholar
  26. 26.
    D.A. Zezyulin, V.V. Konotop, Nonlinear modes in finite-dimensional PT-symmetric systems. Phys. Rev. Lett. 108, 213906 (2012)CrossRefADSGoogle Scholar
  27. 27.
    N. Lazarides, G.P. Tsironis, Gain-driven breathers in PT-symmetric nonlinear metamaterials. Phys. Rev. Lett. 110, 053901 (2013)CrossRefADSGoogle Scholar
  28. 28.
    D. Wang, A.B. Aceves, Modulation theory in PT-symmetric magnetic meta-material arrays in the continuum limit. Phys. Rev. A 88, 043831 (2013)CrossRefADSGoogle Scholar
  29. 29.
    Z.H. Musslimani, K.G. Makris, R. El-Ganainy, D.N. Christodoulides, Optical solitons in PT-periodic potentials. Phys. Rev. Lett. 100, 030402 (2008)CrossRefADSGoogle Scholar
  30. 30.
    V. Achilleos, P.G. Kevrekidis, D.J. Frantzeskakis, R. Carretero-Gonzalez, Dark solitons and vortices in PT-symmetric nonlinear media: from spontaneous symmetry breaking to nonlinear PT phase transitions. Phys. Rev. A 86, 013808 (2012)CrossRefADSGoogle Scholar
  31. 31.
    L. Feng, Y.-L. Xu, W.S. Fegadolli, M.-H. Lu, J.E.B. Oliveira, V.R. Almeida, Y.-F. Chen, A. Scherer, Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. Nat. Mater. 12, 108–113 (2013)CrossRefADSGoogle Scholar
  32. 32.
    C. Keller, M.K. Oberthaler, R. Abfalterer, S. Bernet, Tailored complex potentials and Friedel’s law in atom optics. Phys. Rev. Lett. 79, 3327 (1997)CrossRefADSGoogle Scholar
  33. 33.
    M.K. Oberthaler, R. Abfalterer, S. Bernet, J. Schmiedmayer, A. Zeilinger, Atom waves in crystals of light. Phys. Rev. Lett. 77, 4980 (1996)CrossRefADSGoogle Scholar
  34. 34.
    M. Hiller, T. Kottos, A. Ossipov, Bifurcations in resonance widths of an open Bose-Hubbard dimer. Phys. Rev. A 73, 063625 (2006)CrossRefADSGoogle Scholar
  35. 35.
    E.-M. Graefe, Stationary states of a PT-symmetric two-mode Bose-Einstein condensate. J. Phys. A Math. Theor. 45, 444015 (2012)MathSciNetCrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of PhysicsWesleyan UniversityMiddletownUSA
  2. 2.Department of MathematicsSouthern Methodist UniversityDallasUSA

Personalised recommendations