Advertisement

Nonlinear Plasmonic Waveguides

  • José Ramón Salgueiro
  • Yuri S. Kivshar
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 199)

Abstract

Recent results on plasmonic waveguides are summarized. After a brief introduction to motivate the use of plasmonic structures for optical integrated devices and to present the main characteristics and potential applications, the metal-dielectric-metal slot waveguide is studied. The way to calculate the complex modes , which are necessary for a proper modeling taking optical losses into account, is presented for the linear and nonlinear cases. This calculations are then used to obtain the dispersion curves and to show the way modes transform when losses go from negligible to realistic values. The calculation of nonlinear modes leads to the study of the power dispersion curves considering optical losses and to the comparison with the non lossy case. Also, the way to simulate the propagation of light in this structures, using the finite-difference time-domain technique is discussed. The last part of the text deals with specific devices: nonlinear directional couplers applied to optical power switching . Finally, the use of tapered waveguides for the directional coupler is proposed, as a way to avoid the negative effect of optical loss and to enhance the coupler performance.

Keywords

Plasmonics Complex modes Losses Nonlinear modes Slot waveguides Couplers Power switching 

References

  1. 1.
    S.A. Maier, Plasmonics: fundamentals and applications (Springer, New York, 2007)Google Scholar
  2. 2.
    D. Sarid, W. Challener, Modern Introduction to Surface Plasmons (Cambridge University Press, Cambridge, 2010)CrossRefGoogle Scholar
  3. 3.
    M.L. Brongersma, P.G. Kik (eds.), Surface Plasmon Nanophotonics (Springer, New York, 2007)Google Scholar
  4. 4.
    A.D. Boardman, Electromagnetic Surface Modes (Wiley, New York, 1982)Google Scholar
  5. 5.
    W.L. Barnes, A. Dereux, T.W. Ebbesen, Nature 424, 824 (2003)CrossRefADSGoogle Scholar
  6. 6.
    S.I. Bolzhevolnyi, V.S. Volkov, E. Devaux, J.Y. Laluet, T.W. Ebbesen, Nature 440, 508 (2006)CrossRefADSGoogle Scholar
  7. 7.
    H. Ditlbacher, J.R. Krenn, A. Leitner, F.R. Aussenegg, Appl. Phys. Lett. 81(10), 1762 (2002)CrossRefADSGoogle Scholar
  8. 8.
    D.K. Gramotnev, S.I. Bozhevolnyi, Nat. Photonics 4, 2427 (2004)Google Scholar
  9. 9.
    R. Yang, M.A.G. Abushagur, Z. Lu, Opt. Expr. 16, 20142 (2008)CrossRefADSGoogle Scholar
  10. 10.
    M.I. Stockman, Opt. Expr. 19(22), 22029 (2011)CrossRefADSGoogle Scholar
  11. 11.
    J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, IEEE Trans. Microwave Theory Tech. 47(11), 2075 (1999)CrossRefADSGoogle Scholar
  12. 12.
    J. Homola, S.S. Yee, G. Gauglitz, Seensors Actuat. B 54, 3 (1999)CrossRefGoogle Scholar
  13. 13.
    K.F. MacDonald, Z.L. Sámson, M.I. Stockman, N.I. Zheludev, Nat. Photonics 3, 55 (2009)CrossRefADSGoogle Scholar
  14. 14.
    M. Westphalen, U. Kreibig, J. Rostalski, H. Lüth, D. Meissner, Sol. Energy Mater. Sol. Cells 61, 97 (2000)CrossRefGoogle Scholar
  15. 15.
    K.R. Catchpole, A. Polman, Opt. Expr. 16(26), 21794 (2008)CrossRefADSGoogle Scholar
  16. 16.
    J. Zhu, M. Xue, R. Hoekstra, F. Xiu, B. Zeng, K.L. Wang, Nanoscale 4, 1978 (2012)CrossRefADSGoogle Scholar
  17. 17.
    E. Feigenbaum, M. Orenstein, Opt. Lett. 32(6), 674 (2007)CrossRefADSGoogle Scholar
  18. 18.
    K.Y. Bliohkh, Y.P. Bliokh, A. Ferrando, Phys. Rev. A 79, 041803 (2009)CrossRefADSGoogle Scholar
  19. 19.
    C. Milián, D.E. Ceballos-Herrera, D.V. Skryabin, A. Ferrando, Opt. Lett. 37(20), 4221 (2012)CrossRefADSGoogle Scholar
  20. 20.
    V.M. Agranovich, V.S. Babichenko, V.Y. Chernyak, Sov. Phys. JETP Lett. 32, 512 (1980)ADSGoogle Scholar
  21. 21.
    G.I. Stegeman, C.T. Seaton, J. Ariyasu, R.F. Wallis, A.A. Maradudin, J. Appl. Phys. 58, 2453 (1985)CrossRefADSGoogle Scholar
  22. 22.
    D. Mihalache, G.I. Stegeman, C.T. Seaton, E.M. Wright, R. Zanoni, A.D. Boardman, T. Twardowski, Opt. Lett. 12, 187 (1987)CrossRefADSGoogle Scholar
  23. 23.
    A.D. Boardman, A.A. Maradudin, G.I. Stegeman, T. Twardowski, E.M. Wright, Phys. Rev. A 35, 1159 (1987)CrossRefADSGoogle Scholar
  24. 24.
    A.R. Davoyan, I.V. Shadrivov, Y.S. Kivshar, Opt. Expr. 16, 21209 (2008)CrossRefADSGoogle Scholar
  25. 25.
    N.C. Panoiu, R.M. Osgood, Nano Lett. 4, 2427 (2004)CrossRefADSGoogle Scholar
  26. 26.
    W. Fan, S. Zhang, N.C. Panoiu, A. Abdenour, S. Krishna, R.M. Osgood, K.J. Malloy, S.R.J. Brueck, Nano Lett. 6, 1027 (2006)CrossRefADSGoogle Scholar
  27. 27.
    J.A.H. van Nieuwstadt, M. Sandke, S. Enoch, L. Kuipers, Phys. Rev. Lett. 97, 146102 (2006)CrossRefADSGoogle Scholar
  28. 28.
    A.R. Davoyan, I.V. Shadrivov, Y.S. Kivshar, Opt. Expr. 17(22), 20063 (2009)CrossRefADSGoogle Scholar
  29. 29.
    T. Fujisawa, K. Masanori, J. opt. Soc. Am. B 23(4), 684 (2006)CrossRefADSGoogle Scholar
  30. 30.
    E.N. Economou, Phys. Rev. B 182, 539 (1969)CrossRefADSGoogle Scholar
  31. 31.
    J.J. Burke, G.I. Stegeman, T. Tamir, Phys. Rev. B 33, 5186 (1986)CrossRefADSGoogle Scholar
  32. 32.
    B. Prade, J.Y. Vinet, A. Mysyrowicz, Phys. Rev. B 44(24), 13556 (1991)CrossRefADSGoogle Scholar
  33. 33.
    J.R. Salgueiro, Y. Kivshar, Opt. Expr. 20(9), 9403 (2012)CrossRefADSGoogle Scholar
  34. 34.
    T. Yang, K.B. Crozier, Opt. Expr. 17(2), 1136 (2009)CrossRefADSGoogle Scholar
  35. 35.
    A.R. Davoyan, W. Liu, A. Miroshnichenko, I. Shadrivov, Y. Kivshar, S.I. Bozhevolnyi, Photonic Nanostruc. Fundam. Appl. 9, 207 (2011)CrossRefADSGoogle Scholar
  36. 36.
    S.E. Kocabas, G. Veronis, D.A.B. Miller, S. Fan, Phys. Rev. B 79, 035120 (2009)CrossRefADSGoogle Scholar
  37. 37.
    A.R. Davoyan, I.V. Shadrivov, S.I. Bozhevolnyi, Y.S. Kivshar, J. Nanophotonics 4, 043509 (2010). doi: 10.1117/1.3437397 CrossRefADSGoogle Scholar
  38. 38.
    M.S. Kwon, S.Y. Shin, Opt. Comun. 233, 119 (2004)CrossRefADSGoogle Scholar
  39. 39.
    P.B. Johnson, R.W. Christy, Phys. Rev. B 6, 4370 (1972)CrossRefADSGoogle Scholar
  40. 40.
    J.R. Salgueiro, Y.S. Kivshar, Appl. Phys. Lett. 97, 081106 (2010)CrossRefADSGoogle Scholar
  41. 41.
    S.A. Cummer, I.E.E.E. Trans, Antennas Propagat. 45(3), 392 (1997)CrossRefADSGoogle Scholar
  42. 42.
    R.M. Joseph, T. Allen, I.E.E.E. Phot, Tech. Lett. 6(10), 1251 (1994)CrossRefGoogle Scholar
  43. 43.
    I.S. Maksymov, A.S. Sukhorukov, A.V. Lavrinenko, Y.S. Kivshar, IEEE Antennas Wireless Propag. Lett. 10, 143 (2011)CrossRefADSGoogle Scholar
  44. 44.
    D.K. Gramotnev, K.C. Vernon, D.F.P. Pile, Appl. Phys. B 93, 99 (2008)CrossRefADSGoogle Scholar
  45. 45.
    Z. Chen, T. Holmgaard, S.I. Bozhevolnyi, A.V. Krasavin, A.V. Zayats, L. Markey, A. Dereux, Opt. Lett. 34, 810 (2009)Google Scholar
  46. 46.
    T. Holmgaard, Z. Chen, S.I. Bozhevolnyi, L. Markey, A. Dereux, J. Lightwave Technol. 27, 5521 (2009)CrossRefADSGoogle Scholar
  47. 47.
    M. Conforti, M. Guasoni, C. De Angelis, Opt. Lett. 33(22), 2662 (2008)CrossRefADSGoogle Scholar
  48. 48.
    C. Milián, D.V. Skryabin, Appl. Phys. Lett. 98, 111104 (2011)CrossRefADSGoogle Scholar
  49. 49.
    A. Degiron, S.Y. Cho, T. Tyler, N.M. Jokerst, D.R. Smith, New J. Phys. 11, 015002 (2009)CrossRefADSGoogle Scholar
  50. 50.
    A.R. Davoyan, I.V. Shadrivov, A.A. Zharov, D.K. Gramotnev, Y.S. Kivshar, Phys. Rev. Lett. 105(11), 116804 (2010)CrossRefADSGoogle Scholar
  51. 51.
    A.R. Davoyan, I.V. Shadrivov, Y.S. Kivshar, D.K. Gramotnev, Phys. Status Solidi (RRL) 4, 277 (2010)CrossRefADSGoogle Scholar
  52. 52.
    S.I. Bozhevolnyi, K.V. Nerkararyan, Opt. Lett. 35(4), 541 (2010)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Departamento de Física AplicadaUniversidade de VigoOurenseSpain
  2. 2.Nonlinear Physics Center, Research School of Physics and EngineeringThe Australian National UniversityCanberraAustralia

Personalised recommendations