Quasi-Quantization: Classical Statistical Theories with an Epistemic Restriction

  • Robert W. SpekkensEmail author
Part of the Fundamental Theories of Physics book series (FTPH, volume 181)


A significant part of quantum theory can be obtained from a single innovation relative to classical theories, namely, that there is a fundamental restriction on the sorts of statistical distributions over physical states that can be prepared. This is termed an “epistemic restriction” because it implies a fundamental limit on the amount of knowledge that any observer can have about the physical state of a classical system. This article provides an overview of epistricted theories, that is, theories that start from a classical statistical theory and apply an epistemic restriction. We consider both continuous and discrete degrees of freedom, and show that a particular epistemic restriction called classical complementarity provides the beginning of a unification of all known epistricted theories. This restriction appeals to the symplectic structure of the underlying classical theory and consequently can be applied to an arbitrary classical degree of freedom. As such, it can be considered as a kind of quasi-quantization scheme; “quasi” because it generally only yields a theory describing a subset of the preparations, transformations and measurements allowed in the full quantum theory for that degree of freedom, and because in some cases, such as for binary variables, it yields a theory that is a distortion of such a subset. Finally, we propose to classify quantum phenomena as weakly or strongly nonclassical by whether or not they can arise in an epistricted theory.



I acknowledge Stephen Bartlett and Terry Rudolph for discussions on the quadrature subtheory of quantum mechanics, Jonathan Barrett for suggesting to define the Poisson bracket in the discrete case in terms of finite differences, and Giulio Chiribella, Joel Wallman and Blake Stacey for comments on a draft of this article. Much of the work presented here summarizes unpublished results obtained in collaboration with Olaf Schreiber. Research at Perimeter Institute is supported by the Government of Canada through Industry Canada and by the Province of Ontario through the Ministry of Research and Innovation.


  1. 1.
    R.W. Spekkens, Evidence for the epistemic view of quantum states: a toy theory. Phys. Rev. A 75(3), 032110 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    S.D. Bartlett, T. Rudolph, R.W. Spekkens, Reconstruction of Gaussian quantum mechanics from Liouville mechanics with an epistemic restriction. Phys. Rev. A 86(1), 012103 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, Cambridge, 1999)CrossRefzbMATHGoogle Scholar
  4. 4.
    M.F. Pusey, Stabilizer notation for Spekkens’ toy theory. Found. Phys. 42(5), 688–708 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    S.J. Van Enk, A toy model for quantum mechanics. Found. Phys. 37(10), 1447–1460 (2007)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    D. Gross, Hudson’s theorem for finite-dimensional quantum systems. J. Math. Phys. 47, 122107 (2006)Google Scholar
  7. 7.
    O. Schreiber, R.W. Spekkens, The power of epistemic restrictions in reconstructing quantum theory: from trits to qutrits, unpublished, 2008. R.W. Spekkens, The power of epistemic restrictions in reconstructing quantum theory, Talk, Perimeter Institute,, 10 August 2008
  8. 8.
    T.H. Boyer, Foundations of Radiation Theory and Quantum Electrodynamics, Chapter A Brief Survey of Stochastic Electrodynamics (Plenum, New York, 1980)Google Scholar
  9. 9.
    C.M. Caves, C.A. Fuchs, Quantum information: how much Information in a state vector? (1996). arXiv:quant-ph/9601025
  10. 10.
    J.V. Emerson, Quantum chaos and quantum-classical correspondence. Ph.D. thesis, Simon Fraser University, Vancouver, Canada (2001)Google Scholar
  11. 11.
    L. Hardy, Disentangling nonlocality and teleportation (1999). arXiv:quant-ph/9906123
  12. 12.
    K.A. Kirkpatrick, Quantal behavior in classical probability. Found. Phys. Lett. 16(3), 199–224 (2003)MathSciNetCrossRefGoogle Scholar
  13. 13.
    W.K. Wootters, W.H. Zurek, A single quantum cannot be cloned. Nature 299(5886), 802–803 (1982)ADSCrossRefGoogle Scholar
  14. 14.
    C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W.K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    C.H. Bennett, G. Brassard et al., Quantum cryptography: public key distribution and coin tossing, in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, vol. 175, (New York 1984)Google Scholar
  16. 16.
    R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Quantum entanglement. Rev. Mod. Phys. 81(2), 865 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    C.H. Bennett, D.P. DiVincenzo, C.A. Fuchs, T. Mor, E. Rains, P.W. Shor, J.A. Smolin, W.K. Wootters, Quantum nonlocality without entanglement. Phys. Rev. A 59(2), 1070 (1999)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    C.H. Bennett, D.P. DiVincenzo, T. Mor, P.W. Shor, J.A. Smolin, B.M. Terhal, Unextendible product bases and bound entanglement. Phys. Rev. Lett. 82(26), 5385 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    M.D. Choi, Completely positive linear maps on complex matrices. Linear Algebra Appl. 10, 285–290 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    A. Jamiołkowski, Linear transformations which preserve trace and positive semidefiniteness of operators. Rep. Math. Phys. 3, 275–278 (1972)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    M.A. Naimark. Izv. Akad. Nauk SSSR, Ser. Mat. 4:277–318 (1940)Google Scholar
  22. 22.
    W.F. Stinespring, Positive functions on C*-algebras. Proc. Am. Math. Soc. 6(2), 211–216 (1955)MathSciNetzbMATHGoogle Scholar
  23. 23.
    J.S. Bell, On the Einstein Podolsky Rosen paradox. Physics 1(3), 195–200 (1964)Google Scholar
  24. 24.
    S. Kochen, E.P. Specker, The problem of hidden variables in quantum mechanics. J. Math. Mech. 17, 59 (1967)MathSciNetzbMATHGoogle Scholar
  25. 25.
    R.W. Spekkens, Contextuality for preparations, transformations, and unsharp measurements. Phys. Rev. A 71(5), 052108 (2005)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Y.C. Liang, R.W. Spekkens, H.M. Wiseman, Specker’s parable of the overprotective seer: a road to contextuality, nonlocality and complementarity. Phys. Rep. 506(1), 1–39 (2011)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    N. Harrigan, R.W. Spekkens, Einstein, incompleteness, and the epistemic view of quantum states. Found. Phys. 40, 125 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    C.M. Caves, C.A. Fuchs, R. Schack, Quantum probabilities as Bayesian probabilities. Phys. Rev. A 65(2), 022305 (2002)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    C.A. Fuchs, Quantum mechanics as quantum information, mostly. J. Mod. Opt. 50(6–7), 987–1023 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    C.A. Fuchs, R. Schack, Quantum-Bayesian coherence. Rev. Mod. Phys. 85(4), 1693 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    M.F. Pusey, J. Barrett, T. Rudolph, On the reality of the quantum state. Nat. Phys. 8(6), 475–478 (2012)CrossRefGoogle Scholar
  32. 32.
    P.G. Lewis, D. Jennings, J. Barrett, T. Rudolph, Distinct quantum states can be compatible with a single state of reality. Phys. Rev. Lett. 109(15), 150404 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    R. Colbeck, R. Renner, Is a system’s wave function in one-to-one correspondence with its elements of reality? Phys. Rev. Lett. 108(15), 150402 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    M.S. Leifer, R.W. Spekkens, Towards a formulation of quantum theory as a causally neutral theory of Bayesian inference. Phys. Rev. A 88(5), 052130 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    C.J. Wood, R.W. Spekkens, The lesson of causal discovery algorithms for quantum correlations: causal explanations of bell-inequality violations require fine-tuning (2012). arXiv:1208.4119
  36. 36.
    A. Zeilinger, A foundational principle for quantum mechanics. Found. Phys. 29(4), 631–643 (1999)MathSciNetCrossRefGoogle Scholar
  37. 37.
    T. Paterek, B. Dakić, Č. Brukner, Theories of systems with limited information content. New J. Phys. 12(5), 053037 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    B. Coecke, B. Edwards, R.W. Spekkens, Phase groups and the origin of non-locality for qubits. Electron. Notes Theor. Comput. Sci. 270(2), 15–36 (2011)CrossRefGoogle Scholar
  39. 39.
    S. Mansfield, T. Fritz, Hardy’s non-locality paradox and possibilistic conditions for non-locality. Found. Phys. 42(5), 709–719 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    S. Abramsky, L. Hardy, Logical bell inequalities. Phys. Rev. A 85(6), 062114 (2012)ADSCrossRefGoogle Scholar
  41. 41.
    B. Schumacher, M.D. Westmoreland, Modal quantum theory. Found. Phys. 42(7), 918–925 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    J. Barrett, Information processing in generalized probabilistic theories. Phys. Rev. A 75(3), 032304 (2007)ADSCrossRefGoogle Scholar
  43. 43.
    L. Hardy, Quantum theory from five reasonable axioms (2001). arXiv:quant-ph/0101012
  44. 44.
    B. Coecke, E.O. Paquette, Categories for the practising physicist, in New Structures for Physics. Lecture Notes in Physics, ed. by B. Coecke (Springer, Berlin, 2009), pp. 173–286Google Scholar
  45. 45.
    B. Coecke, B. Edwards, Toy quantum categories. Electron. Notes Theor. Comput. Sci. 270(1), 29–40 (2011)CrossRefGoogle Scholar
  46. 46.
    G. Chiribella, G.M. DAriano, P. Perinotti, Probabilistic theories with purification. Phys. Rev. A 81(6), 062348 (2010)ADSCrossRefGoogle Scholar
  47. 47.
    E. Wigner, On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40(5), 749 (1932)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    C. Gardiner, P. Zoller, Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics, vol. 56 (Springer, New York, 2004)zbMATHGoogle Scholar
  49. 49.
    K.S. Gibbons, M.J. Hoffman, W.K. Wootters, Discrete phase space based on finite fields. Phys. Rev. A 70(6), 062101 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    R.W. Spekkens, Negativity and contextuality are equivalent notions of nonclassicality. Phys. Rev. Lett. 101(2), 20401 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    N.D. Mermin, Hidden variables and the two theorems of John Bell. Rev. Mod. Phys. 65(3), 803 (1993)ADSMathSciNetCrossRefGoogle Scholar
  52. 52.
    D.M. Greenberger, M.A. Horne, A. Zeilinger, Going beyond Bell’s theorem, Bell’s Theorem, Quantum Theory and Conceptions of the Universe (Springer, New York, 1989), pp. 69–72CrossRefGoogle Scholar
  53. 53.
    D. Gottesman, The Heisenberg representation of quantum computers (1998). arXiv:quant-ph/9807006

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Perimeter Institute for Theoretical PhysicsOntarioCanada

Personalised recommendations