Advertisement

Moving Brain-Controlled Devices Outside the Lab: Principles and Applications

  • Robert Leeb
  • Ricardo Chavarriaga
  • Serafeim Perdikis
  • Iñaki Iturrate
  • José d. R. MillánEmail author
Part of the Trends in Augmentation of Human Performance book series (TAHP, volume 5)

Abstract

This chapter provides an overview of the functionality and the underlying principles of the brain-computer interfaces (BCI) developed by the Chair in Non-Invasive Brain-Machine Interface (CNBI) of the Swiss Federal Institute of Technology (EPFL), as well as exemplary applications where those have been successfully evaluated. Our laboratory mainly develops non-invasive BCI systems based on electroencephalographic (EEG) signals and, thus, devoid of medical hazards, real-time, portable, relatively low-cost and minimally obtrusive. Our research is pushing forward asynchronous paradigms offering a spontaneous, user-driven and largely ecological interaction. Furthermore, we stand on the machine-learning way to BCI with emphasis on personalization, configurability and adaptability, coupled with mutual learning training protocols, so that elaborate signal processing and pattern recognition methods are optimally combined with the user’s learnable modulation of brain signals towards high and robust performances and universal usability. Additionally, cognitive mental state monitoring is employed to shape or refine the interaction. Shared-control approaches allow smart, context-aware robotics to complement the BCI channel for more fine-grained control and reduction of the user’s mental workload. Last but not least, hybrid BCI designs exploit additional physiological signals to augment the BCI modality and enrich the control paradigm, thus also exploiting potential residual capabilities of disabled end-users.

The applicability and effectiveness of the aforementioned principles is hereby demonstrated in four exemplary applications evaluated with both able-bodied and motor-disabled end-users. These applications include a hybrid, motor imagery (MI)-based speller, a telepresence robot equipped with shared-control, cognitive mental state monitoring paradigms able to recognize and correct errors, and, finally, a car driving application where a passive BCI enabled on a smart car assists towards increased safety and improved driving experience. Remarkably, our results show that the performance of end-users with disabilities was similar to that of a group of healthy users, who were more familiar with the experiment and the environment. This demonstrates that end-users are able to successfully use BCI technology.

Keywords

Brain-computer interface Shared control Hybrid control Motor imagery Error potentials Cognitive states Spelling Telepresence robot Car driving 

Notes

Acknowledgements

The authors acknowledge the use of text from their prior publications [27, 34, 37, 45, 66] in Sect. 6.3.

This work was supported by the European ICT programme projects TOBI: Tools for Brain-Computer Interaction (FP7-224631) and Opportunity: Activity and Context Recognition with Opportunistic Sensor Configuration (ICT-225938), the Swiss National Science Foundation NCCR Robotics, Nissan Motor Co. Ltd., the Hasler Foundation, and the dissemination by the European ICT coordination and support action BNCI Horizon 2020 (FP7-ICT-609593). The writing up of this work was also supported by the Swiss canton of Valais-Wallis and by the City of Sion. This paper only reflects the authors’ views and funding agencies are not liable for any use that may be made of the information contained herein.

References

  1. 1.
    Allison BZ, Brunner C, Kaiser V, Müller-Putz GR, Neuper C, Pfurtscheller G (2010) Toward a hybrid brain–computer interface based on imagined movement and visual attention. J Neural Eng 7:026007CrossRefGoogle Scholar
  2. 2.
    Aloise F, Schettini F, Aricó P, Leotta F, Salinari S, Mattia D, Babiloni F, Cincotti F (2011) P300-based brain-computer interface for environmental control: an asynchronous approach. J Neural Eng 8:025025CrossRefPubMedGoogle Scholar
  3. 3.
    Ang KK, Guan C, Chua KS, Ang BT, Kuah C, Wang C, Phua KS, Chin ZY, Zhang H (2011) A large clinical study on the ability of stroke patients to use an EEG-based motor imagery brain-computer interfaces. Clin EEG Neurosci 42(4):253–258CrossRefPubMedGoogle Scholar
  4. 4.
    Biasiucci A, Leeb R, Al-Khodairy A, Buhlmann V, Millán JdR (2013) Motor recovery after stroke by means of BCI-guided functional electrical stimulation. In: Proceedings of 5th international BCI meeting, Asilomar, California, USGoogle Scholar
  5. 5.
    Billinger M, Brunner C, Müller-Putz GR (2013) Single-trial connectivity estimation for classification of motor imagery data. J Neural Eng 10(4):046006CrossRefPubMedGoogle Scholar
  6. 6.
    Birbaumer N, Ghanayim N, Hinterberger T, Iversen I, Kotchoubey B, Kübler A, Perelmouter J, Taub E, Flor H (1999) A spelling device for the paralysed. Nature 398(6725):297–298CrossRefPubMedGoogle Scholar
  7. 7.
    Blankertz B, Dornhege G, Schäfer C, Krepki R, Kohlmorgen J, Müller K-R, Kunzmann V, Losch F, Curio G (2003) Boosting bit rates and error detection for the classification of fast-paced motor commands based on single-trial EEG analysis. IEEE Trans Neural Syst Rehabil Eng 11:127–131CrossRefPubMedGoogle Scholar
  8. 8.
    Blankertz B, Tangermann M, Vidaurre C, Fazli S, Sannelli C, Haufe S, Maeder C, Ramsey L, Sturm I, Curio G et al (2010) The Berlin brain–computer interface: non-medical uses of BCI technology. Front Neurosci 4:198PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Carlson T, Demiris Y (2008) Human-wheelchair collaboration through prediction of intention and adaptive assistance. In: Proceedings of IEEE international conference on robotics and automation, Pasadena, pp 3926–3931Google Scholar
  10. 10.
    Carlson T, Millán JdR (2013) Brain–controlled wheelchairs: a robotic architecture. IEEE Robot Autom Mag 20(1):65–73CrossRefGoogle Scholar
  11. 11.
    Carlson T, Leeb R, Chavarriaga R, Millán JdR (2012) Online modulation of the level of assistance in shared control systems. In: Proceedings of IEEE international conference on systems man and cybernetics, Seoul, pp 3321–3326Google Scholar
  12. 12.
    Carmena JM (2013) Advances in neuroprosthetic learning and control. PLoS Biol 11(5):e1001561PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Chavarriaga R, Millán JdR (2010) Learning from EEG error-related potentials in noninvasive brain-computer interfaces. IEEE Trans Neural Syst Rehabil Eng 18(4):381–388CrossRefPubMedGoogle Scholar
  14. 14.
    Chavarriaga R, Perrin X, Siegwart R, Millán JdR (2012) Anticipation- and error-related EEG signals during realistic human-machine interaction: a study on visual and tactile feedback. In: Proceedings of 34th annual international conference of the IEEE engineering in medicine and biology society, San Diego, pp 6723–6726Google Scholar
  15. 15.
    Chavarriaga R, Gheorghe L, Zhang H, Khaliliardali Z, Millán JdR (2013) Detecting cognitive states for enhancing driving experience. In: Proceedings of 5th international brain-computer interface meeting 2013, Pacific Grove, Asilomar, California, USGoogle Scholar
  16. 16.
    Chavarriaga R, Sobolewski A, Millán JdR (2014) Errare machinale est: the use of error-related potentials in brain-machine interfaces. Front Neurosci 8:208PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Collinger JL, Wodlinger B, Downey JE, Wang W, Tyler-Kabara EC, Weber DJ, McMorland AJC, Velliste M, Boninger ML, Schwartz AB (2013) High-performance neuroprosthetic control by an individual with tetraplegia. Lancet 381(9866):557–564PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Decety J (1996) The neurophysiological basis of motor imagery. Behav Brain Res 77(1–2):45–52CrossRefPubMedGoogle Scholar
  19. 19.
    de Negueruela C, Broschart M, Menon C, Millán JdR (2010) Brain-computer interfaces for space applications. J Pers Ubiquitous Comput 15(5):527–537CrossRefGoogle Scholar
  20. 20.
    Ehrsson HH, Geyer S, Naito E (2003) Imagery of voluntary movement of fingers, toes, and tongue activates corresponding body-part-specific motor representations. J Neurophysiol 90:3304–3316CrossRefPubMedGoogle Scholar
  21. 21.
    Fazli S, Mehnert J, Steinbrink J, Curio G, Villringer A, Müller K-R, Blankertz B (2012) Enhanced performance by a hybrid NIRS–EEG brain computer interface. Neuroimage 59:519–529CrossRefPubMedGoogle Scholar
  22. 22.
    Ferrez PW, Millán JdR (2008) Error-related EEG potentials generated during simulated brain-computer interaction. IEEE Trans Biomed Eng 55:923–929CrossRefPubMedGoogle Scholar
  23. 23.
    Ferrez PW, Millán JdR (2008) Simultaneous real-time detection of motor imagery and error-related potentials for improved BCI accuracy. In: Proceedings of 4th international brain-computer interface workshop and training course, Graz, pp 197–202Google Scholar
  24. 24.
    Galán F, Ferrez PW, Oliva F, Guàrdia J, Millán JdR (2007) Feature extraction for multi-class BCI using canonical variates analysis. In: Proceedings of IEEE international symposium on intelligent signal processing, Alcalá de HenaresCrossRefGoogle Scholar
  25. 25.
    Galán F, Nuttin M, Lew E, Ferrez PW, Vanacker G, Philips J, Millán JdR (2008) A brain-actuated wheelchair: asynchronous and non-invasive brain-computer interfaces for continuous control of robots. Clin Neurophysiol 119(9):2159–2169CrossRefPubMedGoogle Scholar
  26. 26.
    Gao X, Xu D, Cheng M, Gao S (2003) A BCI-based environmental controller for the motion-disabled. IEEE Trans Neural Syst Rehabil Eng 11:137–140CrossRefPubMedGoogle Scholar
  27. 27.
    Gheorghe LA, Chavarriaga R, Millán JdR (2013) Steering timing prediction in a driving simulator task. In: Proceedings of 35th annual international conference of the IEEE engineering in medicine and biology society, Osaka, Japan, pp 6913–6916Google Scholar
  28. 28.
    Guger C, Edlinger G, Harkam W, Niedermayer I, Pfurtscheller G (2003) How many people are able to operate an EEG-based brain-computer interface (BCI)? IEEE Trans Neural Syst Rehabil Eng 11:145–147CrossRefPubMedGoogle Scholar
  29. 29.
    Haufe S, Treder MS, Gugler MF, Sagebaum M, Curio G, Blankertz B (2011) EEG potentials predict upcoming emergency brakings during simulated driving. J Neural Eng 8(5):056001CrossRefPubMedGoogle Scholar
  30. 30.
    Haufe S, Kim J-W, Kim I-H, Sonnleitner A, Schrauf M, Curio G, Blankertz B (2014) Electrophysiology-based detection of emergency braking intention in real-world driving. J Neural Eng 11:056011CrossRefPubMedGoogle Scholar
  31. 31.
    Hochberg LR, Bacher D, Jarosiewicz B, Masse NY, Simeral JD, Vogel J, Haddadin S, Liu J, Cash SS, van der Smagt P, Donoghue JP (2012) Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485(7398):372–375PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Höhne J, Holz E, Staiger-Sälzer P, Müller K-R, Kübler A, Tangermann M (2014) Motor imagery for severely motor-impaired patients: evidence for brain-computer interfacing as superior control solution. PLoS ONE 9:e104854PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Hu TC, Tucker AC (1971) Optimal computer search trees and variable-length alphabetical codes. SIAM J Appl Math 21(4):514–532CrossRefGoogle Scholar
  34. 34.
    Iturrate I, Chavarriaga R, Montesano L, Minguez J, Millán JdR (2014) Latency correction of error potentials between different experiments reduces calibration time for single-trial classification. J Neural Eng 11:036005CrossRefPubMedGoogle Scholar
  35. 35.
    Jeannerod M, Frak V (1999) Mental imaging of motor activity in humans. Curr Opin Neurobiol 9(6):735–739CrossRefPubMedGoogle Scholar
  36. 36.
    Kaufmann T, Holz EM, Kübler A (2013) Comparison of tactile, auditory and visual modality for brain-computer interface use: a case study with a patient in the locked-in state. Front Neurosci 7:129PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Khaliliardali Z, Chavarriaga R, Gheorghe LA, Millán JdR (2012) Detection of anticipatory brain potentials during car driving. In: Proceedings of 34th annual international conference of the IEEE engineering in medicine and biology society, San Diego, vol 2012, pp 3829–3832Google Scholar
  38. 38.
    Kim I-H, Kim J-W, Haufe S, Lee S-W (2015) Detection of braking intention in diverse situations during simulated driving based on EEG feature combination. J Neural Eng 12:016001CrossRefPubMedGoogle Scholar
  39. 39.
    Kohlmorgen J, Dornhege G, Braun ML, Blankertz B, Müller KR, Curio G, Hagemann K, Bruns A, Schrauf M, Kincses WE (2007) Improving human performance in a real operating environment through real-time mental workload detection. In: Dornhege G, Millán JdR, Hinterberger T, McFarland D, Müller KR (eds) Toward brain-computer interfacing. MIT Press, Cambridge, pp 409–422Google Scholar
  40. 40.
    Krepki R, Blankertz B, Curio G, Müller K-R (2007) The Berlin brain-computer interface (BBCI): towards a new communication channel for online control in gaming applications. J Multimed Tools Appl 33:73–90CrossRefGoogle Scholar
  41. 41.
    Kübler A, Birbaumer N (2008) Brain-computer interfaces and communication in paralysis: extinction of goal directed thinking in completely paralysed patients? Clin Neurophysiol 119(11):2658–2666PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Leeb R, Sagha H, Chavarriaga R, Millán JdR (2011) A hybrid brain-computer interface based on the fusion of electroencephalographic and electromyographic activities. J Neural Eng 8(2):025011CrossRefPubMedGoogle Scholar
  43. 43.
    Leeb R, Gwak K, Kim D-S, Millán JdR (2013) Freeing the visual channel by exploiting vibrotactile BCI feedback. In: Proceedings of 35th annual international conference of the IEEE engineering in medicine and biology society, Osaka, JapanGoogle Scholar
  44. 44.
    Leeb R, Perdikis S, Tonin L, Biasiucci A, Tavella M, Molina A, Al-Khodairy A, Carlson T, Millán JdR (2013) Transferring brain-computer interfaces beyond the laboratory: successful application control for motor-disabled users. Artif Intell Med 59(2):121–132CrossRefPubMedGoogle Scholar
  45. 45.
    Leeb R, Tonin L, Carlson T, Millán JdR (2015) Towards independence: a BCI telepresence robot for people with severe motor disabilities. Proc IEEE 103:969–982CrossRefGoogle Scholar
  46. 46.
    Lew E, Chavarriaga R, Silvoni S, Millán JdR (2012) Detection of self-paced reaching movement intention from EEG signal. Front Neuroeng 5:13PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Lew E, Chavarriaga R, Silvoni S, Millán JdR (2014) Single trial prediction of self-paced reaching directions from EEG signals. Front Neurosci 8:222PubMedCentralCrossRefPubMedGoogle Scholar
  48. 48.
    Lin C-T, Ko L-W, Sheng T-K (2009) Computational intelligent brain computer interaction and its applications on driving cognition. IEEE Comput Intell Mag 4(4):32–46CrossRefGoogle Scholar
  49. 49.
    Lotte F, Larrue F, Mühl C (2013) Flaws in current human training protocols for spontaneous brain-computer interfaces: lessons learned from instructional design. Front Hum Neurosci 7:568PubMedCentralCrossRefPubMedGoogle Scholar
  50. 50.
    Mak JN, Wolpaw EW (2009) Clinical applications of brain-computer interfaces: current state and future prospects. IEEE Rev Biomed Eng 2:187–199PubMedCentralCrossRefPubMedGoogle Scholar
  51. 51.
    Marshall D, Coyle D, Wilson S, Callaghan M (2013) Games, gameplay, and BCI: the state of the art. IEEE Trans Comput Intell AI Games 5(2):82–99CrossRefGoogle Scholar
  52. 52.
    Mason SG, Bashashati A, Fatourechi M, Navarro KF, Birch GE (2007) A comprehensive survey of brain interface technology designs. Ann Biomed Eng 35(2):137–169CrossRefPubMedGoogle Scholar
  53. 53.
    Millán JdR (2003) Adaptive brain interfaces. Commun ACM 46:74–80CrossRefGoogle Scholar
  54. 54.
    Millán JdR (2004) On the need for on-line learning in brain-computer interfaces. In: Proceedings of international joint conference on neural networks, BudapestCrossRefGoogle Scholar
  55. 55.
    Millán JdR, Franzé M, Mouriño J, Cincotti F, Babiloni F (2002) Relevant EEG features for the classification of spontaneous motor-related tasks. Biol Cybern 86:89–95CrossRefPubMedGoogle Scholar
  56. 56.
    Millán JdR, Renkens F, Mouriño J, Gerstner W (2004) Noninvasive brain-actuated control of a mobile robot by human EEG. IEEE Trans Biomed Eng 51(6):1026–1033CrossRefGoogle Scholar
  57. 57.
    Millán JdR, Buttfield A, Vidaurre C, Krauledat M, Schögl A, Shenoy P, Blankertz B, Rao RPN, Cabeza R, Pfurtscheller G, Müller K-R (2007) Adaptation in brain-computer interfaces. In: Dornhege G, Millán JdR, Hinterberger T, McFarland D, Müller KR (eds) Toward brain-computer interfacing. MIT Press, Cambridge, pp 303–325Google Scholar
  58. 58.
    Millán JdR, Ferrez PW, Galán F, Lew E, Chavarriaga R (2008) Non-invasive brain-machine interaction. Int J Pattern Recognit Artif Intell 22(5):959–972CrossRefGoogle Scholar
  59. 59.
    Millán JdR, Rupp R, Müller-Putz GR, Murray-Smith R, Giugliemma C, Tangermann M, Vidaurre C, Cincotti F, Kübler A, Leeb R, Neuper C, Müller KR, Mattia D (2010) Combining brain-computer interfaces and assistive technologies: state-of-the-art and challenges. Front Neurosci 4:161PubMedCentralPubMedGoogle Scholar
  60. 60.
    Miltner WHR, Braun CH, Coles MGH (1997) Event-related brain potentials following incorrect feedback in a time-estimation task: evidence for a “generic” neural system for error detection. J Cogn Neurosci 9(6):788–798CrossRefPubMedGoogle Scholar
  61. 61.
    Müller K-R, Tangermann M, Dornhege G, Krauledat M, Curio G, Blankertz B (2008) Machine learning for real-time single-trial EEG-analysis: from brain-computer interfacing to mental state monitoring. J Neurosci Methods 167:82–90CrossRefPubMedGoogle Scholar
  62. 62.
    Müller-Putz GR, Scherer R, Pfurtscheller G, Rupp R (2005) EEG-based neuroprosthesis control: a step towards clinical practice. Neurosci Lett 382:169–174CrossRefPubMedGoogle Scholar
  63. 63.
    Navarro X, Krueger TB, Lago N, Micera S, Stieglitz T, Dario P (2005) A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems. J Peripher Nerv Syst 10(3):229–258CrossRefPubMedGoogle Scholar
  64. 64.
    O’Doherty JE, Lebedev MA, Ifft PJ, Zhuang KZ, Shokur S, Bleuler H, Nicolelis MAL (2011) Active tactile exploration using a brain-machine-brain interface. Nature 479:228–231PubMedCentralCrossRefPubMedGoogle Scholar
  65. 65.
    Orsborn AL, Moorman HG, Overduin SA, Shanechi MM, Dimitrov DF, Carmena JM (2014) Closed-loop decoder adaptation shapes neural plasticity for skillful neuroprosthetic control. Neuron 82(6):1380–1393CrossRefPubMedGoogle Scholar
  66. 66.
    Perdikis S, Leeb R, Williamson J, Ramsay A, Tavella M, Desideri L, Hoogerwerf E-J, Al-Khodairy A, Murray-Smith R, Millán JdR (2014) Clinical evaluation of BrainTree, a motor imagery hybrid BCI speller. J Neural Eng 11(3):036003CrossRefPubMedGoogle Scholar
  67. 67.
    Perrin X, Chavarriaga R, Colas F, Siegwart R, Millán JdR (2010) Brain-coupled interaction for semi-autonomous navigation of an assistive robot. Robot Auton Syst 58(12):1246–1255CrossRefGoogle Scholar
  68. 68.
    Pfurtscheller G, Lopes da Silva FH (1999) Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 110:1842–1857CrossRefPubMedGoogle Scholar
  69. 69.
    Pfurtscheller G, Neuper C (2001) Motor imagery and direct brain-computer communication. Proc IEEE 89:1123–1134CrossRefGoogle Scholar
  70. 70.
    Pfurtscheller G, Allison BZ, Bauernfeind G, Brunner C, Solis Escalante T, Scherer R, Zander TO, Müller-Putz G, Neuper C, Birbaumer N (2010) The hybrid BCI. Front Neurosci 4:42PubMedCentralGoogle Scholar
  71. 71.
    Pfurtscheller G, Solis-Escalante T, Ortner R, Linortner P, Muller-Putz GR (2010) Self-paced operation of an SSVEP-based orthosis with and without an imagery-based “brain switch”: a feasibility study towards a hybrid BCI. IEEE Trans Neural Syst Rehabil Eng 18:409–414CrossRefPubMedGoogle Scholar
  72. 72.
    Ramos-Murguialday A, Broetz D, Rea M, Läer L, Yilmaz Ö, Brasil FL, Liberati G, Curado MR, Garcia-Cossio E, Vyziotis A, Cho W, Agostini M, Soares E, Soekadar S, Caria A, Cohen LG, Birbaumer N (2013) Brain-machine interface in chronic stroke rehabilitation: a controlled study. Ann Neurol 74(1):100–108PubMedCentralCrossRefPubMedGoogle Scholar
  73. 73.
    Rohm M, Schneiders M, Müller C, Kreilinger A, Kaiser V, Müller-Putz GR, Rupp R (2013) Hybrid brain-computer interfaces and hybrid neuroprostheses for restoration of upper limb functions in individuals with high-level spinal cord injury. Artif Intell Med 59(2):133–142CrossRefPubMedGoogle Scholar
  74. 74.
    Saeedi S, Carlson T, Chavarriaga R, Millán JdR (2013) Making the most of context-awareness in brain-computer interfaces. In: Proceedings of IEEE international conference on cybernetics, Lausanne, SwitzerlandCrossRefGoogle Scholar
  75. 75.
    Sajda P, Pohlmeyer E, Wang J, Parra LC, Christoforou C, Dmochowski J, Hanna B, Bahlmann C, Singh MK, Chang S-F (2010) In a blink of an eye and a switch of a transistor: cortically coupled computer vision. Proc IEEE 98(3):462–478CrossRefGoogle Scholar
  76. 76.
    Schalk G, Wolpaw JR, McFarland DJ, Pfurtscheller G (2000) EEG-based communication: presence of an error potential. Clin Neurophysiol 111:2138–2144CrossRefPubMedGoogle Scholar
  77. 77.
    Scherer R, Müller-Putz GR, Pfurtscheller G (2007) Self-initiation of EEG-based brain-computer communication using the heart rate response. J Neural Eng 4:L23–L29CrossRefPubMedGoogle Scholar
  78. 78.
    Schreuder M, Blankertz B, Tangermann M (2010) A new auditory multi-class brain-computer interface paradigm: spatial hearing as an informative cue. PLoS ONE 5(4):e9813PubMedCentralCrossRefPubMedGoogle Scholar
  79. 79.
    Silvoni S, Ramos-Murguialday A, Cavinato M, Volpato C, Cisotto G, Turolla A, Piccione F, Birbaumer N (2011) Brain-computer interface in stroke: a review of progress. Clin EEG Neurosci 42(4):245–252CrossRefPubMedGoogle Scholar
  80. 80.
    Tangermann MW, Krauledat M, Grzeska K, Sagebaum M, Vidaurre C, Blankertz B, Müller K-R (2008) Playing pinball with non-invasive BCI. In: Advances in neural information processing systems 21, Vancouver, pp 1641–1648Google Scholar
  81. 81.
    Tonin L, Leeb R, Tavella M, Perdikis S, Millán JdR (2010) The role of shared-control in BCI-based telepresence. In: Proceedings of 2010 IEEE international conference on systems, man and cybernetics, Istanbul, pp 1462–1466Google Scholar
  82. 82.
    Tonin L, Leeb R, Millán JdR (2012) Time-dependent approach for single trial classification of covert visuospatial attention. J Neural Eng 9(4):045011CrossRefPubMedGoogle Scholar
  83. 83.
    Tonin L, Leeb R, Sobolewski A, Millán JdR (2013) An online EEG BCI based on covert visuospatial attention in absence of exogenous stimulation. J Neural Eng 10(5):056007CrossRefPubMedGoogle Scholar
  84. 84.
    Vanhooydonck D, Demeester E, Nuttin M, Van Brussel H (2003) Shared control for intelligent wheelchairs: an implicit estimation of the user intention. In: Proceedings of 1st international workshop advances in service robot, Bardolino, pp 176–182Google Scholar
  85. 85.
    Vidaurre C, Kawanabe M, von Bünau P, Blankertz B, Müller K-R (2011) Toward unsupervised adaptation of LDA for brain-computer interfaces. IEEE Trans Biomed Eng 58(3):587–597CrossRefPubMedGoogle Scholar
  86. 86.
    Vidaurre C, Sannelli C, Müller K-R, Blankertz B (2011) Co-adaptive calibration to improve bci efficiency. J Neural Eng 8:025009CrossRefPubMedGoogle Scholar
  87. 87.
    Wolpaw J, Winter-Wolpaw E (2012) Brain-computer interfaces: principles and practice. Oxford University Press, Oxford/New YorkCrossRefGoogle Scholar
  88. 88.
    Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain-computer interfaces for communication and control. Clin Neurophysiol 113(6):767–791CrossRefPubMedGoogle Scholar
  89. 89.
    Yin E, Zhou A, Jiang J, Chen F, Liu Y, Hu D (2013) A novel hybrid BCI speller based on the incorporation of SSVEP into the P300 paradigm. J Neural Eng 10:026012CrossRefPubMedGoogle Scholar
  90. 90.
    Zhang H, Chavarriaga R, Gheorghe LA, Millán JdR (2013) Inferring driver’s turning direction through detection of error related brain activity. In: Proceedings of 35th annual international conference of the IEEE engineering in medicine and biology society, Osaka, vol 2013, pp 2196–2199Google Scholar
  91. 91.
    Zhang H, Chavarriaga R, Millán JdR (2014) Towards implementation of motor imagery using brain connectivity features. In: Proceedings of 6th international brain-computer interface conference, Graz, AustriaGoogle Scholar
  92. 92.
    Zickler C, Di Donna V, Kaiser V, Al-Khodairy A, Kleih S, Kuebler A, Malavasi M, Mattia D, Mongardi S, Neuper C, Rohm M, Rupp R (2009) Brain computer interaction applications for people with disabilities: defining user needs and user requirements. In: Proceedings of AAATE, Florence, p 5Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Robert Leeb
    • 1
  • Ricardo Chavarriaga
    • 2
  • Serafeim Perdikis
    • 2
  • Iñaki Iturrate
    • 2
  • José d. R. Millán
    • 2
    Email author
  1. 1.Center for NeuroprostheticsÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
  2. 2.Defitech Chair in Brain-Machine InterfaceÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations