A review of predation impact by 0+ fish on zooplankton in fresh and brackish waters of the temperate northern hemisphere

  • Thomas Mehner
  • Ralf Thiel
Part of the Developments in environmental biology of fishes book series (DEBF, volume 19)


To assess potential differences in predation impact on zooplankton communities by small (larva) and larger 0+ juvenile fish, 18 studies were reviewed from fresh water and the brackish Baltic Sea of the northern hemisphere temperate region. These case studies were performed either in the field or in mesocosm experiments. Larva stocks were found to exert only minor impact on small zooplankton species such as rotifers, copepodids and small cladocerans. In contrast, stocks of 0+ juveniles were found to have the potential to depress populations of large cladocerans and copepods, especially during late summer and autumn. However, studies where both 0+ juvenile fish consumption and zooplankton dynamics and production were exactly quantified are still very rare, and therefore final evaluation of this interaction cannot be made. In addition, papers were summarized that describe differences in morphological and physiological performance between larva and 0+ juvenile fish. The greater impact of 0+ juvenile fish on large zooplankton may be explained by their larger mouth gape and by their better developed abilities to detect and consume their prey items. However, this partly is lessened by the lower energy requirements of juvenile fish compared with identical biomasses of fish larvae, although larva bioenergetics remains only fragmentarily understood. Consequently, selective predation by fish larvae on particular small zooplankton prey may be more important than has been detected so far.

Key words

0+ fish feeding zooplankton dynamics ontogenetic development trophic interactions morphology physiology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References cited

  1. Applegate, R.L. and J.W. Mullan. 1967. Food of young largemouth bass, Micropterus salmoides, in a new and old reservoir. Trans. Amer. Fish. Soc. 96: 74–77.CrossRefGoogle Scholar
  2. Arrhenius, F. and S. Hansson. 1993. Food consumption of larval, young and adult herring and sprat in the Baltic Sea. Mar. Ecol. Progr. Ser. 96: 125–137.CrossRefGoogle Scholar
  3. Arrhenius, F. and S. Hansson. 1994a. In situ food consumption by young-of-the-year Baltic Sea herring Clupea harengus: a test of predictions from a bioenergetic model. Mar. Ecol. Progr. Ser. 110: 145–149.CrossRefGoogle Scholar
  4. Arrhenius, F. and S. Hansson. 1994b. Erratum. Mar. Ecol. Progr. Ser. 114: 314.Google Scholar
  5. Arts, M.T. and D.O. Evans. 1987. Precision micrometer measurement of mouth gape of larval fish. Can. J. Fish. Aquat. Sci. 44: 1786–1791.CrossRefGoogle Scholar
  6. Balon, E.K. 1975. Terminology of intervals in fish development. J. Fish. Res. Board Can. 32: 1663–1670.CrossRefGoogle Scholar
  7. Batty, R.S. 1984. Development of swimming movements and musculature of larval herring (Clupea harengus). J. Exp. Biol. 110: 217–229.PubMedGoogle Scholar
  8. Blaxter, J.H.S. 1986. Development of sense organs and behaviour of teleost larvae with special reference to feeding and predator avoidance. Trans. Amer. Fish. Soc. 115: 98–114.CrossRefGoogle Scholar
  9. Boersma, M., O.F.R. van Tongeren and W.M. Mooij. 1996. Seasonal patterns in the mortality of Daphnia species in a shallow lake. Can. J. Fish. Aquat. Sci. 53: 18–28.CrossRefGoogle Scholar
  10. Bremigan, M.T. and R.A. Stein. 1994. Gape-dependent larval foraging and zooplankton size: implications for fish recruitment across systems. Can. J. Fish. Aquat. Sci. 51: 913–922.CrossRefGoogle Scholar
  11. Brooks, J.L. and S.I. Dodson. 1965. Predation, body size, and the composition of the plankton. Science 150: 28–35.PubMedCrossRefGoogle Scholar
  12. Copp, G.H. and V. Kovâ6. 1996. When do fish with indirect development become juveniles? Can. J. Fish. Aquat. Sci. 53: 746–752.Google Scholar
  13. Cryer. M., G. Peirson and C.R. Townsend. 1986. Reciprocal interactions between roach, Rutilus rutilus, and zooplankton in a small lake: prey dynamics and fish growth and recruitment. Limnol. Oceanogr. 31: 1022–1038.Google Scholar
  14. Cushing, D.H. 1983. Are fish larvae too dilute to affect the density of their food organisms? J. Plankt. Res. 5: 847–854. Dabrowski, K. 1984. The feeding of fish larvae: present, a state of the art and perspective. Repr. Nutr. Develop. 20: 807–833.Google Scholar
  15. DeMott, W.R. 1989. The role of competition in zooplankton succession. pp. 195–252. In: U. Sommer (ed.) Plankton Ecology: Succession in Plankton Communities, Springer Verlag, Berlin.CrossRefGoogle Scholar
  16. Dettmers, J.M. and R.A. Stein. 1992. Food consumption by larval gizzard shad: zooplankton effects and implications for reservoir communities. Trans. Amer. Fish. Soc. 121: 494–507.Google Scholar
  17. DeVries, D.R. and R.A. Stein. 1992. Complex interactions between fish and zooplankton: quantifying the role of an open-water planktivore. Can. J. Fish. Aquat. Sci. 49: 1216–1227.Google Scholar
  18. El-Fiky, N., S. Hinterleitner and W. Wieser. 1987. Differentiation of swimming muscles and gills, and development of anaerobic power in the larvae of cyprinid fish ( Pisces, Teleostei). Zoomorphology 107: 126–132.Google Scholar
  19. Forstner, H., S. Hinterleitner, K. Mähr and W. Wieser. 1983. Towards a better definition of “metamorphosis” in Coregonus sp.: biochemical, histological, and physiological data. Can. J. Fish. Aquat. Sci. 40: 1224–1232.Google Scholar
  20. Furnass, T.I. 1979. Laboratory experiments on prey selection by perch fry (Perca fiuviatilis). Freshwat. Biol. 9: 33–43.Google Scholar
  21. Ghan, D. and W.G. Sprules. 1993. Diet, prey selection, and growth of larval and juvenile burbot Lota Iota (L.). J. Fish Biol. 39: 47–64.Google Scholar
  22. Gliwicz, Z.M. 1994. Relative significance of direct and indirect effects of predation by planktivorous fish on zooplankton. Hydrobiologia 272: 201–210.CrossRefGoogle Scholar
  23. Gliwicz, Z.M. and J. Pijanowska. 1989. The role of predation in zooplankton succession. pp. 253–295. In: U. Sommer (ed.) Plankton Ecology: Succession in Plankton Communities, Springer Verlag, Berlin.CrossRefGoogle Scholar
  24. Guma’a, S.A. 1978. The food and feeding habits of young perch, Perca fluviatilis, in Windermere. Freshwat. Biol. 8: 177–187.Google Scholar
  25. Hambright, D. 1994. Morphological constraints in the piscivoreplanktivore interaction: implications for the trophic cascade hypothesis. Limnol. Oceanogr. 39: 897–912.Google Scholar
  26. Hammer, C. 1985. Feeding behaviour of roach (Rutilus rutilus) larvae and fry of perch (Perca fiuviatilis) in Lake Lankau. Arch. Hydrobiol. 103: 61–74.Google Scholar
  27. Hansen, M.J. and D.H. Wahl. 1981. Selection of small Daphnia pulex by yellow perch fry in Oneida lake, New York. Trans. Amer. Fish. Soc. 110: 64–71.Google Scholar
  28. Hartmann, J. 1983. Two feeding strategies of young fishes. Arch. Hydrobiol. 96: 496–509.Google Scholar
  29. Hartmann, J. 1986. Interspecific predictors of selected prey of young fishes. Arch. Hydrobiol. Beih. Ergebn. Limnol. 22: 373–386.Google Scholar
  30. Hofer, R. and A. Nasir-Uddin. 1985. Digestive processes during the development of the roach, Rutilus rutilus ( L. ). Hydrobiologia 26: 683–689.Google Scholar
  31. Hofer, R. and O. Bürkle. 1986. Daily food consumption, gut passage rate and protein utilization in whitefish larvae (Coregonus sp.). Arch. Hydrobiol. Beih. Ergebn. Limnol. 22: 189–196.Google Scholar
  32. Hülsmann, S. and T. Mehner. 1997. Predation by underyearling perch (Perca fluviatilis) on a Daphnia galeata population in a short-term enclosure experiment. Freshwat. Biol. 38: 209–219.Google Scholar
  33. Kairesalo, T. and T. Seppälä. 1987. Phosphorus flux through a littoral ecosystem: the importance of cladoceran zooplankton and young fish. Int. Revue ges. Hydrobiol. 72: 385–403.Google Scholar
  34. Karjalainen, J., D. Miserque and H. Huuskonen. 1997. The estimation of food consumption in larval and juvenile fish: experimental evaluation of bioenergetics model. J. Fish Biol. 51 (Suppl. A): 39–51.CrossRefGoogle Scholar
  35. Keast, A. 1980. Food and feeding relationships of young fish in the first weeks after the beginning of exogenous feeding in Lake Opinicon, Ontario. Env. Biol. Fish. 5: 305–314.Google Scholar
  36. Kitchell, J.F., D.J. Stewart and D. Weininger. 1977. Applications of a bioenergetics model to yellow perch (Perca flavescens) and walleye (Stizostedion vitreum vitreum). J. Fish. Res. Board Can. 34: 1922–1935.Google Scholar
  37. Koblitskaya, A.A. 1981. Identification key of yearlings of fish in the Volga delta. Izd. Nauka, Moskva. 208 pp. (in Russian). Kurmayer, R. and J. Wanzenböck. 1996. Top-down effects of under-yearling fish on a phytoplankton community. Freshwat. Biol. 36: 599–609.Google Scholar
  38. Lampert, W., W. Fleckner, H. Rai and B.E. Taylor. 1986. Phytoplankton control by grazing zooplankton: a study on the spring clear-water phase. Limnol. Oceanogr. 31: 478–490.Google Scholar
  39. Larsson, P., G. Johnsen and A.L. Steigen. 1985. An experimental study of the summer decline in a Daphnia population. Verh. internat. Verein. Limnol. 22: 3131–3136.Google Scholar
  40. Lazzaro, X. 1987. A review of planktivorous fishes: their evolution, feeding behaviours, selectivities, and impacts. Hydrobiologia 146: 97–167.CrossRefGoogle Scholar
  41. Lehtovaara, A. and J. Sarvala. 1984. Seasonal dynamics of total biomass and species composition of zooplankton in the littoral of an oligotrophic lake. Verh. internat. Verein. Limnol. 22: 805–810.Google Scholar
  42. Luecke, C., M.J. Vanni, J.J. Magnuson, J.F. Kitchell and P.T. Jacobson. 1990. Seasonal regulation of Daphnia populations by planktivorous fish: implications for the spring clear-water phase. Limnol. Oceanogr. 35: 1718–1733.Google Scholar
  43. Madon, S.P. and D.A. Culver. 1993. Bioenergetics model for larval and juvenile walleyes: an in situ approach with experimental ponds. Trans. Amer. Fish. Soc. 122: 797–813.Google Scholar
  44. Mark, W., W. Wieser and C. Hohenauer. 1989. Interactions between developmental processes, growth, and food selection in the larvae and juveniles of Rutilus rutilus (L.) ( Cyprinidae ). Oecologia 78: 330–337.Google Scholar
  45. Marmulla, G. and R. Rösch. 1990. Maximum daily ration of juvenile fish fed on living natural zooplankton. J. Fish Biol. 36: 789–801.CrossRefGoogle Scholar
  46. Mathias, J. and S. Li. 1982. Feeding habits of walleye larvae and juveniles: comparative laboratory and field studies. Trans. Amer. Fish. Soc. 111: 722–735.Google Scholar
  47. McQueen, D.J. and J.R. Post. 1988. Cascading trophic interactions: uncoupling at the zooplankton-phytoplankton link. Hydrobiologia 159: 277–296.CrossRefGoogle Scholar
  48. Mehner, T. 1996. Predation impact of age-0 fish on a copepod population in a Baltic Sea inlet as estimated by two bioenergetics models. J. Plankt. Res. 18: 1323–1340.Google Scholar
  49. Mehner, T. and R. Heerkloss. 1994. Direct estimation of food consumption of juvenile fish in a shallow inlet of the Southern Baltic. Int. Revue ges. Hydrobiol. 79: 295–304.Google Scholar
  50. Mehner, T. and I.J. Winfield (ed.). 1997. Trophic interactions of age-0 fish and zooplankton in temperate waters. Proceedings of a Plankton Ecology Group (PEG) workshop, Dresden, February 1996. Arch. Hydrobiol. Beih. Ergebn. Limnol. 49: 1–152.Google Scholar
  51. Mehner, T., H. Schultz, D. Bauer, R. Herbst, H. Voigt and J. Benndorf. 1996. Intraguild predation and cannibalism in age-0 perch (Perca fluviatilis) and age-0 zander (Stizostedion lucioperca): interactions with zooplankton succession, prey fish availability and temperature. Ann. Zool. Fennici 33: 353–361.Google Scholar
  52. Mehner, T., M. Plewa, S. Hülsmann, H. Voigt and J. Benndorf. 1997. Age-0 fish predation on daphnids - spatial and temporal variability in the top-down manipulated Bautzen reservoir, Germany. Arch. Hydrobiol. Beih. Ergebn. Limnol. 49: 13–25.Google Scholar
  53. Mehner, T., M. Plewa, S. Hülsmann and S. Worischka. 1998a. Gape-size dependent feeding of age-0 perch (Perca fluviatilis) and age-0 zander (Stizostedion lucioperca) on Daphnia galeata. Arch. Hydrobiol. 142: 191–207.Google Scholar
  54. Mehner, T., S. Hülsmann, S. Worischka, M. Plewa and J. Benndorf. 1998b. Is the midsummer decline of Daphnia really induced by age-0 fish predation? Comparison of fish consumption and Daphnia mortality and life history parameters in a biomanipulated reservoir. J. Plankt. Res. (in press).Google Scholar
  55. Miller, T.J., L.B. Crowder, J.A. Rice and F.P. Binkowski. 1992. Body size and the ontogeny of the functional response in fishes. Can. J. Fish. Aquat. Sci. 49: 805–812.Google Scholar
  56. Mills, E.L. and J.L. Forney. 1983. Impact on Daphnia pulex of predation by young yellow perch in Oneida Lake, New York. Trans. Amer. Fish. Soc. 112: 151–161.Google Scholar
  57. Mills, E.L., J.L. Confer and R.C. Ready. 1984. Prey selection by young yellow perch: the influence of capture success, visual acuity, and prey choice. Trans. Amer. Fish. Soc. 113: 579–587.Google Scholar
  58. Mills, E.L., J.L. Confer and D.W. Kretchmer. 1986. Zooplankton selection by young yellow perch: the influence of light, prey density, and predator size. Trans. Amer. Fish. Soc. 115: 716–725.Google Scholar
  59. Mills, E.L., J.L. Forney and K.J. Wagner. 1987. Fish predation and its cascading effect on the Oneida Lake food chain. pp. 118–131. In: W.C. Kerfoot and A. Sih (ed.) Predation–Direct and Indirect Impacts on Aquatic Communities, University Press, Hanover.Google Scholar
  60. Murtaugh, P.A. 1985. Vertical distribution of zooplankton and population dynamics of Daphnia in a meromictic lake. Hydro-biologia 123: 47–57.CrossRefGoogle Scholar
  61. Noble, R.L. 1975. Growth of young yellow perch (Perca flavescens) in relation to zooplankton populations. Trans. Amer. Fish. Soc. 104: 731–741.Google Scholar
  62. Post, D.M. and J.F. Kitchell. 1997. Trophic ontogeny and life history effects on interactions between age-0 fishes and zooplankton. Arch. Hydrobiol. Beih. Ergebn. Limnol. 49: 1–12.Google Scholar
  63. Post, J.R. and D.J. McQueen. 1987. The impact of planktivorous fish on the structure of a plankton community. Freshwat. Biol. 17: 79–89.Google Scholar
  64. Post, J.R. and D.O. Evans. 1989. Size-dependent overwinter mortality of young-of-the-year yellow perch (Perca flavescens): laboratory, in situ enclosure, and field experiments. Can. J. Fish. Aquat. Sci. 46: 1958–1968.Google Scholar
  65. Post, J.R. and J.A. Lee. 1996. Metabolic ontogeny of teleost fishes. Can. J. Fish. Aquat. Sci 53: 910–923.Google Scholar
  66. Post, J.R., L.G. Rudstam, D.M. Schael and C. Luecke. 1992. Pelagic planktivory by larval fishes in Lake Mendota. pp. 303–317. In: J.F. Kitchell (ed.) Food Web Management–a Case Study of Lake Mendota, Springer Verlag, New York.Google Scholar
  67. Qin, J. and D.A. Culver. 1995. Effect of young-of-the-year walleye (Percidae: Stizostedion vitreum) on plankton dynamics and water quality in ponds. Hydrobiologia 297: 217–227.CrossRefGoogle Scholar
  68. Rice, J.A., L.B. Crowder and F.P. Binkowski. 1987. Evaluating potential sources of mortality for larval bloater (Coregonus hoyi): starvation and vulnerability to predation. Can. J. Fish. Aquat. Sci. 44: 467–472.Google Scholar
  69. Rogowski, U. and F.W. Tesch. 1960. Erste Nahrung freßfähig gewordener Fischbrut. Zeitschr. f. Fisch. N.F. 9: 735–747.Google Scholar
  70. Rombough, P.J. 1988. Respiratory gas exchange and aerobic metabolism. pp. 59–161. In: W.S. Hoar and D.J. Randall (ed.) Fish Physiology 9, The Physiology of Developing Fish, A: Eggs and Larvae, Academic Press, San Diego.CrossRefGoogle Scholar
  71. Rudstam, L., S. Hansson, S. Johansson and U. Larsson. 1992. Dynamics of planktivory in a coastal area of the Northern Baltic Sea. Mar. Ecol. Progr. Ser. 80: 159–173.Google Scholar
  72. Schael, D.M., L.G. Rudstam and J.R. Post. 1991. Gape limitation and prey selection in larval yellow perch (Perca flavescens), freshwater drum (Aplodinotus grunniens), and black crappie (Pomoxis nigromaculatus). Can. J. Fish. Aquat. Sci. 48: 19191925.Google Scholar
  73. Sommer, U., Z.M. Gliwicz, W. Lampert and A. Duncan. 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Arch. Hydrobiol. 106: 433–471.Google Scholar
  74. Thiel, R. 1996. The impact of fish predation on the zooplankton community in a southern Baltic bay. Limnologica (Berlin) 26: 123–137.Google Scholar
  75. Thiel, R., T. Mehner, B. Köpcke and R. Kafemann. 1996 Diet niche relationships among early life stages of fish in German estuaries. Mar. Freshwat. Res. 47: 123–136.Google Scholar
  76. Threlkeld, S.T. 1985. Resource variation and the initiation of midsummer declines of cladoceran populations. Arch. Hydrobiol. Beih. Ergebn. Limnol. 21: 333–340.Google Scholar
  77. Treasurer, J.W. 1992. The predator-prey relationship of perch, Perca fluviatilis, larvae and zooplankton in two Scottish lochs. Env. Biol. Fish. 35: 63–74.Google Scholar
  78. Troschel, H.J. and R. Rösch. 1991. Daily ration of juvenile Coregonus lavaretus (L.) fed on living zooplankton. J. Fish Biol. 38: 95–104.Google Scholar
  79. Vijverberg, J., M. Boersma, W.L.T. VanDensen, W. Hoogenboezem, E.H.R.R. Lammens and W.M. Mooij. 1990. Seasonal variation in the interactions between piscivorous fish, planktivoro us fish and zooplankton in a shallow eutrophic lake. Hydro-biologia 207: 279–286.CrossRefGoogle Scholar
  80. Vinberg, G.G. 1956. Rate of metabolism and food requirements of fish. Isd. Belrusuniversiteta, Minsk. 253 pp. (in Russian).Google Scholar
  81. Wahl, C.M., E.L. Mills, W.N. McFarland and J.S. DeGisi. 1993. Ontogenetic changes in prey selection and visual acuity of the yellow perch, Perca flavescens. Can. J. Fish. Aquat. Sci. 50: 743–749.Google Scholar
  82. Wanzenböck, J. 1992. Ontogeny of prey attack behaviour in larvae and juveniles of three European cyprinids. Env. Biol. Fish. 33: 23–32.Google Scholar
  83. Wanzenböck, J. 1995. Changing handling times during feeding and consequences for prey size selection of 0+ zooplanktivorous fish. Oecologia 104: 372–378.CrossRefGoogle Scholar
  84. Wanzenböck, J. and F. Schiemer. 1989. Prey detection in cyprinids during early development. Can. J. Fish. Aquat. Sci. 46: 995–1001.Google Scholar
  85. Wanzenböck, J., M. Zaunreiter, C.M. Wahl and D.L.G. Noakes. 1996. Comparison of behavioural and morphological measures of visual resolution during ontogeny of roach (Rutilus rutilus) and yellow perch (Perca flavescens). Can. J. Fish. Aquat. Sci. 53: 1506–1512.Google Scholar
  86. Wanzenböck, J., M.C. Whiteside and T. Mehner. 1997. Defining a desirable sampling strategy for studies of age-0 fish - zoo-plankton interactions - a preliminary approach. Arch. Hydrobiol. Beih. Ergebn. Limnol 49.137–138.Google Scholar
  87. Welker, M.T., C.L. Pierce and D.H. Wahl. 1994. Growth and survival of larval fishes: roles of competition and zooplankton abundance. Trans. Amer. Fish. Soc. 123: 703–717.Google Scholar
  88. Werner, E.E. and D.J. Hall. 1974. Optimal foraging and the size selection of prey by the bluegill sunfish (Lepomis macrochirus). Ecology 55: 1042–1052.CrossRefGoogle Scholar
  89. Werner, E.E. and J.F. Gilliam. 1984. The ontogenetic niche and species interactions in size-structured populations. Ann. Rev. Ecol. Syst. 15: 393–425.Google Scholar
  90. Werner, M.-G., T. Mehner and H. Schultz. 1996. Which factors influence the diet composition of age-0 ruffe (Gymnocephalus cernuus [L.]) in the Bautzen reservoir ( Saxony, Germany)? Limnologica 26: 145–151.Google Scholar
  91. Werner, R.G., B.V. Jockheere, M.D. Clapsadl and J.M. Farrell. 1996. A bioenergetic exploration of piscivory and planktivory during the early life history of two species of freshwater fishes. Mar. Freshwat. Res. 47: 113–121.Google Scholar
  92. Whiteside, M.C. 1988. 0+ fish as major factors affecting abundance patterns of littoral zooplankton. Verh. internat. Verein. Limnol 23. 1710–1714.Google Scholar
  93. Whiteside, M.C., C.M. Swindoll and W.L. Doolittle. 1985. Factors affecting the early life history of yellow perch, Percaflavescens. Env. Biol. Fish. 12: 47–56.Google Scholar
  94. Wieser, W. 1991. Limitations of energy acquisition and energy use in small poikilotherms: evolutionary implications. Funct. Ecol. 5: 234–240.Google Scholar
  95. Winfield, I.J. and C.R. Townsend. 1983. The cost of copepod reproduction: increased susceptibility to fish predation. Oecologia 60: 406–411.CrossRefGoogle Scholar
  96. Wong, B. and F.J. Ward. 1972. Size selection of Daphnia pulicaria by yellow perch (Percaflavescens) fry in West Blue Lake, Manitoba. J. Fish. Res. Board Can. 29: 1761–1764.Google Scholar
  97. Worischka, S. and T. Mehner. 1998. Comparison of field-based and indirect estimates of daily food consumption in larval perch and zander. J. Fish Biol. 53: 1050–1059.CrossRefGoogle Scholar
  98. Wu, L. and D.A. Culver. 1994. Daphnia population dynamics in western Lake Erie: regulation by food limitation and yellow perch predation. J. Great Lakes Res. 20: 537–545.CrossRefGoogle Scholar
  99. Zalewski, M., B. Brewinska-Zaras, P. Frankiewicz and S. Kalinowski. 1990. The potential for biomanipulation using fry communities in a lowland reservoir: concordance between water quality and optimal recruitment. Hydrobiologia 200 /201: 549–556.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • Thomas Mehner
    • 1
  • Ralf Thiel
    • 2
  1. 1.Department of Biology and Ecology of FishesInstitute of Freshwater Ecology and Inland FisheriesBerlinGermany
  2. 2.Institute of Hydrobiology und Fisheries Sciences, ElbelaborHamburg UniversityHamburgGermany

Personalised recommendations