Perception-Based Motion Cueing: A Cybernetics Approach to Motion Simulation

  • Paolo Pretto
  • Joost Venrooij
  • Alessandro Nesti
  • Heinrich H. Bülthoff
Part of the Trends in Augmentation of Human Performance book series (TAHP, volume 5)

Abstract

The goal of vehicle motion simulation is the realistic reproduction of the perception a human observer would have inside the moving vehicle by providing realistic motion cues inside a motion simulator. Motion cueing algorithms play a central role in this process by converting the desired vehicle motion into simulator input commands with maximal perceptual fidelity, while remaining within the limited workspace of the motion simulator. By understanding how the one’s own body motion through the environment is transduced into neural information by the visual, vestibular and somatosensory systems and how this information is processed in order to create a whole percept of self-motion we can qualify the perceptual fidelity of the simulation. In this chapter, we address how a deep understanding of the functional principles underlying self-motion perception can be exploited to develop new motion cueing algorithms and, in turn, how motion simulation can increase our understanding of the brain’s perceptual processes. We propose a perception-based motion cueing algorithm that relies on knowledge about human self-motion perception and uses it to calculate the vehicle motion percept, i.e. how the motion of a vehicle is perceived by a human observer. The calculation is possible through the use of a self-motion perception model, which simulate the brain’s motion perception processes. The goal of the perception-based algorithm is then to reproduce the simulator motion that minimizes the difference between the vehicle’s desired percept and the actual simulator percept, i.e. the “perceptual error”. Finally, we describe the first experimental validation of the new motion cueing algorithm and shown that an improvement in the current standards of motion cueing is possible.

Keywords

Motion cueing Motion perception Self-motion Simulation Model predictive control Washout 

References

  1. 1.
    Agrawal Y, Bremova T, Kremmyda O, Strupp M, Macneilage PR (2013) Clinical testing of otolith function: perceptual thresholds and myogenic potentials. J Assoc Res Otolaryngol 14(6):905–915PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Angelaki DE, Yakusheva TA (2009) how vestibular neurons solve the tilt/translation ambiguity. Comparison of brainstem, cerebellum, and thalamus. Ann N Y Acad Sci 1164(May):19–28PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Bard EG, Robertson D, Sorace A (1996) Magnitude estimation of linguistic acceptability. Language 72(1):32–68CrossRefGoogle Scholar
  4. 4.
    Beghi A, Bruschetta M, Maran F (2012) A real time implementation of MPC based Motion Cueing strategy for driving simulators. In: 2012 IEEE 51st annual conference on decision and control (CDC), Hawaii, USA, pp 6340–6345Google Scholar
  5. 5.
    Conrad B, Schmidt SF (1970) Motion drive signals for piloted flight simulators. http://ntrs.nasa.gov/search.jsp?R=19700017803
  6. 6.
    Dagdelen M, Reymond G, Kemeny A, Bordier M, Maïzi N (2009) Model-based predictive motion cueing strategy for vehicle driving simulators. Control Eng Pract 17(9):995–1003CrossRefGoogle Scholar
  7. 7.
    Dichgans J, Brandt T (1978) Visual vestibular interaction: effects on self-motion perception and in postural control. In: Held R, Leibowitz H, Teuber H (eds) Perception, handbook of sensory physiology, vol 8. Springer, Berlin, pp 755–804Google Scholar
  8. 8.
    Garrett NJI, Best MC (2010) Driving simulator motion cueing algorithms – a survey of the state of the art. In: Proceedings of the 10th international symposium on Advanced Vehicle Control (AVEC), Loughborough, UK, 22nd–26th Aug, pp 183–188Google Scholar
  9. 9.
    Golding JF, Mueller AG, Gresty MA (2001) A motion sickness maximum around the 0.2 Hz frequency range of horizontal translational oscillation. Aviat Space Environ Med 72(3):188–192PubMedGoogle Scholar
  10. 10.
    Gould D, Kelly D, Goldstone L, Gammon J (2001) Examining the validity of pressure ulcer risk assessment scales: developing and using illustrated patient simulations to collect the data. J Clin Nurs 10(5):697–706CrossRefPubMedGoogle Scholar
  11. 11.
    Groen EL, Bles W (2004) How to use body tilt for the simulation of linear self motion. J Vestib Res 14(5):375–385PubMedGoogle Scholar
  12. 12.
    Han SH, Jung ES, Jung MY, Kwak J, Park S, Choe J (1994) A psychophysical evaluation of interior design alternatives for a high speed train. Comput Ind Eng 27(1–4):397–400CrossRefGoogle Scholar
  13. 13.
    Heerspink H, Berkouwer W, Stroosma O, van Paassen R, Mulder M, Mulder B (2005) Evaluation of vestibular thresholds for motion detection in the SIMONA research simulator. In AIAA modeling and simulation technologies conference and exhibit. American Institute of Aeronautics and Astronautics. http://arc.aiaa.org/doi/abs/10.2514/6.2005-6502
  14. 14.
    Johnson DM (2005). Introduction to and review of simulator sickness research [electronic resource]/David M. Johnson. Research report (U.S. Army Research Institute for the Behavioral and Social Sciences)  1832. Rotary-Wing Aviation Research Unit, U.S. Army Research Institute for the Behavioral and Social Sciences, Fort RuckerGoogle Scholar
  15. 15.
    Kennedy RS, Lane NE, Kevin S, Lilienthal MG (1993) Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int J Aviat Psychol 3(3):203–220CrossRefGoogle Scholar
  16. 16.
    Likert R (1932) A technique for the measurement of attitudes. Arch Psychol 22(140):1–55Google Scholar
  17. 17.
    Lodge M (1981) Magnitude scaling quantitative measurement of opinions. SAGE, Newbury Park/LondonGoogle Scholar
  18. 18.
    Lodge M, Cross DV, Tursky B, Tanenhaus J (1975) The psychophysical scaling and validation of a political support scale. Am J Polit Sci 19(4):611–649CrossRefGoogle Scholar
  19. 19.
    Mallery RM, Olomu OU, Uchanski RM, Militchin V, Hullar TE (2010) Human discrimination of rotational velocities. Exp Brain Res 204(1):11–20PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Merfeld DM, Priesol A, Lee D, Lewis RF (2010) Potential solutions to several vestibular challenges facing clinicians. J Vestib Res 20(1):71–77PubMedCentralPubMedGoogle Scholar
  21. 21.
    Mergner T, Rosemeier T (1998) Interaction of vestibular, somatosensory and visual signals for postural control and motion perception under terrestrial and microgravity conditions—a conceptual model. Brain Res Rev 28(1–2):118–135CrossRefPubMedGoogle Scholar
  22. 22.
    Naseri AR, Grant PR (2012) Human discrimination of translational accelerations. Exp Brain Res 218(3):455–464CrossRefPubMedGoogle Scholar
  23. 23.
    Nesti A, Barnett-Cowan M, Macneilage PR, Bülthoff HH (2014) Human sensitivity to vertical self-motion. Exp Brain Res 232:303–314PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Nesti A, Masone C, Barnett-Cowan M, Robuffo Giordano P, Bülthoff HH, Pretto P (2012) Roll rate thresholds and perceived realism in driving simulation. In: Driving simulation conference (2), Paris, pp 23–32Google Scholar
  25. 25.
    Nieuwenhuizen FM, Bülthoff HH (2013) The MPI CyberMotion Simulator: a novel research platform to investigate human control behavior. J Comput Sci Eng 7(2):122–131CrossRefGoogle Scholar
  26. 26.
    Pepermans RG, Corlett EN (1983) Cross-modality matching as a subjective assessment technique. Appl Ergon 14(3):169–176CrossRefPubMedGoogle Scholar
  27. 27.
    Pretto P, Nesti A, Nooij S, Losert M, Bülthoff HH (2014) Variable roll-rate perception in driving simulation. In Driving simulation conference (3), Paris, pp 40.1–40.7Google Scholar
  28. 28.
    Sivan R, Ish-Shalom J, Huang J-K (1982) An optimal control approach to the design of moving flight simulators. IEEE Trans Syst Man Cybern 12(6):818–827CrossRefGoogle Scholar
  29. 29.
    Reid LD, Nahon MA (1985) Flight simulation motion-base drive algorithms: Part 1 – Developing and testing the equations. UTIAS report, no. 296. University of Toronto, Institute for Aerospace StudiesGoogle Scholar
  30. 30.
    Reid LD, Nahon MA (1986) Flight simulation motion-base drive algorithms: Part 2, Selecting the system parameters. UTIAS report, no. 307. University of Toronto, Institute for Aerospace StudiesGoogle Scholar
  31. 31.
    Reid LD, Nahon MA 12. Flight simulation motion-base drive algorithms: Part 3 – Pilot evaluations. UTIAS report, no. 319. University of Toronto, Institute for Aerospace StudiesGoogle Scholar
  32. 32.
    Rohrmann B (2007) Verbal qualifiers for rating scales: sociolinguistic considerations and psychometric data. Project report. University of Melbourne, MelbourneGoogle Scholar
  33. 33.
    Soyka F, Robuffo Giordano P, Beykirch K, Bülthoff HH (2011) Predicting direction detection thresholds for arbitrary translational acceleration profiles in the horizontal plane. Exp Brain Res 209(1):95–107PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Stevens SS (1956) The direct estimation of sensory magnitudes: loudness. Am J Psychol 69(1):1–25CrossRefPubMedGoogle Scholar
  35. 35.
    Stevens SS (1957) On the psychophysical law. Psychol Rev 64(3):153–181CrossRefPubMedGoogle Scholar
  36. 36.
    Valko Y, Lewis RF, Priesol AJ, Merfeld DM (2012) Vestibular labyrinth contributions to human whole-body motion discrimination. J Neurosci 32(39):13537–13542PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Venrooij J (2014) VIA-sync: a novel vehicle motion recording platform for synchronised visuo-inertial playback. Presented at the vehicle dynamics conference 2014, Stuttgart, JuneGoogle Scholar
  38. 38.
    Wewers ME, Lowe NK (1990) A critical review of visual analogue scales in the measurement of clinical phenomena. Res Nurs Health 13(4):227–236CrossRefPubMedGoogle Scholar
  39. 39.
    Wiener N (1965) Cybernetics or control and communication in the animal and the machine. MIT Press, Cambridge, MassachusettsGoogle Scholar
  40. 40.
    Zaichik LE, Rodchenko VV, Rufov IV, Yashin YP, White AD (1999) Acceleration perception. In Collection of technical papers, edited by AIAA modeling and simulation technologies conferenceGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Paolo Pretto
    • 1
  • Joost Venrooij
    • 1
  • Alessandro Nesti
    • 1
  • Heinrich H. Bülthoff
    • 1
  1. 1.Max Planck Institute for Biological CyberneticsTübingenGermany

Personalised recommendations