Generalised Compositional Theories and Diagrammatic Reasoning

  • Bob CoeckeEmail author
  • Ross Duncan
  • Aleks Kissinger
  • Quanlong Wang
Part of the Fundamental Theories of Physics book series (FTPH, volume 181)


This chapter provides an introduction to the use of diagrammatic language, or perhaps more accurately, diagrammatic calculus, in quantum information and quantum foundations. We illustrate the use of diagrammatic calculus in one particular case, namely the study of complementarity and non-locality, two fundamental concepts of quantum theory whose relationship we explore in later part of this chapter.


Hide State Monoidal Category Classical Point Compositional Theory Symmetric Monoidal Category 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    J. Barrett, Phys. Rev. A 75(3), 032304 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    M. Pawlowski, T. Paterek, D. Kazlikowski, V. Scarani, A. Winter, M. Zukowski, Nature 461, 1101 (2009). arXiv:0905.2292 Google Scholar
  3. 3.
    H. Barnum, J. Barrett, L.O. Clark, M. Leifer, R.W. Spekkens, N. Stepanik, A. Wilce, R. Wilke, New J. Phys. 12, 033024 (2009). arXiv:0909.5075
  4. 4.
    E. Schrödinger, in Proceedings of the Cambridge Philosophical Society, vol. 31 (Academic Press, New York, 1935), pp. 555–563Google Scholar
  5. 5.
    R. Penrose, in Combinatorial Mathematics and Its Applications (Academic Press, New York, 1971)Google Scholar
  6. 6.
    G.M. Kelly, M.L. Laplaza, J. Pure Appl. Algebra 19, 193 (1980)MathSciNetCrossRefGoogle Scholar
  7. 7.
    A. Joyal, R. Street, Adv. Math. 102, 20 (1993)MathSciNetCrossRefGoogle Scholar
  8. 8.
    S. Abramsky, B. Coecke, in Proceedings of 19th IEEE Conference on Logic in Computer Science, LiCS’04 (IEEE Press, 2004), pp. 415–425Google Scholar
  9. 9.
    B. Coecke, in Quantum Theory: Reconsiderations of the Foundations III (AIP, Press, New York, 2005), pp. 81–98Google Scholar
  10. 10.
    G.M. D’Ariano, G. Chiribella, P. Perinotti, Phys. Rev. A 84, 012311 (2010). arXiv:1011.6451
  11. 11.
    L. Hardy, in Deep Beauty: Understanding the Quantum World Through Mathematical Innovation (Cambridge University Press, Cambridge, 2011), pp. 409–442. arXiv:0912.4740
  12. 12.
    B. Coecke, B. Edwards, R.W. Spekkens, Electron. Notes Theor. Comput. Sci. 270(2), 15 (2011)CrossRefGoogle Scholar
  13. 13.
    B. Edwards, Phase groups and local hidden variables. Technical report RR-10-15, Department of Computer Science, University of Oxford (2010)Google Scholar
  14. 14.
    B. Coecke, A. Kissinger, in Proceedings of ICALP Automata, Languages, and Programming. Lecture Notes in Computer Science, vol. 6199 (Springer, Heidelberg, 2010), pp. 297–308Google Scholar
  15. 15.
    R. Duncan, S. Perdrix, in Proceedings of the 37th International Colloquium Conference on Automata, Languages and Programming, ICALP’10: Part II (Springer, Berlin, 2010), pp. 285–296.
  16. 16.
    C. Horsman, New J. Phys. 13, 095011 (2011). arXiv:1101.4722 Google Scholar
  17. 17.
    S. Mac Lane, Categories for the Working Mathematician, 2nd edn. (Springer, New York, 1997)zbMATHGoogle Scholar
  18. 18.
    B. Coecke, E.O. Paquette, in New Structures for Physics. Springer Lecture Notes in Physics, vol. 813 (2011), pp. 173–286Google Scholar
  19. 19.
    P. Selinger, in New Structures for Physics. Springer Lecture Notes in Physics, vol. 813 (2011), pp. 289–355Google Scholar
  20. 20.
    Y. Lafont, J. Pure Appl. Algebra 184(2–3), 257 (2003)MathSciNetCrossRefGoogle Scholar
  21. 21.
    A. Barenco, C.H. Bennett, R. Cleve, D.P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J.A. Smolin, H. Weinfurter, Phys. Rev. A 52, 3457 (1995). doi: 10.1103/PhysRevA.52.3457 ADSCrossRefGoogle Scholar
  22. 22.
    B. Coecke, E.O. Paquette, D. Pavlovic, in Semantic Techniques for Quantum Computation (Cambridge University Press, Cambridge, 2009), pp. 29–69Google Scholar
  23. 23.
    D.G.B.J. Dieks, Phys. Lett. A 92, 271 (1982)ADSCrossRefGoogle Scholar
  24. 24.
    W.K. Wootters, W. Zurek, Nature 299, 802 (1982)ADSCrossRefGoogle Scholar
  25. 25.
    A.K. Pati, S.L. Braunstein, Nature 404, 164 (2000). arXiv:quant-ph/9911090 Google Scholar
  26. 26.
    B. Coecke, D. Pavlovic, J. Vicary, Math. Struct. Comput. Sci. 23, 555 (2013)Google Scholar
  27. 27.
    D. Pavlovic, in Proceedings of the Symposium on Quantum Interaction. Lecture Notes in Computer Science, vol. 5494 (Springer, New York, 2009), pp. 143–157. arXiv:0812.2266 Google Scholar
  28. 28.
    B. Coecke, R. Duncan, in Proceedings of ICALP 2008 Automata, Languages, and Programming Lecture Notes in Computer Science, vol. 5126 (Springer, New York, 2008), pp. 298–310Google Scholar
  29. 29.
    B. Coecke, R. Duncan, New J. Phys. 13, 043016 (2011). arXiv:0906.4725 Google Scholar
  30. 30.
    R.W. Spekkens, Phys. Rev. A 75, 032110 (2007). arXiv:quant-ph/0401052
  31. 31.
    B. Coecke, B. Edwards, Spekkens’s toy theory as a category of processes (2011). arXiv:1108.1978v1[quant-ph]
  32. 32.
    A. Kissinger, Pictures of processes: automated graph rewriting for monoidal categories and applications to quantum computing. Ph.D. thesis, University of Oxford (2012)Google Scholar
  33. 33.
    P. Selinger, Electron. Notes Theor. Comput. Sci. 170, 139 (2007)MathSciNetCrossRefGoogle Scholar
  34. 34.
    D.M. Greenberger, M.A. Horne, A. Zeilinger, in Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, ed. by M. Kafatos (Sringer, New York, 1989), pp. 69–72Google Scholar
  35. 35.
    N.D. Mermin, Am. J. Phys. 58, 731 (1990)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    S. Lack, Theory Appl. Categ. 13(9), 147 (2004)MathSciNetGoogle Scholar
  37. 37.
    M.A. Horne, A. Shimony, D.M. Greenberger, A. Zeilinger, Am. J. Phys. 58, 1131 (1990)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    M. Backens, in Proceedings of Quantum Physics and Logic (2012), pp. 15–27Google Scholar
  39. 39.
    A. Hillebrand, Quantum protocols involving multiparticle entanglement and their representations in the ZX-calculus. Master’s thesis, University of Oxford (2011)Google Scholar
  40. 40.
    B. Coecke, C. Heunen, A. Kissinger, in Proceedings of Quantum Physics and Logic (2012), pp. 87–100Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Bob Coecke
    • 1
    Email author
  • Ross Duncan
    • 2
  • Aleks Kissinger
    • 1
  • Quanlong Wang
    • 3
  1. 1.Department of Computer ScienceUniversity of OxfordOxfordUK
  2. 2.Department of Computer and Information SciencesUniversity of StrathclydeGlasgowUK
  3. 3.School of Mathematics and System SciencesBeihang UniversityHaiDian District, BeijingChina

Personalised recommendations