Skip to main content

The Ecology of Lifetime Growth in Percid Fishes

  • Chapter
Biology and Culture of Percid Fishes

Abstract

The factors responsible for the lifetime growth patterns of percids in natural populations can provide meaningful insights for culture operations. Here, we present a summary of a number of well-studied factors and review the current state of knowledge. We illustrate an informative approach to describe lifetime growth of percid species by applying a biphasic growth model to European perch and pikeperch populations, and discuss life-history constraints considering biphasic growth. An evaluation of proposed hypotheses for proximate mechanisms of female-biased sexual size dimorphism in percids is presented, indicating that reduced feeding in males is the most parsimonious explanation given the current evidence. Growth rates in percids are strongly temperature-dependent, and show strong evidence of countergradient growth. Percids also show significant density-dependent growth, demonstrating twofold variation in individual growth rates. Predation, food availability and prey particle size can also affect the efficiency of percid growth. Parasitism and disease in percids are not as well studied as other factors reviewed here within an ecological context, but the reported effects on percid growth vary from negative to neutral to positive. Our review of drivers of natural variation in percid growth will assist culture operators with regards to broodstock selection, husbandry and maintenance of cultured percids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrams PA, Rowe L (1996) The effects of predation on the age and size of maturity of prey. Evolution 50(3):1052–1061

    Article  Google Scholar 

  • Angilletta MJ (2009) Thermal adaptation: a theoretical and empirical synthesis. Oxford University Press, Oxford

    Book  Google Scholar 

  • Anthony D, Jorgensen C (1977) Factors in the declining contributions of Walleye (Stizostedion vitreum vitreum) to the fishery of Lake Nipissing, Ontario, 1960–1976. J Fish Res Board Can 34:1703–1709

    Article  Google Scholar 

  • Arnott SA, Barber I, Huntingford FA (2000) Parasite-associated growth enhancement in a fish-cestode system. Proc R Soc B-Biol Sci 267(1444):657–663

    Article  CAS  Google Scholar 

  • Bacheler N, Paoli T, Schacht G (2011) Controls on abundance and distribution of yellow perch: predator, water quality, and density-dependent effects. Trans Am Fish Soc 140:989–1000. doi:10.1080/00028487.2011.603979

    Article  Google Scholar 

  • Bardach JE (1951) Changes in the yellow perch population of Lake Mendota, Wisconsin, between 1916 and 1948. Ecology 32(4):719–728

    Article  Google Scholar 

  • Bartels P, Hirsch PE, Svanback R, Eklov P (2012) Water transparency drives intra-population divergence in Eurasian perch (Perca fluviatilis). Plos One 7(8):e43641. doi:10.1371/journal.pone.0043641

    Article  CAS  Google Scholar 

  • Beckman WC (1950) Changes in growth rates of fishes following reduction in population densities by winterkill. Trans Am Fish Soc 78(1):82–90. doi:10.1577/1548 8659(1948)78[82:CIGROF]2.0.CO;2

  • Beverton RJH (1963) Maturation, growth and mortality of clupeid and engraulid stocks in relation to fishing. Proc Verb Cons Explor Mer 154:44–67

    Google Scholar 

  • Beverton RJH (1987) Longevity in fish: some ecological and evolutionary considerations. In: Woodhead AD, Thompson KH (eds) Evolution of longevity in animals: a comparative approach. Plenum Press, New York

    Google Scholar 

  • Beverton RJH, Holt SJ (1959) A review of the lifespans and mortality rates of fish in nature, and their relation to growth and other physiological characteristics. In: Wolstenholme GEW, O’Connor M (eds) CIBA Foundation colloquia on ageing: the lifespan of animals, vol 5. J & A Churchill, London

    Google Scholar 

  • Biro PA, Post JR (2008) Rapid depletion of genotypes with fast growth and bold personality traits from harvested fish populations. Proc Natl Acad Sci USA 105(8):2919–2922

    Article  CAS  Google Scholar 

  • Biro PA, Post JR, Abrahams MV (2005) Ontogeny of energy allocation reveals selective pressure promoting risk-taking behaviour in young fish cohorts. Proc R Soc B-Biol Sci 272(1571):1443–1448

    Article  Google Scholar 

  • Bozek MA, Baccante DA, Lester NP (2011) Walleye and sauger life history. In: Barton BA (ed) Biology, management, and culture of walleye and sauger. American Fisheries Society, Bethesda

    Google Scholar 

  • Breder CM, Rosen DE (1966) Modes of reproduction in fishes. The Natural History Press, New York

    Google Scholar 

  • Brinker A, Hamers R (2007) Evidence for a negative impact of plerocercoid infection of Triaenophorus nodulosus on Perca fluvatilis L. stockin in Upper Lake Constance, a water body undergoing rapid reoligotrophication. J Fish Biol 71:128–147

    Article  Google Scholar 

  • Buijse AD, Houthuijzen RP (1992) Piscivory, growth, and size-selective mortality of age-0 pikeperch (Stizostedion lucioperca). Can J Fish Aquat Sci 49:894–902

    Article  Google Scholar 

  • Campbell PGC, Hontela A, Rasmussen JB, Giguere A, Gravel A, Kraemer L et al (2003) Differentiating between direct (physiological) and food-chain mediated (bioenergetic) effects on fish in metal-impacted lakes. Hum Ecol Risk Assess 9(4):847–866. doi:10.1080/713610012

    Article  CAS  Google Scholar 

  • Carlander KD (1945) Age, growth, sexual maturity and population fluctuations of the yellow pike-perch, Stizostedion vitreum vitreum (Mitchill), with reference to the commercial fisheries, Lake of the Woods, Minnesota. Trans Am Fish Soc 73(1):90–107

    Article  Google Scholar 

  • Carlander KD (1950) Growth rate studies of saugers, Stizostedion canadense canadense (Smith), and yellow perch, Perca flacescens (Mitchill) from Lake of the Woods, Minnesota. Trans Am Fish Soc 79(1):30–42

    Article  Google Scholar 

  • Charnov E (1993) Life history invariants: some explorations of symmetry in evolutionary ecology. Oxford University Press, New York

    Google Scholar 

  • Charnov EL, Turner TF, Winemiller KO (2001) Reproductive constraints and the evolution of life histories with indeterminate growth. Proc Natl Acad Sci U S A 98(16):9460–9464

    Article  CAS  Google Scholar 

  • Chavarie L, Dempson JB, Schwarz CJ, Reist JD, Power G, Power M (2010) Latitudinal variation in growth among Arctic charr in eastern North America: evidence for countergradient variation? Hydrobiologia 650:161–177. doi:10.1007/s10750-009-0043-z

    Article  Google Scholar 

  • Chezik KA (2013) Fish growth and degree-days: advice for selecting base temperatures in both within- and among-lake studies. Thesis, University of Minnesota

    Google Scholar 

  • Chong SC (2000) The effect of latitude on recruitment variability and first year growth of yellow perch (Perca fiavescens). Dissertation, Queen’s University

    Google Scholar 

  • Cloutier VB, Glemet H, Ferland-Raymond B, Gendron AD, Marcogliese DJ (2012) Correlation of parasites with growth of yellow perch. J Aquat Anim Health 24(2):100–104. doi:10.1080/08997659.2012.675934

    Article  Google Scholar 

  • Colby PJ, Nepszy SJ (1981) Variation among stocks of walleye (Stizostedion vitreum vitreum) – management implications. Can J Fish Aquat Sci 38(12):1814–1831. doi:10.1139/f81-228

    Article  Google Scholar 

  • Colby PJ, McNicol RE, Ryder RA (1979) Synopsis of biological data on the walleye Stizostedion v. vitreum (Mitchill 1818), vol 119, Fisheries synopsis. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Conover DO, Present TMC (1990) Countergradient variation in growth rate: compensation for length of the growing season among Atlantic silversides from different latitudes. Oecologia 83:316–324

    Article  Google Scholar 

  • Conover DO, Munch SB, Arnott SA (2009) Reversal of evolutionary downsizing caused by selective harvest of large fish. Proc R Soc B-Biol Sci 276:2015–2020. doi:10.1098/rspb.2009.0003

    Article  Google Scholar 

  • Craig JF (1980) Growth and production of the 1955 to 1972 cohorts of perch, Perca fluviatilis L., in Windermere. J Anim Ecol 49:291–315. doi:10.2307/4290

    Article  Google Scholar 

  • Craig JF (1982) Population dynamics of Windermere perch. Rep Freshw Biol Assoc 50:49–59

    Google Scholar 

  • Craig JF (1987) The biology of perch and related fish. Timber Press, Portland

    Google Scholar 

  • Darwin C (1871) The descent of man, and selection in relation to sex. D. Appleton and Company, New York

    Book  Google Scholar 

  • Day T, Taylor PD (1997) Von Bertalanffy’s growth equation should not be used to model age and size at maturity. Am Nat 149(2):381–293, doi:0003-0147/97/4902-0009

    Article  Google Scholar 

  • DeWoody JA, Fletcher DE, Wilkins SD, Avise JC (2000) Parentage and nest guarding in the tessellated darter (Etheostoma olmstedi) assayed by microsatellite markers (Perciformes: Percidae). Copeia 3:740–747

    Article  Google Scholar 

  • Diehl S, Eklov P (1995) Effects of piscivore-mediated habitat use on resources, diet, and growth of perch. Ecology 76(6):1712–1726

    Article  Google Scholar 

  • Dunlop ES, Shuter BJ, Dieckmann U (2007) Demographic and evolutionary consequences of selective mortality: predictions from an eco-genetic model for smallmouth bass. Trans Am Fish Soc 136:749–765

    Article  Google Scholar 

  • El-Zarka SE-D (1959) Fluctuations in the population of yellow perch, Perca flavescens (Mitchill), in Saginaw Bay Lake Huron. US Fish Wildl Serv Fish Bull 59:365–415

    Google Scholar 

  • Frankiewicz P, Dabrowski K, Martyniak A, Zalewski M (1999) Cannibalism as a regulatory force of pikeperch, Stizostedion lucioperca (L.), population dynamics in the lowland Sulejow reservoir (Central Poland). Hydrobiologia 408(409):47–55

    Article  Google Scholar 

  • Froese R, Pauly D (2013) FishBase 2013: concepts, design and data sources. ICLARM, Philippines

    Google Scholar 

  • Fry FEJ (1971) The effect of environmental factors on the physiology of fish. In: Hoar WS, Randall DJ (eds) Fish physiology, vol 6. Academic, New York

    Google Scholar 

  • Fullerton AH, Lamberti GA (2006) A comparison of habitat use and habitat-specific feeding efficiency by Eurasian ruffe (Gymnocephalus cernuus) and yellow perch (Perca flavescens). Ecol Freshw Fish 15(1):1–9. doi:10.1111/j.1600-0633.2005.00114.x

    Article  Google Scholar 

  • George SG, Slack WT, Douglas NH (1996) Demography, habitat, reproduction, and sexual dimorphism of the crystal darter, Crystallaria asprella (Jordan), from south-central Arkansas. Copeia 1:68–78

    Article  Google Scholar 

  • Goldspink CR, Goodwin D (1979) A note on the age composition, growth rate and food of perch Perca fluviatilis (L.) in four eutrophic lakes, England. J Fish Biol 14:489–505, doi:0022-1 112/79/050489+17

    Article  Google Scholar 

  • Grignard JC, Melard C, Kestemont P (1996) A preliminary study of parasites and diseases of perch in an intensive culture system. J Appl Ichthyol 12(3–4):195–199. doi:10.1111/j.1439-0426.1996.tb00089.x

    Article  Google Scholar 

  • Hanna M (1990) Evaluation of models predicting mixing depth. Can J Fish Aquat Sci 47(5):940–947. doi:10.1139/f90-108

    Article  Google Scholar 

  • Harrington RC, Benavides E, Near TJ (2013) Phylogenetic inference of nuptial trait evolution in the context of asymmetrical introgression in North American darters (teleostei). Evolution 67(2):388–402. doi:10.1111/j.1558-5646.2012.01797.x

    Article  Google Scholar 

  • Hayloch MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res 113:1–12. doi:10.1029/2008JD010201

    Google Scholar 

  • Headley HC, Lauer TE (2008) Density-dependent growth of yellow perch in southern Lake Michigan, 1984–2004. N Am J Fish Manag 28(1):57–69. doi:10.1577/m06-097.1

    Article  Google Scholar 

  • Heath DD, Roff DA (1996) The role of trophic bottlenecks in stunting: a field test of an allocation model of growth and reproduction in yellow perch, Perca flavescens. Environ Biol Fish 45(1):53–63. doi:10.1007/bf00000627

    Article  Google Scholar 

  • Heibo E, Vollestad LA (2006) An analysis of life-history invariants in Eurasian perch, Perca fluviatilis. Evol Ecol Res 8(1):51–62

    Google Scholar 

  • Heibo E, Magnhagen C, Vollestad LA (2005) Latitudinal variation in life-history traits in Eurasian perch. Ecology 86(12):3377–3386. doi:10.1890/04-1620

    Article  Google Scholar 

  • Heins DC, Baker JA, Guill JM (2004) Seasonal and interannual components of intrapopulation variation in clutch size and egg size of a darter. Ecol Freshw Fish 13(4):258–265. doi:10.1111/j.1600-0633.2004.00064.x

    Article  Google Scholar 

  • Hellstrom G, Heynen M, Oosten J, Borcherding J, Magnhagen C (2011) The effect of group size on risk taking and social conformity in Eurasian perch. Ecol Freshw Fish 20(4):499–502. doi:10.1111/j.1600-0633.2011.00506.x

    Article  Google Scholar 

  • Henderson B (1985) Factors affecting growth and recruitment of yellow perch, Perca flavescens Mitchill, in South Bay, Lake Huron. J Fish Biol 26:449–458, doi:0022-1 112/85/040449

    Article  Google Scholar 

  • Henderson BA, Trivedi T, Collins N (2000) Annual cycle of energy allocation to growth and reproduction of yellow perch. J Fish Biol 57(1):122–133

    Article  Google Scholar 

  • Henderson BA, Collins N, Morgan GE, Vaillancourt A (2003) Sexual size dimorphism of walleye (Stizostedion vitreum vitreum). Can J Fish Aquat Sci 60(11):1345–1352

    Article  Google Scholar 

  • Heynen M, Heermann L, Borcherding J (2011) Does the consumption of divergent resources influence risk taking behaviour in juvenile perch (Perca fluviatilis L.)? Ecol Freshw Fish 20(1):1–4

    Article  Google Scholar 

  • Holker F, Mehner T (2005) Simulation of trait- and density-mediated indirect effects induced by piscivorous predators. Basic Appl Ecol 6(3):289–300. doi:10.1016/j.baae.2004.10.001

    Article  Google Scholar 

  • Holtby LB, Healey MC (1990) Sex-specific life-history tactics and risk-taking in coho salmon. Ecology 71(2):678–690

    Article  Google Scholar 

  • Hontela A, Rasmussen JB, Audet C, Chevalier G (1992) Impaired Cortisol stress response in fish from environments polluted by PAHs, PCBs, and mercury. Arch Environ Contam Toxicol 22:278–283

    Article  CAS  Google Scholar 

  • Horppila J, Estlander S, Olin M, Pihlajamaki J, Vinni M, Nurminen L (2011) Gender-dependent effects of water quality and conspecific density on the feeding rate of fish – factors behind sexual growth dimorphism. Oikos 120(6):855–861. doi:10.1111/j.1600-0706.2010.19056.x

    Article  Google Scholar 

  • Houthuijzen RP, Backx JJGM, Buuse AD (1993) Exceptionally rapid growth and early maturation of perch in a freshwater lake recently converted from an estuary. J Fish Biol 43:320–324, doi:0022-1112193/080320+05

    Article  Google Scholar 

  • Hoxmeier RJH, Wahl DH, Hooe ML, Pierce CL (2004) Growth and survival of larval walleyes in response to prey availability. Trans Am Fish Soc 133:45–54

    Article  Google Scholar 

  • Hughey MC, Heins DC, Jelks HL, Ory BA, Jordan F (2012) Variation in reproductive life history traits between two populations of blackbanded darters (Percina nigrofasciata). Copeia 4:714–721. doi:10.1643/ci-11-169

    Article  Google Scholar 

  • Iles AC, Rasmussen JB (2005) Indirect effects of metal contamination on energetics of yellow perch (Perca flavescens) resulting from food web simplification. Freshw Biol 50(6):976–992. doi:10.1111/j.1365-2427.2005.01380.x

    Article  CAS  Google Scholar 

  • Irwin BJ, Rudstam LG, Jackson JR, VanDeValk AJ, Forney JL, Fitzgerald DG (2009) Depensatory mortality, density-dependent growth, and delayed compensation: disentangling the interplay of mortality, growth, and density during early life stages of yellow perch. Trans Am Fish Soc 138(1):99–110. doi:10.1577/t07-256.1

    Article  Google Scholar 

  • Ivan L, Hook T, Thomas M, Fielder D (2011) Long-term and interannual dynamics of walleye and yellow perch in Saginaw Bay, Lake Huron. Trans Am Fish Soc 140:1078–1092. doi:10.1080/00028487.2011.603976

    Article  Google Scholar 

  • Jackson ZJ, Quist MC, Larscheid JG (2008) Growth standards for nine North American fish species. Fish Manag Ecol 15(2):107–118. doi:10.1111/j.1365-2400.2007.00591.x

    Article  Google Scholar 

  • Jansen WA (1991) Seasonal prevalence, intensity of infestation, and distribution of glochidia of Anodonta-grandis-simpsoniana Lea on yellow perch, Perca flavescens. Can J Fish Aquat Sci 69(4):964–972. doi:10.1139/z91-140

    Google Scholar 

  • Jensen AL (1981) Population regulation in lake whitefish, Coregonus clupeaformis (Mitchill). J Fish Biol 19(5):557–573

    Article  Google Scholar 

  • Jensen AL (1996) Beverton and Holt life history invariants result from optimal trade-off of reproduction and survival. Can J Fish Aquat Sci 53:820–822

    Article  Google Scholar 

  • Johansson F, Andersson J (2009) Scared fish get lazy, and lazy fish get fat. J Anim Ecol 78(4):772–777. doi:10.1111/j.1365-2656.2009.01530.x

    Article  Google Scholar 

  • Johnson MW, Dick TA (2001) Parasite effects on the survival, growth, and reproductive potential of yellow perch (Perca flavescens Mitchill) in Canadian Shield lakes. Can J Zool 79(11):1980–1992. doi:10.1139/cjz-79-11-1980

    Article  Google Scholar 

  • Johnson MW, Hesslein RH, Dick TA (2004) Host length, age, diet, parasites and stable isotopes as predictors of yellow perch (Perca flavescens Mitchill), trophic status in nutrient poor Canadian Shield lakes. Environ Biol Fish 71(4):379–388. doi:10.1007/s10641-004-4189-2

    Article  Google Scholar 

  • Johnston CE, Haag WR (1996) Life history of the Yazoo darter (Percidae: Etheostoma raneyi), a species endemic to north-central Mississippi. Tulanne Stud Zool Bot 30:47–60

    Google Scholar 

  • Johnston TA, Lysack W, Leggett WT (2012) Abundance, growth and life history characteristics of sympatric walleye (Sander vitreus) and sauger (S. canadensis) in Lake Winnipeg, Manitoba. J Great Lakes Res 38(Suppl 3):35–46

    Article  Google Scholar 

  • Jorgensen C, Enberg K, Dunlop ES, Arlinghaus R, Boukal DS, Brander K, Ernande B, Gardmark A, Johnston F, Matsumura S, Pardoe H, Raab K, Silva A, Vainikka A, Dieckmann U, Heino M, Rijnsdorp AD (2007) Ecology – managing evolving fish stocks. Science 318(5854):1247–1248. doi:10.1126/science.1148089

    Article  CAS  Google Scholar 

  • Katsanevakis S, Maravelias CD (2008) Modelling fish growth: multi-model inference as a better alternative to a priori using von Bertalanffy equation. Fish Fish 9:178–187

    Google Scholar 

  • Kaufman SD, Gunn JM, Morgan GE, Couture P (2006) Muscle enzymes reveal walleye (Sander vitreus) are less active when larger prey (cisco, Coregonus artedi) are present. Can J Fish Aquat Sci 63:970–979. doi:10.1139/F06-004

    Article  CAS  Google Scholar 

  • Kelly NB, Alonzo SH (2011) The evolution of male parental care in darters (Percidae: Etheostoma). Integr Comp Biol 51:E211–E211

    Google Scholar 

  • Kelly NB, Near TJ, Alonzo SH (2012) Diversification of egg-deposition behaviours and the evolution of male parental care in darters (Teleostei: Percidae: Etheostomatinae). J Evol Biol 25(5):836–846. doi:10.1111/j.1420-9101.2012.02473.x

    Article  CAS  Google Scholar 

  • Kempinger J, Carline R (1977) Dynamics of the walleye (Stizostedion vitreum vitreum) population in Escanaba Lake, Wisconsin 1955–72. J Fish Res Board Can 34:1800–1811

    Article  Google Scholar 

  • Kempinger J, Forbes A, Serns S, Snow H (1982) Population development of re-introduced smallmouth bass and yellow perch in Nebish Lake, vol 119, Research Report. Wisconsin Department of Natural Resources, Madison

    Google Scholar 

  • Kitchell JF, Johnson MG, Minns CK, Loftus KH, Greig L, Olver CH (1977) Percid habitat: the river analogy. J Fish Res Board Can 34:1936–1940

    Article  Google Scholar 

  • Korbuly B, Pacala N, Grozea A, Dobrin L, Ada T (2007) Sexual morphological traits and body indices dimorphism in a Danube 2 years old pikeperch population. Lucrari Stiintifice 40(2):23–27

    Google Scholar 

  • Koupal KD, Satterfield JR, Flickinger SA (1997) Comparative gear selectivity for male walleyes and influence of method of capture on resultant hatching success. Progress Fish Cult 59(3):218–221. doi:10.1577/1548-8640(1997)059<0218:cgsfmw>2.3.co;2

    Article  Google Scholar 

  • Lappalainen J, Dorner H, Wysujack K (2003) Reproduction biology of pikeperch (Sander lucioperca (L.)) – a review. Ecol Freshw Fish 12(2):95–106. doi:10.1034/j.1600-0633.2003.00005.x

  • Lauer TE, Doll JC, Allen PJ, Breidert B, Palla J (2008) Changes in yellow perch length frequencies and sex ratios following closure of the commercial fishery and reduction in sport bag limits in southern Lake Michigan. Fish Manag Ecol 15(1):39–47. doi:10.1111/j.1365-2400.2007.00567.x

    Article  Google Scholar 

  • Law R (2000) Fishing, selection, and phenotypic evolution. ICES J Mar Sci 57(3):659–668. doi:10.1006/jmsc.2000.0731

    Article  Google Scholar 

  • Le Cren ED (1958) Observations on the growth of perch (Perca fluviatilis L.) over twenty- two years with special reference to the effects of temperature and changes in population density. J Anim Ecol 27(2):287–334. doi:10.2307/2242

    Article  Google Scholar 

  • Le Cren ED (1992) Exceptionally big individual perch (Perca fluviatilis L.) and their growth. J Fish Biol 40:599–625, doi:0022-1 1 12/92/040599+27

    Article  Google Scholar 

  • Lehtonen H (1987) Selection of minimum size limit for pike-perch (Stizostedion lucioperca) in coastal waters of Finland. Proc V Congr Eur Ichthyol Stockh 1985:351–355

    Google Scholar 

  • Lehtonen H, Hansson S, Winkler H (1996) Biology and exploitation of pikeperch, Stizostedion lucioperca (L), in the Baltic Sea area. Ann Zool Fenn 33(3–4):525–535

    Google Scholar 

  • Lepak JM, Hooten MB, Johnson BM (2012) The influence of external subsidies on diet, growth and concentrations of freshwater sport fish: implications for management and fish consumption advisories. Ecol Toxicol 21:1878–1888. doi:10.1007/s10646-012-0921-4

    CAS  Google Scholar 

  • Lester NP, Shuter BJ, Abrams PA (2004) Interpreting the von Bertalanffy model of somatic growth in fishes: the cost of reproduction. Proc R Soc B-Biol Sci 271:1625–1631. doi:10.1098/rspb.2004.2778

    Article  CAS  Google Scholar 

  • Lester NP, Shuter BJ, Venturelli PA, Nadeau D (2014) Life history plasticity and sustainable exploitation: a theory of growth compensation applied to walleye management. Ecol Appl 24:38–54

    Article  Google Scholar 

  • Linlokken A, Seeland PAH (1996) Growth and production of perch (Perca fluviatilis L.) responding to biomass removal. Ann Zool Fenn 33:427–435

    Google Scholar 

  • Lipinski MR, Roeleveld MA (1990) Minor extension of the von Bertalanffy growth theory. Fish Res 9:367–371. doi:10.1016/0165-7836(90)90054-y

    Article  Google Scholar 

  • Lorenzoni M, Pace R, Pedicillo G, Viali P, Carosi A (2009) Growth, catches and reproductive biology of ruffe Gymnocephalus cernuus in Lake Piediluco (Umbria, Italy). Folia Zool 58(4):420–435

    Google Scholar 

  • Magnhagen C, Borcherding J (2008) Risk-taking behaviour in foraging perch: does predation pressure influence age-specific boldness? Anim Behav 75:509–517. doi:10.1016/j.anbehav.2007.06.007

    Article  Google Scholar 

  • Magnhagen C, Hellstrom G, Borcherding J, Heynen M (2012) Boldness in two perch populations – long-term differences and the effect of predation pressure. J Anim Ecol 81(6):1311–1318. doi:10.1111/j.1365-2656.2012.02007.x

    Article  Google Scholar 

  • Malison JA, Best CD, Kayes TB, Amundson CH (1985) Hormonal growth promotion and evidence for a size-related difference in response to estradiol -17 beta in yellow perch (Perca flavescens). Can J Fish Aquat Sci 42:1627–1633

    Article  CAS  Google Scholar 

  • Malison JA, Kayes TB, Wentworth BC, Amundson CH (1988) Growth and feeding responses of male versus female yellow perch (Perca flavescens) treated with Estradiol-17B. Can J Fish Aquat Sci 45:1942–1948

    Article  CAS  Google Scholar 

  • Mandiki SNM, Houbart M, Babiak I, Vandeloise E, Gardeur JN, Kestemont P (2004) Are sex steroids involved in the sexual growth dimorphism in Eurasian perch juveniles? Physiol Behav 80:603–609. doi:10.1016/j.physbeh.2003.10.016

    Article  CAS  Google Scholar 

  • Mandiki SNM, Babiak I, Bopopi JM, Leprieur F, Kestemont P (2005) Effects of sex steroids and their inhibitors on endocrine parameters and gender growth differences in Eurasian perch (Perca fluviatilis) juveniles. Steroids 70:85–94. doi:10.1016/j.steroids.2004.10.009

    Article  CAS  Google Scholar 

  • Marshall TR (1977) Morphological, physiological, and ethological differences between walleye (Stizostedion vitreum vitreum) and pikeperch (S. lucioperca). J Fish Res Board Can 34:1515–1523

    Article  Google Scholar 

  • Marcogliese DJ, Dumont P, Gendron AD, Mailhot Y, Bergeron E, McLaughlin JD (2001) Spatial and temporal variation in abundance of Diplostomum spp. in walleye (Stizostedion vitreum) and white suckers (Catostomus commersoni) from the St. Lawrence River. Can J Zool 79(3):355–369. doi:10.1139/z00-209

    Article  Google Scholar 

  • Marcogliese DJ, Gagnon Brambilla L, Gagné F, Genron AD (2005) Joint effects of parasitism and pollution on oxidative stress biomarkers in yellow perch Perca flavescens. Dis Aquat Org 63:77–85

    Article  CAS  Google Scholar 

  • Marcogliese DJ, Dautremeputis C, Gendron AD, Fournier M (2010) Interactions between parasites and pollutants in yellow perch (Perca flavescens) in the St. Lawrence River, Canada: implications for resistance and tolerance to parasites. Can J Fish Aquat Sci 88:247–258.

    Google Scholar 

  • Matsumura S, Arlinghaus R, Dieckmann U (2011) Assessing evolutionary consequences of size-selective recreational fishing on multiple life-history traits, with an application to northern pike (Esox lucius). Evol Ecol 25:711–735. doi:10.1007/s10682-010-9444-8

    Article  Google Scholar 

  • McKenney DW, Pedlar JH, Papadopol P, Hutchinson MF (2006) The development of 1901–2000 historical monthly climate models for Canada and the United States. Agr Forest Meteorol 138:69–81. doi:10.1016/j.agrformet.2006.03.012

    Article  Google Scholar 

  • Mills EL, Pol MV, Sherman RE, Culver TB (1989) Interrelationships between prey body size and growth of age-0 yellow perch. Trans Am Fish Soc 118(1):1–10. doi:10.1577/1548-8659(1989)118<0001:ibpbsa>2.3.co;2

    Article  Google Scholar 

  • Moles MD, Johnston TA, Robinson BW, Leggett WC, Casselman JM (2008) Is gonadal investment in walleye (Sander vitreus) dependent on body lipid reserves? A multipopulation comparative analysis. Can J Fish Aquat Sci 65(4):600–614. doi:10.1139/f07-186

  • Moles MD, Robinson BW, Johnston TA, Cunjak RA, Jardine TD, Casselman JM, Leggett WC (2010) Morphological and trophic differentiation of growth morphotypes of walleye (Sander vitreus) from Lake Winnipeg, Canada. Can J Zool 88:950–960. doi:10.1139/Z10-062

    Article  CAS  Google Scholar 

  • Moles MD, Johnston TA, Robinson BW, Bernard AM, Wilson CC, Wiegand MD, Leggett WC (2011) Reproductive divergence between growth forms of Lake Winnipeg walleye (Sander vitreus). Ecol Freshw Fish 20:52–66. doi:10.1111/j.1600-0633.2010.00457.x

    Article  Google Scholar 

  • Moodie GEE, Loadman NL, Wiegand MD, Mathias JA (1989) Influence of egg characteristics on survival, growth and feeding in larval walleye (Stizostedion vitreum). Can J Fish Aquat Sci 46:516–521

    Article  Google Scholar 

  • Mooij WM (1996) Variation in abundance and survival of fish larvae in shallow eutrophic Lake Tjeukemeer. Environ Biol Fish 46:265–279

    Article  Google Scholar 

  • Mooij WM, Lammens E, Vandensen WLT (1994) Growth-rate of 0+ fish in relation of temperature, body-size, and food in shallow eutrophic Lake Tjeukemeer. Can J Fish Aquat Sci 51(3):516–526. doi:10.1139/f94-054

    Article  Google Scholar 

  • Muth K, Wolfert D (1986) Changes in growth and maturity of walleyes associated with stock rehabilitation in Western Lake Erie, 1964–1983. N Am J Fish Manag 6(2):168–175

    Article  Google Scholar 

  • Neuhaus E (1934) Studien uber das Stettiner Haffund seine Nebengewasser. III. Untersuchungen uber den Zander. Z Fisch 32:599–634 (in German)

    Google Scholar 

  • Neuheimer AB, Taggart CT (2007) The growing degree-day and fish size-at-age: the overlooked metric. Can J Fish Aquat Sci 64(2):375–385. doi:10.1139/f07-003

    Article  Google Scholar 

  • Nielsen LA (1980) Effect on walleye (Stizostedion vitreum vitreum) predation on juvenile mortality and recruitment of yellow perch (Perca flavescens) in Oneida Lake, New York. Can J Fish Aquat Sci 37:11–19

    Article  Google Scholar 

  • Nikolskii GV (1969) Theory of fish population dynamics as the biological background for rational exploitation and management of fishery resources. Oliver and Boyd, Edinburg

    Google Scholar 

  • NOAA (National Oceanic and Atmospheric Administration) (2013) NOAA National Climatic Data Center. 2011. U.S. Climate Normals 1971–2000. Available http://cdo.ncdc.noaa.gov/cgi-bin/climatenormals/climatenormals.pl. Jun 2013

  • O’Gorman R, Burnett J (2001) Fish community dynamics in northeastern Lake Ontario with emphasis on the growth and reproductive success of yellow perch (Perca flavescens) and white perch (Morone americana), 1978 to 1997. J Great Lakes Res 27(3):367–383

    Article  Google Scholar 

  • Ogle DH (1998) A synopsis of the biology and life history of ruffe. J Great Lakes Res 24(2):170–185

    Article  Google Scholar 

  • Ohlberger J, Langangen O, Edeline E, Claessen D, Winfield IJ, Stenseth NC, Vollestad LA (2011) Stage-specific biomass overcompensation by juveniles in response to increased adult mortality in a wild fish population. Ecology 92(12):2175–2182

    Article  Google Scholar 

  • Olin M, Jutila J, Lehtonen H, Vinni M, Ruuhijarvi J, Estlander S, Rask M, Kuparinen A, Lappalainen J (2012) Importance of maternal size on the reproductive success of perch, Perca fluviatilis, in small forest lakes: implications for fisheries management. Fish Manag Ecol 19(5):363–374. doi:10.1111/j.1365-2400.2012.00845.x

    Article  Google Scholar 

  • Olsson J, Svanback R, Eklov P (2007) Effects of resource level and habitat type on behavioral and morphological plasticity in Eurasian perch. Oecologia 152(1):48–56. doi:10.1007/s00442-006-0588-8

    Article  Google Scholar 

  • Ostazeski J, Spangler G (2001) Use of biochronology to examine interactions of freshwater drum, walleye and yellow perch in the Red Lakes of Minnesota. Environ Biol Fish 61:381–393

    Article  Google Scholar 

  • Paloheimo JE, Dickie LM (1966) Food and growth of fishes. III. Relations among food, body size and growth efficiency. J Fish Res Board Can 23(8):1209–1248

    Article  Google Scholar 

  • Parker GA (1992) The evolution of sexual size dimorphism in fish. J Fish Biol 41:1–20. doi:10.1111/j.1095-8649.1992.tb03864.x

    Article  Google Scholar 

  • Paxton CGM, Willoughby LG (2000) Resistance of perch eggs to attack by aquatic fungi. J Fish Biol 57(3):562–570. doi:10.1006/jfbi.2000.1332

    Article  Google Scholar 

  • Peacor SD (2002) Positive effect of predators on prey growth rate through induced modifications of prey behaviour. Ecol Lett 5(1):77–85

    Article  Google Scholar 

  • Pérez-Bote JL, Roso R (2012) Growth and length-weight relationships of Sander lucioperca (Linnaeus, 1758) in the Alcántara Reservoir, Wouth-Western Spain: comparison with other water bodies in Eurasia. J Appl Ichthyol 28:264–268. doi:10.1111/j.1439-0426.2011.01918.x

    Article  Google Scholar 

  • Persson L, Eklov P (1995) Prey refuges affecting interactions between piscivorous perch and juvenile perch and roach. Ecology 76(1):70–81

    Article  Google Scholar 

  • Persson L, Bystrom P, Wahlstrom E (2000) Cannibalism and competition in Eurasian perch: population dynamics of an ontogenetic omnivore. Ecology 81(4):1058–1071

    Article  Google Scholar 

  • Pierce R, Tomcko C, Negus M (2006) Interactions between stocked walleyes and native yellow perch in Lake Thirteen, Minnesota: a case history of percid community dynamics. N Am J Fish Manag 26:97–107. doi:10.1577/M05-034.1

    Article  Google Scholar 

  • Pitt CE, Grundmann AW (1957) A Study into the effects of parasitism on the growth of the yellow perch produced by the larvae of Ligula intestinalis (Linnaeus, 1758) Gmelin 1790. Proc Helm Soc Wash 24(2):3–10

    Google Scholar 

  • Ponsard S, Averbuch P (1999) Should growing and adult animals fed on the same diet show different delta N-15 values? Rapid Commun Mass Spectrom 13(13):1305–1310. doi:10.1002/(sici)1097-0231(19990715)13:13<1305::aid-rcm654>3.3.co;2-4

    Article  CAS  Google Scholar 

  • Post JR, Evans DO (1989) Experimental evidence of size-dependent predation mortality in juvenile yellow perch. Can J Zool 67:521–523

    Article  Google Scholar 

  • Post JR, Johannes MRS, McQueen DJ (1997) Evidence of density-dependent cohort splitting in age-0 yellow perch (Perca flavescens): potential behavioural mechanisms and population-level consequences. Can J Fish Aquat Sci 54(4):867–875. doi:10.1139/cjfas-54-4-867

  • Power M, McKinley RS (1997) Latitudinal variation in lake sturgeon size as related to the thermal opportunity for growth. Trans Am Fish Soc 126(4):549–558

    Article  Google Scholar 

  • Power M, van den Heuvel MR (1999) Age-0 yellow perch growth and its relationship to temperature. Trans Am Fish Soc 128(4):687–700. doi:10.1577/1548-8659(1999)128<0687:aypgai>2.0.co;2

  • Purchase CF, Collins NC, Morgan GE, Shuter BJ (2005a) Sex-specific covariation among life-history traits of yellow perch (Perca flavescens). Evol Ecol Res 7(4):549–566

    Google Scholar 

  • Purchase CF, Collins NC, Morgan GE, Shuter BJ (2005b) Predicting life history traits of yellow perch from environmental characteristics of lakes. Trans Am Fish Soc 134:1369–1381

    Article  Google Scholar 

  • Purchase CF, Hutchings JA, Morgan GE (2006) The biological and statistical significance of life-history invariants in walleye (Sander vitreus). Evol Ecol Res 8:295–308

    Google Scholar 

  • Quince C, Abrams PA, Shuter BJ, Lester NP (2008a) Biphasic growth in fish I: theoretical foundations. J Theor Biol 254(2):197–206. doi:10.1016/j.jtbi.2008.05.029

    Article  Google Scholar 

  • Quince C, Shuter BJ, Abrams PA, Lester NP (2008b) Biphasic growth in fish II: empirical assessment. J Theor Biol 254(2):207–214. doi:10.1016/j.jtbi.2008.05.030

    Article  Google Scholar 

  • Quinn G, Keough M (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Quist MC, Guy CS, Schultz RD, Stephen JL (2003) Latitudinal comparisons of walleye growth in North America and factors influencing growth of walleyes in Kansas reservoirs. N Am J Fish Manag 23(3):677–692. doi:10.1577/m02-050

    Article  Google Scholar 

  • Rask M (1983) Differences in growth of perch (Perca fluviatilis L.) in 2 small Forest Lakes. Hydrobiologia 101:139–144. doi:10.1007/bf00008666

    Article  Google Scholar 

  • Rasmussen JB, Gunn JM, Sherwood GD, Iles A, Gagnon A, Campbell PGC, Hontela A (2008) Direct and indirect (foodweb mediated) effects of metal exposure on the growth of yellow perch (Perca flavescens): implications for ecological risk assessment. Hum Ecol Risk Assess 14(2):317–350. doi:10.1080/10807030801935017

    Article  CAS  Google Scholar 

  • Reid D, Momot W (1985) Evaluation of pulse fishing for the walleye, Stizostedion vitveum vitveum, in Henderson Lake, Ontario. J Fish Biol 27:235–251, doi:0022-1 112/85/27A235

    Article  Google Scholar 

  • Rennie MD, Collins NC, Shuter BJ, Rajotte JW, Couture P (2005) A comparison of methods for estimating activity costs of wild fish populations: more active fish observed to grow slower. Can J Fish Aquat Sci 62(4):767–780. doi:10.1139/f05-052

    Article  Google Scholar 

  • Rennie MD, Purchase CF, Lester N, Collins NC, Shuter BJ, Abrams PA (2008) Lazy males? Bioenergetic differences in energy acquisition and metabolism help to explain sexual size dimorphism in percids. J Anim Ecol 77:916–926. doi:10.1111/j.1365-2656.2008.01412.x

    Article  Google Scholar 

  • Rennie MD, Purchase CF, Shuter BJ, Collins NC, Abrams PA, Morgan GE (2010) Prey life-history and bioenergetic responses across a predation gradient. J Fish Biol 77:1230–1251. doi:10.1111/j.1095-8649.2010.02735.x

    Article  CAS  Google Scholar 

  • Reznick DA, Bryga H, Endler JA (1990) Experimentally induced life-history evolution in a natural-population. Nature 346(6282):357–359. doi:10.1038/346357a0

    Article  Google Scholar 

  • Ricker WE (1975) Computation and interpretation of biological statistics of fish populations, vol 191, Bulletin of the Fisheries Research Board of Canada. Department of the Environment, Fisheries and Marine Service, Ottawa

    Google Scholar 

  • Roff DA (1980) A motion for the retirement of the von Bertalanffy function. Can J Fish Aquat Sci 37:127–129

    Article  Google Scholar 

  • Roff DA (1983) An allocation model of growth and reproduction in fish. Can J Fish Aquat Sci 40:1395–1404

    Article  Google Scholar 

  • Romare P (2000) Growth of larval and juvenile perch: the importance of diet and fish density. J Fish Biol 56(4):876–889. doi:10.1006/jfbi.1999.1208

  • Rose K, Rutherford E, MCDermot D, Forney J, Mills E (1999) Individual-based model of yellow perch and walleye populations in Oneida Lake. Ecol Monogr 69(2):127–154

    Article  Google Scholar 

  • Rose KA, Cowan JH, Winemiller KO, Myers RA, Hilborn R (2001) Compensatory density dependence in fish populations: importance, controversy, understanding and prognosis. Fish Fish 2(4):293–327

    Article  Google Scholar 

  • Ruckstuhl KE (2007) Sexual segregation in vertebrates: proximate and ultimate causes. Integr Comp Biol 47(2):245–257. doi:10.1093/icb/icm030

    Article  CAS  Google Scholar 

  • Rudstam LG, Magnuson JJ, Tonn WM (1984) Size selectivity of passive fishing gear – a correction for encounter probability applied to gill nets. Can J Fish Aquat Sci 41(8):1252–1255

    Article  Google Scholar 

  • Ryman JE, Van Walleghem JLA, Blanchfield PJ (2008) Methylmercury levels in a parasite (Apophallus brevis metacercariae) and its host, yellow perch (Perca flavescens). Aquat Ecol 42(3):495–501. doi:10.1007/s10452-007-9104-4

    Article  CAS  Google Scholar 

  • Rypel AL (2012a) Meta-analysis of growth rates for a circumpolar fish, the northern pike (Esox lucius), with emphasis on effects of continent, climate and latitude. Ecol Freshw Fish 21(4):521–532. doi:10.1111/j.1600-0633.2012.00570.x

    Article  Google Scholar 

  • Rypel AL (2012b) Concordant estimates of countergradient growth variation in striped bass (Morone saxatilis) using comparative life-history data. Can J Fish Aquat Sci 69:1261–1265. doi:10.1139/F2012-069

    Article  Google Scholar 

  • Sass GG, Hewett SW, Berd TD Jr, Fayram AH, Kitchell JF (2004) The role of density dependence in growth patterns of ceded territory walleye populations of northern Wisconsin: effects of changing management regimes. N Am J Fish Manag 24(4):1262–1278

    Article  Google Scholar 

  • Schneider JC (2004) Yellow perch maturity and fecundity as a function of age and growth. (Fisheries research report: 1915). University of Michigan Library, Ann Arbor, Available at http://name.umdl.umich.edu/AAG2862.1915.001

    Google Scholar 

  • Schoenebeck C, Brown ML (2012) Does anaerobic activity differ seasonally or between sexes in yellow perch populations? Trans Am Fish Soc 141(1):199–203. doi:10.1080/00028487.2012.655119

    Article  CAS  Google Scholar 

  • Schueller AM, Hansen MJ, Newman SP, Edwards CJ (2005) Density dependence of walleye maturity and fecundity in Big Crooked Lake, Wisconsin, 1997–2003. N Am J Fish Manag 25(3):841–847. doi:10.1577/m04-090.1

    Article  Google Scholar 

  • Seppanen E, Kuukka H, Huuskonen H, Piironen J (2008) Relationship between standard metabolic rate and parasite-induced cataract of juveniles in three Atlantic salmon stocks. J Fish Biol 72(7):1659–1674. doi:10.1111/j.1095-8649.2008.01832.x

    Article  Google Scholar 

  • Sherwood GD, Rasmussen JB, Rowan DJ, Brodeur J, Hontela A (2000) Bioenergetic costs of heavy metal exposure in yellow perch (Perca flavescens): in situ estimates with a radiotracer (Cs- 137) technique. Can J Fish Aquat Sci 57(2):441–450

    Article  CAS  Google Scholar 

  • Sherwood GD, Pazzia I, Moeser A, Hontela A, Rasmussen JB (2002) Shifting gears: enzymatic evidence for the energetic advantage of switching diet in wild-living fish. Can J Fish Aquat Sci 59(2):229–241

    Article  Google Scholar 

  • Shoup DE, Nannini MA, Wahl DH (2012) The effect of vegetation density on juvenile bluegill diet and growth. J Freshwat Ecol 27(2):199–209. doi:10.1080/02705060.2011.641357

    Article  Google Scholar 

  • Shuter B, Koonce J (1977) A dynamic model of the western Lake Erie walleye (Stizostedion vitreum vitreum) population. J Fish Res Board Can 34:1972–1982

    Article  Google Scholar 

  • Shuter BJ, Lester NP, LaRose JJ, Purchase CF, Vascotto K, Morgan G, Collins NC, Abrams PA (2005) Optimal life histories and food web position: linkages among somatic growth, reproductive investment, and mortality. Can J Fish Aquat Sci 62(4):738–746. doi:10.1139/f05-070

    Article  Google Scholar 

  • Sloss BL, Billington N, Burr BM (2004) A molecular phylogeny of the Percidae (Teleostei, Perciformes) based on mitochondrial DNA sequence. Mol Phylogenet Evol 32:545–562. doi:10.1016/j.ympev.2004.01.011

    Article  CAS  Google Scholar 

  • Spangler G, Payne N, Winterton G (1977) Percids in the Canadian waters of Lake Huron. J Fish Res Board Can 34:1839–1848

    Article  Google Scholar 

  • Stacy WL, Lepak JM (2012) Relative influence of prey mercury concentration, prey energy density and predator sex on sport fish mercury concentrations. Sci Total Environ 2012(437):104–109. doi:10.1016/j.scitotenv.2012.07.064

    Article  CAS  Google Scholar 

  • Svanback R, Eklov P (2004) Morphology in perch affects habitat specific feeding efficiency. Funct Ecol 18(4):503–510

    Article  Google Scholar 

  • Svanback R, Persson L (2009) Population density fluctuations change the selection gradient in Eurasian perch. Am Nat 173(4):507–516. doi:10.1086/597223

    Article  Google Scholar 

  • Szalai AJ, Dick TA (1991) Role of predation and parasitism in growth and mortality of yellow perch in Dauphin Lake, Manitoba. Trans Am Fish Soc 120(6):739–751. doi:10.1577/1548-8659(1991)120<0739:ropapi>2.3.co;2

    Article  Google Scholar 

  • Tardif D, Glémet H, Brodeur P, Mingelbier M (2005) RNA/DNA ratio and total length of yellow perch (Perca flavescens) in managed and natural wetlands of a large fluvial lake. Can J Fish Aquat Sci 62(10):2211–2218

    Article  CAS  Google Scholar 

  • Thorpe J (1977) Synopsis of biological data on the perch Perca fluviatilis Linnaeus, 1758 and Perca flavescens Mitchill, 1814, vol 113, FOA fisheries synopsis. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Tolonen A, Lappalainen J, Pulliainen E (2003) Seasonal growth and year class strength variations of perch near the northern limits of its distribution range. J Fish Biol 63:176–186. doi:10.1046/j.1095-8649.2003.00141.x

  • Urban MC (2007) The growth-predation risk trade-off under a growing gape-limited predation threat. Ecology 88(10):2587–2597

    Article  Google Scholar 

  • Vainikka A, Jokelainen T, Kortet R, Ylonen H (2005) Predation risk allocation or direct vigilance response in the predator interaction between perch (Perca fluviatilis L.) and pike (Esox lucius L.)? Ecol Freshw Fish 14(3):225–232. doi:10.1111/j.1600-0633.2005.00095.x

    Article  Google Scholar 

  • van Densen WLT, Ligtvoet W, Roozen RWM (1996) Intra-cohort variation in the individual size of juvenile pikeperch, Stizostedion lucioperca, and perch, Perca fluvatilis, in relation to the size spectrum of their food items. Ann Zool Fenn 33:405–506

    Google Scholar 

  • Venturelli PA, Lester NP, Marshall TR, Shuter BJ (2010) Consistent patterns of maturity and density-dependent growth among populations of walleye (Sander vitreus): application of the growing degree-day metric. Can J Fish Aquat Sci 67:1057–1067. doi:10.1139/f10-041

    Article  Google Scholar 

  • Vinni M, Lappalainen J, Malinen T, Lehtonen H (2009) Stunted growth of pikeperch Sander lucioperca in Lake Sahajarvi, Finland. J Fish Biol 74(4):967–972. doi:10.1111/j.1095-8649.2009.02181.x

    Article  CAS  Google Scholar 

  • von Bertalanffy L (1934) Untersuchungen fiber die Gesetzlichkeit des Wachstums. I. Allgemeine Grundlagen der Theorie mathematische und physiologische Gesetzlichkeiten des Wachstums bei Wassertieren. Roux Arch Entwicklungsmech 131:613–652

    Article  Google Scholar 

  • von Bertalanffy L (1938) A quantitative theory of organic growth (inquiries on growth laws. II). Human Biol 10:181–213

    Google Scholar 

  • Voutilainen A, Taskinen J, Huuskonen H (2012) Does Diplostomum spp. infection stimulate growth in juvenile Artic charr? Bull Eur Assoc Fish Pathol 32(4):118–126

    Google Scholar 

  • Walker S, Addison P, Sandstrom S, Lester N (2013) Contact retention selectivity of three types of gillnet gangs. Ontario Ministry of Natural Resources. Report, 32 p.

    Google Scholar 

  • Weatherley AH (1966) Ecology of fish growth. Nature 212(5068):1321–1324

    Article  Google Scholar 

  • Wellington CG, Mayer CM, Bossenbroek JM, Stroh NA (2010) Effects of turbidity and prey density on the foraging success of age 0 year yellow perch Perca flavescens. J Fish Biol 76(7):1729–1741. doi:10.1111/j.1095-8649.2010.02612.x

    Article  CAS  Google Scholar 

  • Zhao Y, Shuter BJ, Jackson DA (2008) Life history variation parallels phylogeographical patterns in North American walleye (Sander vitreus) populations. Can J Fish Aquat Sci 65:198–211. doi:10.1139/F07-162

    Article  Google Scholar 

Download references

Acknowledgements

Fernanda Cabrini Araujo for assistance with searching, compiling, and formatting. We acknowledge the E-OBS dataset from the EU-FP6 project ENSEMBLES (http://ensembles-eu.metoffice.com), the data providers in the ECA&D project (http://www.ecad.eu), and Dan Holloway for help with navigating OPeNDAP (http://www.opendap.org/). This manuscript was improved by the editorial assistance of two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Rennie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rennie, M.D., Venturelli, P.A. (2015). The Ecology of Lifetime Growth in Percid Fishes. In: Kestemont, P., Dabrowski, K., Summerfelt, R. (eds) Biology and Culture of Percid Fishes. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7227-3_19

Download citation

Publish with us

Policies and ethics