# Macroscopic Locality

Chapter

First Online:

## Abstract

The principle of macroscopic locality states that two parties performing coarse-grained extensive measurements over independent correlated pairs of physical systems can always interpret their observations with a classical theory. In this chapter, we briefly review this principle and generalize it to multipartite scenarios where each party is allowed to perform sequential measurements. We prove that this extended axiom is also satisfied by quantum theory and characterize the maximal set of correlations compatible with it. Finally, we observe how bipartite and tripartite correlations limited by macroscopic locality alone differ from the quantum set.

## Keywords

Quantum Correlation Classical Physic Bell Inequality Information Causality Positive Semidefinite Matrix
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

- 1.J. Kofler, C. Brukner, Phys. Rev. Lett.
**99**, 180403 (2007)ADSCrossRefGoogle Scholar - 2.L. Hardy, arXiv:quant-ph/0101012
- 3.B. Dakic, C. Brukner, arXiv:0911.0695
- 4.Ll Masanes, M.P. Mueller, New J. Phys.
**13**, 063001 (2011)ADSCrossRefGoogle Scholar - 5.G. Chiribella, G.M. D’Ariano, P. Perinotti, Phys. Rev. A
**84**, 012311 (2011)ADSCrossRefGoogle Scholar - 6.L. Hardy, arXiv:1104.2066
- 7.G. de la Torre, Ll. Masanes, A.J. Short, M.P. Mueller, arXiv:1110.5482
- 8.D. Rohrlich, S. Popescu, Found. Phys.
**24**(3), 279 (1995)MathSciNetGoogle Scholar - 9.G. Brassard, H. Buhrman, N. Linden, A.A. Methot, A. Tapp, F. Unger, Limit on nonlocality in any world in which communication complexity is not trivial. Phys. Rev. Lett.
**96**, 250401 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar - 10.N. Linden, S. Popescu, A.J. Short, A. Winter, Phys. Rev. Lett.
**99**, 180502 (2007)ADSMathSciNetCrossRefGoogle Scholar - 11.M. Pawlowski, T. Paterek, D. Kaszlikowski, V. Scarani, A. Winter, M. Zukowski, Nature
**461**, 1101 (2009)ADSCrossRefGoogle Scholar - 12.M. Navascués, H. Wunderlich, Proc. R. Soc. A
**466**, 881–890 (2009)ADSCrossRefGoogle Scholar - 13.N. Brunner, P. Skrzypczyk, Phys. Rev. Lett.
**102**, 160403 (2009)ADSCrossRefGoogle Scholar - 14.B.S. Tsirelson, J. Sov. Math.
**36**, 557 (1987)CrossRefGoogle Scholar - 15.R.A. Horn, C.R. Johnson,
*Matrix Analysis*(Cambridge University Press, Cambridge, 1999)Google Scholar - 16.L. Vandenberghe, S. Boyd, SIAM Rev.
**38**, 49 (1996)MathSciNetCrossRefGoogle Scholar - 17.M. Navascués, S. Pironio, A. Acín, Phys. Rev. Lett.
**98**, 010401 (2007); M. Navascués, S. Pironio, A. Acín, New J. Phys.**10**(7), 073013 (2008)Google Scholar - 18.J. Allcock, N. Brunner, N. Linden, S. Popescu, P. Skrzypczyk, T. Vertesi, Phys. Rev. A
**80**, 062107 (2009)ADSCrossRefGoogle Scholar - 19.J.F. Clauser, M.A. Horne, A. Shimony, R.A. Holt, Phys. Rev. Lett.
**23**, 880 (1969)ADSCrossRefGoogle Scholar - 20.B.S. Cirel’son, Lett. Math. Phys.
**4**, 93 (1980)ADSMathSciNetCrossRefGoogle Scholar - 21.T.H. Yang, M. Navascués, L. Sheridan, V. Scarani, Phys. Rev. A
**83**, 022105 (2011)ADSCrossRefGoogle Scholar - 22.R. Werner, M. Wolf, QIC
**1**(3), 1 (2001)MathSciNetGoogle Scholar - 23.J. Allcock, N. Brunner, M. Pawlowski, V. Scarani, Phys. Rev. A
**80**, 040103(R) (2009)ADSMathSciNetCrossRefGoogle Scholar - 24.D. Cavalcanti, A. Salles, V. Scarani, Nat. Commun.
**1**, 136 (2010)ADSCrossRefGoogle Scholar - 25.Ll Masanes, A. Acín, N. Gisin, Phys. Rev. A.
**73**, 012112 (2006)ADSCrossRefGoogle Scholar - 26.B. Toner, Proc. R. Soc. A
**465**, 59–69 (2009)ADSMathSciNetCrossRefGoogle Scholar - 27.B. Toner, F. Verstraete, arXiv:quant-ph/0611001
- 28.J. Löfberg, YALMIP: A toolbox for modeling and optimization in MATLAB, http://control.ee.ethz.ch/joloef/yalmip.php
- 29.J.F. Sturm, SeDuMi, a MATLAB toolbox for optimization over symmetric cones, http://sedumi.mcmaster.ca
- 30.L. Landau, Found. Phys.
**18**, 449–460 (1988)ADSMathSciNetCrossRefGoogle Scholar - 31.H. Tijms,
*Understanding Probability: Chance Rules in Everyday Life*(Cambridge University Press, Cambridge, 2004)zbMATHGoogle Scholar

## Copyright information

© Springer Science+Business Media Dordrecht 2016