Sustainable Development and Material Flows

Abstract

A major target of strategies toward a more sustainable resource use must be to find ways of remaining within the planetary boundaries, not only by reducing overall resource use but also through keeping within the system what we are already using. This makes it necessary to take a systemic perspective and look at the whole life cycle of joint product systems, raw material inputs, and respective emissions. Knowing and understanding the dynamics of material stocks and flows may be a first step toward managing them. In the context of society, this approach is known as socioeconomic metabolism and is increasingly applied especially in regional and urban contexts. Here, we introduce material flow analysis as a possible method for constructing and evaluating material and energy flows to gain an insight into the flows of specific substances within the anthropogenic system. We show the main characteristics and applications as well as possible limitations of such a modeling approach and conclude with implications for a further development of such methods to enable a shift from analysis to assessment and strategy building that reflects sustainability principles and goes beyond efficiency.

Keywords

Material flow analysis Socioeconomic metabolism Industrial ecology Life cycle assessment Stocks and flows 

Further Reading

  1. Ayres RU, Ayres LW (eds) (2002) A handbook of industrial ecology. Edward Elgar Publications, Cheltenham/NorthamptonGoogle Scholar
  2. Baccini P, Brunner PH (2012) Metabolism of the anthroposphere: analysis, evaluation, design. MIT Press, CambridgeGoogle Scholar
  3. Fischer-Kowalski M (1998a) Society’s metabolism – the intellectual history of material flow analysis, part I, 1860–1970. J Ind Ecol 2(1):61–78CrossRefGoogle Scholar
  4. Fischer-Kowalski M, Hüttler W (1999a) Society’s metabolism – the intellectual history of material flow analysis, Part II, 1970–1998. J Ind Ecol 2(4):107–136CrossRefGoogle Scholar
  5. Graedel TE, van der Voet E (eds) (2010) Linkages of sustainability. The MIT Press, CambridgeGoogle Scholar
  6. Journal of Industrial Ecology (2012) Special Issue: Sustain Urban Syst 16(6): 775–715Google Scholar

References

  1. Baccini P, Brunner PH (2012) Metabolism of the anthroposphere: analysis, evaluation, design. MIT Press, CambridgeGoogle Scholar
  2. Behera SK et al (2012) Evolution of “designed” industrial symbiosis networks in the Ulsan Eco-industrial Park: “research and development into business” as the enabling framework. J Clean Prod 29–30:103–112CrossRefGoogle Scholar
  3. Berg PG, Nycander G (1997) Sustainable neighbourhoods - a qualitative model for resource management in communities. Landsc Urban Plann 39(2):117–135CrossRefGoogle Scholar
  4. Bringezu S, Moriguchi Y (2002) Material flow analysis. In: Ayres RU, Ayres LW (eds) A handbook of industrial ecology. Edward Elgar Publications, Cheltenham/Northampton, pp 79–90Google Scholar
  5. Broyden CG (1965) A class of methods for solving nonlinear simultaneous equations. Math Comput 19:577–593CrossRefGoogle Scholar
  6. Chen H-S, Stadtherr MA (1985) A simultaneous-modular approach to process flowsheeting and optimization, part I: theory and implementation. AIChE J 31(11):1843–1856CrossRefGoogle Scholar
  7. Chertow MR (2000) Industrial symbiosis: literature and taxonomy. Annu Rev Energy Environ 25:313–37CrossRefGoogle Scholar
  8. Chrysoulakis N et al (2013) Sustainable urban metabolism as a link between bio-physical sciences and urban planning: the BRIDGE project. Landsc Urban Plann 112:100–117CrossRefGoogle Scholar
  9. Codoban N, Kennedy CA (2008) Metabolism of neighborhoods. J Urban Plann Dev 134(1):21–31CrossRefGoogle Scholar
  10. Cohen C, Lenzen M, Schaeffer R (2005) Energy requirements of households in Brazil. Energy Policy 33:555–562CrossRefGoogle Scholar
  11. Duvigneaud P, Denayeyer-De Smet S (1977) L’Ecosystéme Urbain Bruxellois, in Productivité en Belgique. In: Duvigneaud P, Kestemont P (eds) Traveaux de la Section Belge du Programme Biologique International, Bruxelles, pp 581–597Google Scholar
  12. Erkman S (2002) The recent history of industrial ecology. In: Ayres RU, Ayres LW (eds) A handbook of industrial ecology. Edward Elgar Publications, Cheltenham/Northampton, pp 27–35Google Scholar
  13. Finlayson BA (2012) Introduction to chemical engineering computing, 2nd edn. Wiley, HobokenCrossRefGoogle Scholar
  14. Fischer-Kowalski M (1998) Society’s metabolism – the intellectual history of material flow analysis, part I, 1860–1970. J Ind Ecol 2(1):61–78Google Scholar
  15. Fischer-Kowalski M, Hüttler W (1999) Society’s metabolism – the intellectual history of material flow analysis, part II, 1970–1998. J Ind Ecol 2(4):107–136Google Scholar
  16. Frosch RA, Gallopoulos NE (1989) Strategies for manufacturing. Sci Am 189(3):144–152CrossRefGoogle Scholar
  17. Gibbs D, Deutz P (2007) Reflections on implementing industrial ecology through eco-industrial park development. J Clean Prod 15(17):1683–1695CrossRefGoogle Scholar
  18. Graedel TE (1996) On the concept of industrial ecology. Ann Rev Energy Environ 21:69–98CrossRefGoogle Scholar
  19. Graedel TE, van der Voet E (2010) Linkages of sustainability. MIT Press, Cambridge/LondonGoogle Scholar
  20. Graedel TE et al (2012) Methodology of metal criticality determination. Environ Sci Technol 46(2):1063–1070CrossRefGoogle Scholar
  21. Guinée JB (Final ed) (2002) Handbook on life cycle assessment – operational guide to the ISO standards. Kluwer Academic Publishers, Dordrecht/Boston/LondonGoogle Scholar
  22. Hannon B, Ruth M (1994) Dynamic modeling. Springer, Berlin/Heidelberg/New YorkCrossRefGoogle Scholar
  23. Heijungs R (1994) A generic method for the identification of options for cleaner products. Ecol Econ 10:69–81CrossRefGoogle Scholar
  24. Heijungs R, Suh S (2002) The computational structure of life cycle assessment. Kluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
  25. ITU (International Telecommunications Union) Statistics (2013) ICT facts and figures. Available at: http://www.itu.int/en/ITU-D/Statistics/Pages/stat/default.aspx. Accessed 21 Apr 2014
  26. Kellett R, Christen A, Coops NC, van der Laan M, Crawford B, Tooke TR, Olchovski I (2013) A systems approach to carbon cycling and emissions modeling at an urban neighborhood scale. Landsc Urban Plan 110:48–58CrossRefGoogle Scholar
  27. Kennedy C, Cuddihy J, Engel-Yan J (2007) The changing metabolism of cities. J Ind Ecol 11(2):43–59CrossRefGoogle Scholar
  28. Kennedy C, Pincetl S, Bunje P (2011) The study of urban metabolism and its applications to urban planning and design. Environ Poll 159(8–9):1965–73CrossRefGoogle Scholar
  29. Lang DJ, Binder CR, Scholz RW, Schleiß K, Stäubli B (2006) Impact factors and regulatory mechanisms for material flow management: Integrating stakeholder and scientific perspectives The case of bio-waste delivery. Resour Conserv Recy 47:101–132CrossRefGoogle Scholar
  30. Lenzen M, Peters GM (2009) How city dwellers affect their resource hinterland. J Ind Ecol 14(1):73–90CrossRefGoogle Scholar
  31. Lifset R, Graedel TE (2002) Industrial ecology: goals and definitions. In: Ayres RU, Ayres LW (eds) A handbook of industrial ecology. Edward Elgar Publications, Cheltenham/Northampton, pp 3–15Google Scholar
  32. Lowe EA (1997) Creating by-product resource exchanges: strategies for eco-industrial parks. J Clean Prod 5(1–2):57–65CrossRefGoogle Scholar
  33. Möller A (2000) Grundlagen stoffstrombasierter Betrieblicher Umweltinformationssysteme. Projekt Verlag, Bochum (in German)Google Scholar
  34. Möller A (2004) Continuous simulation in material flow networks. In: Proceedings of the iEMSs 2004 “Complexity and Integrated Resource Management”, OsnabrueckGoogle Scholar
  35. Möller A (2005) Dynamic material flow analysis in the life cycle assessment tool chain. In: Geldermann J, Treitz M, Schollenberger H, Rentz O (eds) Challenges for industrial production. Universitätsverlag, KarlsruheGoogle Scholar
  36. Reisig M (1985) Petri nets – an introduction. Springer, Berlin/Heidelberg/New YorkCrossRefGoogle Scholar
  37. Riebel P (1994) Core features of the ‘Einzelkosten- und Deckungsbeitragsrechnung’. Euro Account Rev 3(3):515–546CrossRefGoogle Scholar
  38. Taylor FW (1911) The principles of scientific management. Harper & Brothers Publications, New York/LondonGoogle Scholar
  39. UBA 2012 What matters (2012): annual report of the Federal Environment Agency. Available at: https://www.umweltbundesamt.de/sites/default/files/medien/publikation/long/4296.pdf
  40. VillageReach (2014) http://villagereach.org/
  41. Wäger PA, Lang DJ (2010) Seltene Metalle – Rohstoffe für Zukunftstechnologien. Available at: http://www.satw.ch/publikationen/satwinfo/SelteneMetalle.pdf
  42. Wäger PA et al (2012) Towards a more sustainable use of scarce metals - a review of intervention options along the metals life cycle. GAIA 21(4):300–309Google Scholar
  43. Weidema B, Thrane M, Christensen P, Schmidt J, Loekke S (2008) Carbon footprint – a catalyst for life cycle assessment? J Ind Ecol 12(1):3–6CrossRefGoogle Scholar
  44. Westerberg AW, Piela PC (1994) Equational-based process modeling. Technical report. Department of Chemical Engineering and the Engineering Design Research Center - Carnegie Mellon University, PittsburghGoogle Scholar
  45. Westerberg AW, Hutchinson HP, Motard RL, Winter P (1979) Process flowsheeting. Cambridge University Press, London/New York/MelbourneGoogle Scholar
  46. Wiek A, Ness B, Brand FS, Schweizer-Ries P, Farioli F (2012) From complex systems analysis to transformational change: a comparative appraisal of sustainability science projects. Sustain Sci 7(Suppl 1):5–24Google Scholar
  47. Wolman A (1965) The metabolism of cities. Sci Am 213(3):179–190CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Institute of Ethics and Transdisciplinary Sustainability ResearchLeuphana University LüneburgLüneburgGermany
  2. 2.Institute for Environmental and Sustainability CommunicationLeuphana University LüneburgLüneburgGermany

Personalised recommendations