Quantum Theory: Informational Foundations and Foils pp 367-420

Part of the Fundamental Theories of Physics book series (FTPH, volume 181)

Post-Classical Probability Theory



This chapter offers a brief introduction to what is often called the convex-operational approach to the foundations of quantum mechanics, and reviews selected results, mostly by ourselves and collaborators, obtained using that approach. Broadly speaking, the goal of research in this vein is to locate quantum mechanics (henceforth: QM) within a very much more general, but conceptually very straightforward, generalization of classical probability theory. The hope is that, by regarding QM from the outside, so to say, we shall be able to understand it more clearly. And, in fact, this proves to be the case.


  1. 1.
    S. Abramsky, B. Coecke, A categorical semantics of quantum protocols, in Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science (LICS’04) (2004), pp. 415–425Google Scholar
  2. 2.
    E. Alfsen, F.W. Shultz, Geometry of State Spaces of Operator Algebras (Birkhäuser, Boston, 2003)Google Scholar
  3. 3.
    J. Allcock, N. Brunner, M.Pawlowski, V. Scarani, Recovering part of the quantum boundary from information causality (2009). arXiv:0906.3464.v3
  4. 4.
    H. Araki, On a characterization of the state space of quantum mechanics. Commun. Math. Phys. 75, 1–24 (1980)ADSMathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    I. Amemiya, H. Araki, A remark on Piron’s paper. Publ. Res. Inst. Math. Sci. Kyoto Univ. Ser. A 2, 423–429 (1967)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    J. Baez, Quantum quandaries: a category-theoretic perspective, in The Structural Foundations of Quantum Gravity, ed. by D. Rickles, S. French, J. Saatsi (Oxford University Press, Oxford, 2006) ( arXiv:0404040.v2, 2004)
  7. 7.
    J. Baez, M. Stay, Physics, topology, logic and computation: a Rosetta stone, in New Structures for Physics. Lecture Notes in Physics, vol. 813, ed. by B. Coecke (Springer, Berlin, 2011) ( arXiv:0903.0340, 2009)
  8. 8.
    H. Barnum, C. Caves, C. Fuchs, R. Josza, B. Schumacher, Noncommuting mixed states cannot be broadcast. Phys. Rev. Lett. 76, 2818–2821 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    H. Barnum, J. Barrett, M. Leifer, A. Wilce, Cloning and broadcasting in generic probabilistic theories (2006). arXiv:quant-ph/0611295
  10. 10.
    H. Barnum, J. Barrett, M. Leifer, A. Wilce, A generalized no-broadcasting theorem. Phys. Rev. Lett. 99, 240501–240504 (2007). arXiv:0707.0620
  11. 11.
    H. Barnum, J. Barrett, M. Leifer, A. Wilce, Teleportation in general probabilistic theories, in Mathematical Foundations of Information Flow. AMS Proceedings of Symposia in Applied Mathematics, ed. by S. Abramsky, M. Mislove (American Mathematical Society, Providence, 2012). arXiv:0805.3553
  12. 12.
    H. Barnum, J. Barrett, L. Clark, M. Leifer, R. Spekkens, N. Stepanik, A. Wilce, R. Wilke, Entropy and information causality in general probabilistic theories. New J. Phys. 12, 033024 (2010) (N.J. Addendum, Phys. 12, 129401 (2012)) ( arXiv:0909.5075)
  13. 13.
    H. Barnum, O. Dahlsten, M. Leifer, B. Toner, Nonclassicality without entanglement enables bit-commitment (2008). arXiv:0803.1264
  14. 14.
    H. Barnum, P. Gaebler, A. Wilce, Ensemble steering, weak self-duality, and the structure of probabilistic theories (2009). arXiv:0912.5532
  15. 15.
    H. Barnum, R. Duncan, A. Wilce, Symmetry, compact closure, and dagger compactness for categories of convex operational models. J. Philos. Logic 42, 501–523 (2013). ( arxiv:1004.2920)
  16. 16.
    H. Barnum, C. Fuchs, J. Renes, A. Wilce, Influence-free states on compound quantum systems, arXiv:quant-ph/0507108v1 (2005)
  17. 17.
    H. Barnum, A. Wilce, Ordered linear spaces and categories as frameworks for information-processing characterizations of quantum theory (2009). arXiv:0908.2354
  18. 18.
    H. Barnum, R. Duncan, A. Wilce, Symmetry, compact closure, and dagger compactness for categories of convex operational models. J. Philos. Logic 42, 501–523 (2013). arXiv:1004.2920
  19. 19.
    J. Barrett, Information processing in generalized probabilistic theories (2005). arXiv:quant-ph/0508211v3
  20. 20.
    J. Barrett, M. Leifer, The deFinetti theorem for test spaces. New J. Phys. 11 (2009). arXiv:0712.2265
  21. 21.
    C.H. Bennett, G. Brassard, Quantum cryptography: public key distribution and coin tossing, in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore (1984), p. 175Google Scholar
  22. 22.
    C.H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, W.K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)ADSMathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    G. Birkhoff, J. von Neumann, The logic of quantum mechanics. Ann. Math. 37, 823–843 (1936)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    G. Chiribella, G.M. D’Ariano, P. Perinotti, Probabilistic theories with purification. Phys. Rev. A 81, 062348 (2010). arXiv:0908.1583
  25. 25.
    G. Chiribella, G.M. D’Ariano, P. Perinotti, Information-theoretic derivation of quantum theory. Phys. Rev. A 84, 012311 (2011). arXiv:1011.6451
  26. 26.
    B. Coecke, A universe of interacting processes and some of its guises, in Deep Beauty: Understanding the Quantum World Through Mathematical Innovation, ed. by H. Halvorsen (Cambridge University Press, Cambridge, 2011)Google Scholar
  27. 27.
    D. Dieks, Communication by EPR devices. Phys. Lett. A 92, 271172 (1982)Google Scholar
  28. 28.
    B. Dakic, C. Brukner, Quantum theory and beyond: is entanglement special? (2009). arXiv:0911.0695
  29. 29.
    L. Davies, An operational approach to quantum probability, Commun. Math. Phys. 17, 239–260 (1970)Google Scholar
  30. 30.
    A. Dvurecenskij, Gleason’s Theorem and Its Applications (Kluwer, Dordrecht, 1993)CrossRefMATHGoogle Scholar
  31. 31.
    C.M. Edwards, The operational approach to algebraic quantum theory. Commun. Math. Phys. 16, 207–230 (1970)ADSMathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    J. Faraut, A. Koranyi, Analysis on Symmetric Cones (Oxford University Press, Oxford, 1994)MATHGoogle Scholar
  33. 33.
    D. Foulis, C. Randall, An approach to empirical logic. Am. Math. Mon. 77, 363–374 (1970)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    D. Foulis, C. Randall, The empirical logic approach to the physical sciences, in Foundations of Quantum Mechanics and Ordered Linear Spaces, ed. by A. Hartkämper, H. von Neumann (Springer, Berlin, 1974)Google Scholar
  35. 35.
    D. Foulis, C. Randall, What are quantum logics and what ought they to be?, in Current Issues in Quantum Logic, ed. by E.G. Beltrametti, B.C. van Fraassen (Plenum, New York, 1981)Google Scholar
  36. 36.
    D. Foulis, C. Randall, Empirical logic and tensor products, in Interpretations and Foundations of quantum Theory, ed. by H. Neumann (B. I. Wisssenschaft, Mannheim, 1981)Google Scholar
  37. 37.
    P. Goyal, From information geometry to to quantum theory. New J. Phys. 12, 023012 (2010). arXiv:0805.2770
  38. 38.
    R. Greechie, Orthomodular lattices admitting no states. J. Comb. Theory 10, 119–132 (1971)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    J. Gunson, On the algebraic structure of quantum mechanics. Commun. Math. Phys. 6, 262–285 (1967)ADSMathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    H. Hanche-Olsen, JB algebras with tensor products are \(C^{\ast }\)-algebras, in Operator Algebras and their Connections with Topology and Ergodic Theory, ed. by H. Araki et al., Lecture Notes in Mathematics, vol. 1132 (Springer, Berlin,1985)Google Scholar
  41. 41.
    L. Hardy, Quantum theory from five reasonable axioms (2000). arXiv:quant-ph/00101012
  42. 42.
    A. Holevo, Probabilistic and Statistical Aspects of Quantum Mechanics (North-Holland, Amsterdam, 1982) (Second edition published by Edizioni della Normale, Pisa, 2011)Google Scholar
  43. 43.
    P. Jordan, J. von Neumann, E.P. Wigner, On an algebraic generalization of the quantum-mechanical formalism. Ann. Math. 35, 29–64 (1934)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    M. Koecher, Die geodätischen von positivitätsbereichen. Mathematische Annalen 135, 192–202 (1958)MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    M. Kläy, Einstein-Podolsky-Rosen experiments: the structure of the sample space I, II. Found. Phys. Lett. 1, 205–244 (1988)MathSciNetCrossRefGoogle Scholar
  46. 46.
    M. Kläy, C.H. Randall, D.J. Foulis, Tensor products and probability weights. Int. J. Theor. Phys. 26, 199–219 (1987)MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    G. Lindblad, A general no-cloning theorem. Lett. Math. Phys. 47, 189–196 (1999)MathSciNetCrossRefMATHGoogle Scholar
  48. 48.
    G. Ludwig, Foundations of Quantum Mechanics (Springer, New York, 1985)CrossRefMATHGoogle Scholar
  49. 49.
    G. Mackey, Mathematical Foundations of Quantum Mechanics (Addison Wesley, 1963)Google Scholar
  50. 50.
    L. Masanes, M. Müller, A derivation of quantum theory from physical requirements. New J. Phys. 13, 063001 (2011). arXiv:1004.1483
  51. 51.
    B. Mielnik, Geometry of quantum states. Commun. Math. Phys. 9, 55–80 (1968)ADSMathSciNetCrossRefMATHGoogle Scholar
  52. 52.
    M. Mueller, C. Ududec, The computational power of quantum mechanics determines its self-duality (2011). arXiv:1110.3516
  53. 53.
    G. de la Torre, Ll. Masanes, A. Short, M. Mueller, Deriving quantum theory from its local structure and reversibility (2011). arXiv:1110:5482
  54. 54.
    I. Namioka, R. Phelps, Tensor products of compact convex sets. Pac. J. Math. 31, 469–480 (1969)MathSciNetCrossRefMATHGoogle Scholar
  55. 55.
    M. Pawlowski, T. Paterek, D. Kaszlikowski, V. Scarani, A. Winter, M. Zukowski, Information causality as a physical principle. Nature 461, 1101 (2009)ADSCrossRefGoogle Scholar
  56. 56.
    C. Piron, Foundations of Quantum Physics (W.A. Benjamin, Reading, 1976)CrossRefMATHGoogle Scholar
  57. 57.
    J. Rau, On quantum versus classical probability. Ann. Phys. 324, 2622–2637 (2009). arXiv:0710.2119
  58. 58.
    I. Satake, Algebraic Structures of Symmetric Domains (Publications of the Mathematical Society of Japan, no. 14) (Princeton University Press, Iwanami Shoten, 1980)Google Scholar
  59. 59.
    F. Shultz, A characterization of state spaces of orthomodular lattices. J. Comb. Theory 17, 317–328 (1974)MathSciNetCrossRefGoogle Scholar
  60. 60.
    E. Schrödinger, Probability relations between separated systems. Proc. Camb. Philos. Soc. 32, 446–452 (1936)ADSCrossRefMATHGoogle Scholar
  61. 61.
    P. Selinger, Towards a semantics for higher-order quantum computation, in Proceedings of the 2nd International Workshop on Quantum Programming Languages, Turku, Finland. Turku Center for Computer Science, Publication No. 33 (2004), pp. 127–143Google Scholar
  62. 62.
    P. Selinger, Autonomous categories in which \(A\) is isomorphic to \(A^{*}\) extended abstract, in Proceedings of the 7th International Workshop on Quantum Physics and Logic (QPL 2010) (Oxford, 2010), pp. 151–160Google Scholar
  63. 63.
    P. Selinger, Finite dimensional Hilbert spaces are complete for dagger-compact categories (extended abstract), in Proceedings of the 5th International Workshop on Quantum Physics and Logic (QPL 2008), Reykjavik, ENTCS, vol. 270, pp. 113–119 (2011)Google Scholar
  64. 64.
    A. Short, S. Wehner, Entropy in general physical theories. New J. Phys. 12, 033023 (2010). arXiv:0909.4801
  65. 65.
    M.P. Soler, A characterization of Hilbert spaces by orthomoular spaces. Commun. Algebra 23, 219–243 (1995)MathSciNetCrossRefMATHGoogle Scholar
  66. 66.
    B. Tsirel’son, Quantum generalizations of Bell’s inequality. Lett. Math. Phys. 4, 93–100 (1980)MathSciNetCrossRefGoogle Scholar
  67. 67.
    A. Uhlmann, On the Shannon entropy and related functionals on convex sets. Lett. Math. Phys. 4, 93–100 (1980)MathSciNetCrossRefGoogle Scholar
  68. 68.
    W. van Dam, Implausible consequences of superstrong nonlocality. Nat. Comput. 12, 9–12 (2013). arXiv:quant-ph/0501159
  69. 69.
    E.B. Vinberg, Homogeneous cones, Dokl. Acad. Nauk. SSSR 141, 270–273 (1960). English translation: Soviet Math. Dokl. 2, 1416–1619 (1961)Google Scholar
  70. 70.
    J. von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, 1955)MATHGoogle Scholar
  71. 71.
    A. Wilce, The tensor product in generalized measure theory. Int. J. Theor. Phys. 31, 1915–1928 (1992)MathSciNetCrossRefMATHGoogle Scholar
  72. 72.
    A. Wilce, Topological test spaces. Int. J. Theor. Phys. 44, 1227–1238 (2005). arXiv:quant-ph/0405178
  73. 73.
    A. Wilce, Symmetry and topology in quantum logic. Int. J. Theor. Phys. 44, 2303–2316 (2005)MathSciNetCrossRefMATHGoogle Scholar
  74. 74.
    A. Wilce, Four and a half axioms for finite-dimensional quantum theory, in Probability in Physics: Essays in Honor of Itamar Pitowsky, ed. by Y. Ben-Menahem, M. Hemmo (2012) ( arXiv:0912.5530, 2009)
  75. 75.
    A. Wilce, Formalism and interpretation in quantum theory. Found. Phys. 40, 434–462 (2010). http://philsci-archive.pitt.edu/3794/1/bub6d-post.pdf
  76. 76.
    A. Wilce, Symmetry, self-duality, and the Jordan structure of quantum theory (2011). arXiv:1110.6607
  77. 77.
    G. Wittstock, Ordered normed tensor products, in Foundations of Quantum Mechanics and Ordered Linear Spaces. Springer Lecture Notes in Physics, vol. 29, ed. by A. Härtkamper, H. Neumann (Springer, Berlin, 1974)Google Scholar
  78. 78.
    W.K. Wootters, W.H. Zurek, A single quantum cannot be cloned. Nature 299, 802–803 (1982)ADSCrossRefGoogle Scholar
  79. 79.
    R. Wright, Spin manuals: empirical logic talks quantum mechanics, in Mathematical Foundations of Quantum Theory, ed. by A.R. Marlowe (Academic Press, New York, 1977)Google Scholar
  80. 80.
    N. Zierler, Axioms for non-relativistic quantum mechanics. Pac. J. Math. 11, 1151–1169 (1961)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of New MexicoAlbuquerqueMexico
  2. 2.Stellenbosch Institute for Advanced Study (STIAS)Wallenberg Research Centre at Stellenbosch UniversityStellenboschSouth Africa
  3. 3.Department of MathematicsSusquehanna UniversitySelinsgroveUSA

Personalised recommendations