Potential Use of Licorice in Phytoremediation of Salt Affected Soils

Abstract

The salinisation of lands has become a major environmental issue and has been recognized as the most important economic, social and environmental problem in many regions of the world. Salt and drought tolerant halophytes may help to restore abandoned saline lands for sustainable use for crop production. Licorice has been considered as salt tolerant plant which could be used for remediation of abandoned salt affected soils. Phytoremediation of saline soils with nitrogen-fixing leguminous licorice can improve the soil nitrogen content, increase the soil organic matter, stimulate soil biological activity and improve soil water-holding capacity. This paper focuses on the potential use of licorice for the phytoremediation of salt affected soils.

Keywords

Phytoremediation Salinity Licorice Salt tolerance Nutrients 

References

  1. Abe J, Araki H, An P, Shimizu H, Li J, Guo Y, Inanaga S (2005) Combating desertification and rehabilitating degraded arid lands in Alashan, Inner Mongolia, China. Root Res 14(2):51–58 (in Japanese)CrossRefGoogle Scholar
  2. Adesemoye AO, Egamberdieva D (2013) Beneficial effects of plant growth promoting rhizobacteria on improved crop production: the prospects for developing economies. In: Maheshwari DK et al (eds) Bacteria in agrobiology: crop productivity. Springer, Berlin/HeidelbergGoogle Scholar
  3. Akhter J, Murray R, Mahmood K, Malik KA, Ahmed S (2004) Improvement of degraded physical properties of a saline-sodic soil by reclamation with kallar grass (Leptochloa fusca). Plant Soil 258:207–216CrossRefGoogle Scholar
  4. Anon (2005) Glycyrrhiza glabra. Altern Med Rev 10:230–237Google Scholar
  5. Ashraf M, McNeilly T (2004) Salinity tolerance in Brassica oilseeds. Crit Rev Plant Sci 23(2):157–174CrossRefGoogle Scholar
  6. Badalov MA (1996) Multiplication of liquorice naked and its cultivation. Fan Publisher, TashkentGoogle Scholar
  7. Beddington J, Asaduzzaman M, Fernandez A, Clark M, Guillou M, Jahn M, Erda L, Mamo T, Van Bo N, Nobre CA, Scholes R, Sharma R, Wakhungu J (2011) Achieving food security in the face of climate change: summary for policy makers from the Commission on Sustainable Agriculture and Climate Change. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). Copenhagen, Denmark. Available online at: www.ccafs.cgiar.org/commission
  8. Ben Asher J, Beltrao J, Aksoy U, Anac D, Anac S (2012) Controlling and simulating the use of salt removing species. Int J Energy Environ 6(3):360–370Google Scholar
  9. Breckle SW (2002) Salinity, halophytes and salt affected natural ecosystems. In: Läuchli A, Lüttge U (eds) Salinity: environment-plants-molecules. Kluwer, Dordrecht, pp 53–77Google Scholar
  10. Chaudhry MS, Batool Z, Khan AG (2005) Preliminary assessment of plant community structure and arbuscular mycorrhizas in rangeland habitats of Cholistan Desert, Pakistan. Mycorrhiza 15(8):606–611CrossRefPubMedGoogle Scholar
  11. Cuartero J, Pulido JM, Gómez-Guillaumón ML, Alvarez M (2002) Salt removal potential of barley, alfalfa, Atriplex patula and A. prostate. Acta Horicult 573:387–396CrossRefGoogle Scholar
  12. Davranova N, Egamberdieva D, Ismatov Z, Wirth S (2013) Impact of crop management practice on soil microbial populations in a semi arid soil of Uzbekistan. Soil Water J 2(2):921–927Google Scholar
  13. Egamberdieva D (2009) Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Physiol Plant 31:861–864CrossRefGoogle Scholar
  14. Egamberdieva D (2011) Survival of Pseudomonas extremorientalis TSAU20 and P. chlororaphis TSAU13 in the rhizosphere of common bean (Phaseolus vulgaris) under saline conditions. Plant Soil Environ 57(3):122–127Google Scholar
  15. Egamberdieva D (2012) Pseudomonas chlororaphis: a salt-tolerant bacterial inoculant for plant growth stimulation under saline soil conditions. Acta Physiol Plant 34:751–756CrossRefGoogle Scholar
  16. Egamberdieva D, Lugtenberg B (2014) PGPR to alleviate salinity stress on plant growth. In: Miransari M (ed) Use of microbes for the alleviation of soil stresses, vol 1. Springer, New York, pp 73–96CrossRefGoogle Scholar
  17. Egamberdieva D, Renella G, Wirth S, Islam R (2010) Secondary salinity effects on soil microbial biomass. Biol Fertil Soils 46(5):445–449CrossRefGoogle Scholar
  18. Egamberdieva D, Berg G, Lindström K, Räsänen LA (2013) Alleviation of salt stress of symbiotic Galegaofficinalis L. (Goats Rue) by co-inoculation of rhizobium with root colonizing Pseudomonas. Plant Soil 369(1):453–465CrossRefGoogle Scholar
  19. Egamberdiyeva D, Gafurova L, Islam KR (2007) Salinity effects on irrigated soil chemical and biological properties in the Syr Darya basin of Uzbekistan. In: Lal R, Sulaimanov M, Stewart B, Hansen D, Doraiswamy P (eds) Climate change and terrestrial C sequestration in Central Asia. Taylor-Francis, New York, pp 147–162CrossRefGoogle Scholar
  20. Fiore C, Eisenhut M, Ragazzi E, Zanchin G, Armanini D (2005) A history of the therapeutic use of liquorice in Europe. J Ethnopharmacol 99:317–324CrossRefPubMedGoogle Scholar
  21. Garcia C, Hernandez T (1996) Influence of salinity on the biological and biochemical activity of a calciorthird soil. Plant Soil 178:255–263CrossRefGoogle Scholar
  22. Ghaly FM (2002) Role of natural vegetation in improving salt affected soil in northern Egypt. Soil Tillage Res 64:173–178CrossRefGoogle Scholar
  23. Glick BR (2003) Phytoremediation: synergistic use of plant and bacteria to clean up the environment. Biotechnol Adv 21(5):383–393CrossRefPubMedGoogle Scholar
  24. Greenberg BM, Huang XD, Gurska J, Gerhardt KE, Lampi MA, Khalid MA, Isherwood D, Chang P, Wang W, Wang H, Dixon DG, Glick BR (2006) Development and successful field tests of a multi-process phytoremediation system for decontamination of persistent petroleum and organic contaminants in soils. In: Tisch B, Zimmerman K, White P, Beckett P, Guenther L, Macleod A, Rowsome S, Black C (eds) Reclamation and remediation: policy and practice. Canadian Land Reclamation Association, Calgary, pp 124–133Google Scholar
  25. Hakeem KR, Khan F, Chandna R, Siddiqui TO, Iqbal M (2012) Genotypic variability among soybean genotypes under NaCl stress and proteome analysis of salt tolerant genotype. Appl Biochem Biotechnol 168:2309–2329CrossRefPubMedGoogle Scholar
  26. Hakeem KR, Sabir M, Ozturk M, Mermut A (2015) Soil remediation and plants: prospects and challenges. Academic Press, Elsevier, New York, p 724Google Scholar
  27. Hameed A, Egamberdieva D, Abd-Allah EF, Hashem A, Kumar A, Ahmad P (2014) Salinity stress and arbuscular mycorrhizal symbiosis in plants. In: Miransari M (ed) Use of microbes for the alleviation of soil stresses, vol 1. Springer, New York, pp 139–159CrossRefGoogle Scholar
  28. Hamidov A, Khaydarova N, Khamidov M, Neves MA, Beltrao J (2007) Apocynum Lancifolium and Chenopodium Album- potential species to remediate saline soils. WSEAS Trans Environ Dev 7(3):123–128Google Scholar
  29. Hayashi H, Hattori S, Inoue K, Khodzhimatov O, Ashurmetov O, Ito M, Honda G (2003) Field survey of Glycyrrhiza plants in Central Asia: chemical characterization of G. glabra collected in Uzbekistan. Chem Pharm Bull 51(11):1338–1340CrossRefPubMedGoogle Scholar
  30. Heidari M, Jamshid P (2010) Interaction between salinity and potassium on grain yield, carbohydrate content and nutrient uptake in pearl millet. J Agric Biol Sci 5:39–46Google Scholar
  31. Ilyas M, Miller RW, Qureshi RH (1993) Hydraulic conductivity of saline-sodic soil after gypsum application and cropping. Soil Sci Soc Am J 57:1580–1585CrossRefGoogle Scholar
  32. Jabborova D, Egamberdieva D, Räsänen L, Liao H (2013) Salt tolerant Pseudomanas strain improved growth, nodulation and nutrient uptake of soybean grown under hydroponic salt stress condition. In: XVII International plant nutrition colloquium and boron satellite meeting proceedings book. Sabanci University, Istanbul, pp 260–261Google Scholar
  33. Jamil M, Lee DB, Jung KY, Ashraf M, Lee SC, Rhal ES (2006) Effect of salt (NaCl) stress on germination and early seedling growth of four vegetables species. J Cent Eur Agric 7:273–282Google Scholar
  34. Kaur B, Gupta SR, Singh G (2002) Bioamelioration of a sodic soil by silvopastoral systems in northwestern. India Agrofor Syst 54:13–20CrossRefGoogle Scholar
  35. Kerbabaev BB (1971) Protection of liquorice naked production resources. In: Proceeding book of conference on protection of flora of Central Asian Republics and Kazakhstan. Fan publisher, Tashkent, pp 252–256Google Scholar
  36. Khodarahmpour Z, Ifar M, Motamedi M (2012) Effects of NaCl salinity on maize (Zea mays L.) at germination and early seedling stage. Afr J Biotechnol 11:298–304Google Scholar
  37. Kushiev H, Noble AD, Abdullaev I, Toshbekov V (2005) Remediation of abandoned saline soils using Glycyrrhiza glabra: a study for the Hungry Steppes of Central Asia. Int J Agric Sustain 3:102–113CrossRefGoogle Scholar
  38. Li L, Sinkko H, Montonen L, Wei G, Lindstrom K, Rasanen L (2012) Biogeography of symbiotic and other endophytic bacteria isolated from medicinal Glycyrrhiza species in China. FEMS Microbiol Ecol 79:46–68CrossRefPubMedGoogle Scholar
  39. Lu JH, Lu X, Liang YC, Lin HL (2013) Salt tolerance of Glycyrrhiza inflata seedlings in Xinjiang and its ion response to salt stress. Chin J Plant Ecol 37(9):839–850CrossRefGoogle Scholar
  40. Lugtenberg B, Kamilova F (2009) Plant-growth-promoting-rhizobacteria. Annu Rev Microbiol 63:541–556CrossRefPubMedGoogle Scholar
  41. Malcolm CV, Clarke AJ, D’Antuono MF, Swaan TC (1988) Effects of plant spacing and soil conditions on the growth of five Atriplex species. Agric Ecosyst Environ 21:265–279CrossRefGoogle Scholar
  42. Manousaki E, Kalogerakis N (2011) Halophytes – a new trend in phytoremediation. Int J Phytorem 13:959–969CrossRefGoogle Scholar
  43. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681CrossRefPubMedGoogle Scholar
  44. Nellemann C, MacDevette M, Manders T, Eickhout B, Svihus B, Prins AG, Kaltenborn BP (eds) (2009) The environmental food crisis – the environment’s role in averting future food crises. A UNEP rapid response assessment. United Nations Environment Programme, GRID-Arendal, www.grida.no
  45. Nobel PS (1999) Physicochemical and environmental plant physiology. Academic, San DiegoGoogle Scholar
  46. Nomura T, Fukai T, Akiyama T (2002) Chemistry of phenolic compounds of licorice (Glycyrrhiza species) and their estrogenic and cytotoxic activities. Pure Appl Chem 74(7):1199–1206CrossRefGoogle Scholar
  47. Prakash L, Parthapasenan G (1990) Interactive effect of NaCl salinity and gibberelic acid on shoot growth, content of absisic acid and gibberelin like substances and yield of rice (Oruza sativa). Plant Sci 100:173–181Google Scholar
  48. Qadir M, Steffens D, Yan F, Schubert S (2003) Sodium removal from a calcareous saline-sodic soil through leaching and plant uptake during phytoremediation. Land Degrad Dev 14:301–307CrossRefGoogle Scholar
  49. Qadir M, Oster JD (2004) Crop and irrigation management strategies for saline-sodic soils and waters aimed at environmentally sustainable agriculture. Sci Tot Environ 323:1–19CrossRefGoogle Scholar
  50. Qadir M, Oster JD, Schubert S, Noble AD, Sahrawat KL (2007) Phytoremediation of sodic and saline-sodic soils. Adv Agron 96:197–247CrossRefGoogle Scholar
  51. Ravindran KC, Venkatesan K, Balakrishnan V, Chellapan KP, Balasubramanian T (2007) Restoration of saline land by halophytes for Indian soils. Soil Biol Biochem 39:2661–2664CrossRefGoogle Scholar
  52. Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57:1017–1023CrossRefPubMedGoogle Scholar
  53. Schwitzguébel JP (2001) Hype of hope: the potential of phytoremediation as an emerging green technology. Remediation 11(4):63–78CrossRefGoogle Scholar
  54. Selvaraj T, Sumithra P (2011) Effect of Glomus aggregatum and plant growth promoting rhizomicroorganisms on growth, nutrition and content of secondary metabolites in Glycyrrhiza glabra L. Indian J Appl Pure Biol 26(2):283–290Google Scholar
  55. Sharma V, Agrawal RC, Pandey S (2013) Phytochemical screening and determination of anti-bacterial and anti-oxidant potential of Glycyrrhiza glabra root extracts. J Environ Res Dev 7(4):1552–1558Google Scholar
  56. Shelef O, Gross A, Rachmilevitch S (2012) The use of Bassia indica for salt phytoremediation in constructed wetlands. Water Res 46(13):3967CrossRefPubMedGoogle Scholar
  57. Shirokova Y, Forkutsa I, Sharafutdinova N (2000) Use of electrical conductivity instead of soluble salts for soil salinity monitoring in Central Asia. Irrig Drain Syst 14:199–205CrossRefGoogle Scholar
  58. Soltani A, Khodarahmpour Z, Jafari AA, Nakhjavan S (2012) Selection of alfalfa (Medicagosativa L.) cultivars for salt stress tolerance using germination indices. Afr J Biotechnol 31:7899–7905Google Scholar
  59. Toderich K, Tsukatani T, Shoaib I, Massino I, Wilhelm M, Yusupov S, Kuliev T, Ruziev S (2008) Extent of salt-affected land in Central Asia: biosaline agriculture and utilisation of salt-affected resources. Discussion paper No. 648. Kyoto Institute of Economic Research, 34 ppGoogle Scholar
  60. UNEP (2008) In dead water. Merging of climate change with pollution, over-harvest, and infestations in the world’s fishing grounds. UNEP/GRID-Arendal, Arendal, Norway. Available online at: http://www.grida.no/_res/site/file/publications/InDeadWater_LR.pdf
  61. Wei GH, Yang XY, Zhang ZX, Yang YZ, Lindsröm K (2008) Strain Mesorhizobium sp. CCNWGX035: a stress-tolerant isolate from Glycyrrhiza glabra displaying a wide host range of nodulation. Pedosphere 18(1):102–112CrossRefGoogle Scholar
  62. Wiltse CC, Rooney WL, Chen Z, Schwab AP, Banks MK (1998) Greenhouse evaluation of agronomic and crude oil-phytoremediation potential among alfalfa genotypes. J Environ Qual 27:169–173CrossRefGoogle Scholar
  63. Xu GY, Rocha PS, Wang ML, Xu ML, Cui YC, Li LY, Zhu YX, Xia X (2011) A novel rice calmodulin-like gene, OsMSR2, enhances drought and salt tolerance and increases ABA sensitivity in Arabidopsis. Planta 234:47–59CrossRefPubMedGoogle Scholar
  64. Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Institut für LandschaftsbiogeochemieLeibniz-Zentrum für Agrarlandschaftsforschung e. V.,EberswalderMünchebergGermany
  2. 2.Medicinal Plants Program, School of AgricultureUniversity of Massachusetts at AmherstAmherstUSA

Personalised recommendations