Advertisement

Thin Cell Layers and Floral Morphogenesis, Floral Genetics and in Vitro Flowering

  • Jaime A. Teixeira da Silva
  • Duong Tan Nhut
Chapter

Abstract

The transition from vegetative to floral state or reproductive development is a critical phase in the life cycle of higher plants, and the products of flowering are an integral part of the human diet, cultural integrity and global economies. Cut flowers and flowering pot plants are increasingly associated with an increase in the quality of life, having evolved from a luxury to a daily commodity. Lower and more competitive prices and a greater consumer demand (for quantity and quality) is creating new challenges in the floricultural and ornamental plant sectors to produce new cut flowers and ornamental plants that suit individual consumer needs. In order to meet this demand, tissue culture and molecular biology techniques are proving useful in the production of ornamentals with novel characteristics (flower colour, resistance to various pests and diseases, longer cut-flower/postharvest shelf life).

Keywords

Somatic Embryo Somatic Embryogenesis Circadian Clock Floral Organ Shoot Apical Meristem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aeschbacher, R.A., Schiefelbein, J.W. and Benfey, P.N. (1994) The genetic and molecular basis of root development, Annu. Rev. Plant Physiol. Plant Mol. Biol 45, 25–45.CrossRefGoogle Scholar
  2. Ahmad, M. and Cashmore, A. R. (1993) HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor, Nature 366, 162–166.PubMedCrossRefGoogle Scholar
  3. Ahmad, M. and Cashmore, A. R. (1996) The PEF mutants of Arabidopsi s thaliana define lesions early in the phytochrome signaling pathway, Plant J 10, 1103–1110.PubMedCrossRefGoogle Scholar
  4. Ahn, I.O., Bui Van Le, Gendy, C. and and Tran Thanh Van, K. (1996) Direct somatic embryogenesis through thin cell layer culture in Panax ginseng, Plant Cell Tiss. Org. Cult 45, 237–243.CrossRefGoogle Scholar
  5. Aida, M., Ishida, T., Fukaki, H., Fujisawa, H. and Tasaka, M. (1997) Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant, Plant Cell 9, 841–857.PubMedCrossRefGoogle Scholar
  6. Aida, R., Kishimoto, S., Tanaka, Y. and Shibata, M. (2000) Modification of flower colour in torenia (Torenia fournieri Lindl.) by genetic transformation, Plant Sci 153, 33–42.CrossRefGoogle Scholar
  7. Alayon-Luaces, P. and Bovo, O.A. (1997) Effect of growth regulators on the in vitro anthesis of Paspalurn notatum (Gramineae), Phyton (Buenos Aires) 60, 147–153.Google Scholar
  8. Ali, Y., Li, S. and Li, S. (1994) In vitro flowering, fruiting and differentiation of callus in different genotypes of tomato in the presence of NaCI, Sarhad J. Agric 10, 59–62.Google Scholar
  9. Al-Khayri, J.M., Huang, F.H. and Morelock, T.E. (1992) In vitro seed production from sex-modified male spinach plants regenerated from callus culture, Sci. Hort 52, 277–282.CrossRefGoogle Scholar
  10. Almeida, J., Rocheta, M. and Galego, L. (1997) Genetic control of flower shape in Antirrhinum majus, Development 124, 1387–1392.PubMedGoogle Scholar
  11. Alonso-Blanco, C., El-Assal, S.E., Coupland, G. and Koornneef, M. (1998) Analysis of natural allelic variation at flowering time loci in the Landsberg erecta and Cape Verde Islands ecotypes of Arabidopsis thaliana, Genetics 149, 749–764.PubMedGoogle Scholar
  12. Altamura, M.M., Capitani, F., Gazza, L., Capone, I. And Costatino, P. (1994) The plant oncogene rolB stimulates the formation of flower and root meristemoids in tobacco thin cell layers, New Phytol 126, 283–293.CrossRefGoogle Scholar
  13. Alvarez, J. and Smyth, D. R. (1999) CRABS CLAW and SPATULA, two Arabidopsis genes that control carpel development in parallel with AGAMOUS, Development 126, 2377–2386.PubMedGoogle Scholar
  14. Ambrose, B.A., Lerner, D.R., Ciceri, P., Padilla, C.M., Yanofsky, M.P. and Schmidt, R.J. (2000) Molecular and genetic analyses of the SILKY gene reveal conservation in floral organ specification between eudicots and monocots, Mol. Cell 5, 569–579.PubMedCrossRefGoogle Scholar
  15. Angenant, G.C., Franken, J., Busscher, M., Weiss, D. and van Tunen, A.J. (1994) Co-suppression of the petunia homeotic gene fbp2 affects the identity of the generative meristem, Plant J 5: 33–44.CrossRefGoogle Scholar
  16. Angenant, G.C. and Colombo, L. (1996) Molecular control of ovule development, Trends Plant Sci 1: 228–232.Google Scholar
  17. Araki, T. and Komeda, Y. (1993) Analysis of the role of the late-flowering locus, GI, in the flowering of Arabidopsis thaliana, Plant J 3, 231–239.CrossRefGoogle Scholar
  18. Asao, T., Ohtani, N., Endo, K., Ohta, K. and Hosoki, T. (1997) In vitro flowering and fruiting of strawberry through shoot apex culture, J. Jap. Soc. Hort. Sci 66, 419–421.CrossRefGoogle Scholar
  19. Bagnall, D.J., King, R.W. and Hangarter, R.P. (1996) Blue-light promotion of flowering is absent in hy4 mutants of Arabidopsis, Planta 200, 278–280.PubMedCrossRefGoogle Scholar
  20. Bancroft, I., Jones, J.D.G. and Dean, C. (1993) Heterologous transposon tagging of the DRLI locus in Arabidopsis, Plant Cell 5, 631–638.PubMedGoogle Scholar
  21. Bassett, M.J. (1992) An induced mutant for blue flowers in common bean that is not allelic to Vor Sal and is linked to Fin, J. Amer. Soc. Hort. Sci 117, 317–320.Google Scholar
  22. Bassett, M.J. (1993a) A new gene for flower colour pattern, White Banner (wb), in progeny of an interspecific hybrid between common and scarlet runner beans, J. Amer. Soc. Hort. Sci 118, 878–880.Google Scholar
  23. Bassett, M.J. (1993b) Interaction of two genes, Fcr and Fcr2, with the t allele in common bean that restores colour to flowers, J. Amer. Soc. Hort. Sci 118, 881–884.Google Scholar
  24. Bartley, G.E. and Scolnik, P. A. (1995) Plant carotenoids: pigments for photoprotection, visual attraction, and human health, Plant Cell 7, 1027–1038.PubMedGoogle Scholar
  25. Barton, M.K. and Poethig, R.S. (1993) Formation of the shoot apical meritem in Arabidopsis thaliana: an analysis of development in the wild-type and in the SHOOT MERISTEMLESS mutant, Development 119, 823–831.Google Scholar
  26. Battey, N.H. and Lyndon, R.F. (1990) Reversion of flowering, Bot. Rev 56, 162–189.CrossRefGoogle Scholar
  27. Baum, S.F., Eshed, Y. and Bowman, J.L. (2001) The Arabidopsis nectary is an ABC-independent floral structure, Development 128, 4657–4667.PubMedGoogle Scholar
  28. Benfey, P.N. (1999) Is the shoot a root with a view?, Curr. Opin. Plant Biol 2, 39–43.PubMedCrossRefGoogle Scholar
  29. Bernier, G. (1988) The control of floral evocation and morphogenesis, Ann. Rev. Plant Physiol 45, 175–219.Google Scholar
  30. Bernier, G., Havelange, A., Houssa, C., Petitjean, A. and Lejeune, P. (1993) Physiological signals that induce flowering, Plant Cell 5, 1147–1155.PubMedGoogle Scholar
  31. Binns, A.N. (1994) Cytokinin accumulation and action: biochemical, genetic and molecular approaches, Annu. Rev. Plant Physiol. Plant Mol. Biol 45, 173–196.CrossRefGoogle Scholar
  32. Bleecker, A.B., Estelle, M.A., Somerville, C. and Kende, H. (1988) Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana, Science 241, 1086–1089.PubMedCrossRefGoogle Scholar
  33. Bolle, C., Koncz, C. and Chua, N-H. (2000) PAT I, a new member of the GRAS family, is involved in phytochrome A signal transduction, Genes Dev 14, 1269–1278.PubMedGoogle Scholar
  34. Bollmann, J., Carpenter, R. and Coen, E.S. (1991) Allelic interactions at the nivea locus of Antirrhinum, Plant Cell 3, 1327–1336.PubMedGoogle Scholar
  35. Borner, R., Kampmann, G, Chandler, J., Gleissner, R., Wisman, E., Apel, K. and Melzer, S. (2000) A MADS domain gene involved in the transition to flowering in Arabidopsis, Plant J 24, 591–599.PubMedCrossRefGoogle Scholar
  36. Bowman, J.L., Sakai, H., Jack, T., Weigel, D. and Meyerowitz, E.M. (1992) SUPERMAN, a regulator of floral homeotic genes in Arabidopsis, Development 114, 599–615.PubMedGoogle Scholar
  37. Bowman, J.L., Alvaraz, J., Weigel, D., Meyerowitz, E.M. and Smyth, D.R. (1993) Control of flower development in Arabidopsis thaliana by APETAL.AJ and interacting genes, Development 119, 721–743.Google Scholar
  38. Bowman, J. L. and Smyth, D. R. (1999) CRABS CLAW, a gene that regulates carpel and nectary development in Arabidopsis, encodes a novel protein with zinc finger and helix-loop-helix domains, Development 126, 2387–2396.PubMedGoogle Scholar
  39. Boyle, T.H. and Marcotrigiano, M. (1997) Influence of benzyladenine and gibberellic acid on organogenesis in `Crimson Giant’ Easter cactus, Plant Growth Reg 22, 131–136.CrossRefGoogle Scholar
  40. Bradley, D., Carpenter, R., Sommer, H., Hartley, N. and Coen, E. (1993) Complementary floral homeotic phenotypes result from opposite orientations of a transpososn at the plena locus of Antirrhinum, Cell 72, 85–95.PubMedCrossRefGoogle Scholar
  41. Bradley, D., Carpenter, R., Copsey, L., Vincent, C., Rothstein, S. and Coen, E. (1996) Control of inflorescence architecture in Antirrhinum, Nature 379, 791–797.PubMedCrossRefGoogle Scholar
  42. Bradley, D. J., Ratcliffe, O. J., Vincent, C., Carpenter, R. and Coen, E. S. (1997) Inflorescence commitment and architecture in Arabidopsis, Science 275, 80–83.PubMedCrossRefGoogle Scholar
  43. Bradley, J.M., Davies, K.M., Deroles, S.C., Bloor, S.J. and Lewis, D.H. (1998) The maize LC regulatory gene up-regulates the flavonoid biosynthesis pathway of petunia, Plant J 13, 381–392.CrossRefGoogle Scholar
  44. Brand, U., Fletcher, J.C., Hobe, M., Meyerowitz, E.M. and Simon, R. (2000) Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity, Science 289, 617–619.PubMedCrossRefGoogle Scholar
  45. Brandstatter, I. and Kieber, J.J. (1998) Two genes with similarity to bacterial response regulators are rapidly and specifically induced by cytokinin in Arabidopsis, Plant Cell 10, 1009–1019.PubMedGoogle Scholar
  46. Bridgen, M.P. and Veilleux, R.E. (1988) A comparison of in vitro flowers to in vivo flowers of haploid and diploidNicotiana tabacum L., Plant Cell Tiss. Org. Cult 13, 3–13.CrossRefGoogle Scholar
  47. Bui Van Le, Jeanneau, M., Nghieng Thao, D.M., Vidal, J. and Tran Thanh Van, K. (1998b) Rapid regeneration of whole plants in large crabgrass (Digitaria sanguinalis L.) using thin cell layer culture, Plant Cell Rep 18, 166–172.CrossRefGoogle Scholar
  48. Bui Van Le, Nghieng Thao, D.M., Gendy, C., Vidal, J. and Tran Thanh Van, K. (1998c) Transformation of a C4 monocot, the Digitaria sanguinalis (Large crabgrass) using somatic embryogenesis induced on thin cell layers. Abst p191, 9th Int Congr Plant Tiss Cell Cult, Jerusalem, Israel, 14–19 June.Google Scholar
  49. Bui Van Le, Nhut, D.T. and Tran Thanh Van, K. (1999) Plant production via shoot regeneration from thin cell layer pseudo-bulblet explants of Lilium longiflorum in vitro, C. R. Acad. Sci, Parrs 322, 303–310.Google Scholar
  50. Burchi, G., Mercuri, A., Benedetti, L. and Giovanini, A. (1996) Transformation methods applicable to ornamental plants, Plant Tiss. Cult. Biotech 2, 94–104.Google Scholar
  51. Burn, J.E., Bagnall, D.J., Metzger, J.D., Dennis, E.S. and Peacock, W.J. (1993) DNA methylation, vernalization and the initiation of flowering, Proc. Natl. Acad. Sci. USA 90, 287–291.PubMedCrossRefGoogle Scholar
  52. Byzova, M.V., Franken, J., Aarts, M.G.M., Almeida-Engler, J., Engler, G., Mariani, C., Campagne, M.M.V.L. and Angenant, G.C. (1999) Arabidopsis STERILE APETALA, a multifunctional gene regulating inflorescence, flower, and ovule development, Genes Dev 13, 1002–1014.PubMedCrossRefGoogle Scholar
  53. Carson, J.A. and Leung, D.W.M. (1994) In vitro flowering and propagation of Wahlenbergia stricto L., New Zealand Nat. Sci 21, 55–60.Google Scholar
  54. Caspar, T., Huber, S.C. and Somerville, C.R. (1985) Alterations in growth, photosynthesis, and respiration in a starchless mutant of Arabidopsis thaliana (L.) deficient in chloroplast phosphoclucamutase activity,PlantPhysiol 79, 11–17.Google Scholar
  55. Caspar, T., Lin, T. P., Kakefuda, G, Benbow, L., Preiss, J. and Somerville, C. R. (1991) Mutants of Arabidopsis with altered regulation of starch degradation, Plant Physiol 95, 1181–1188.PubMedCrossRefGoogle Scholar
  56. Castle, L.A. and Meinke, D.W. (1994) AFUSCA gene of Arabidopsis encodes a novel protein essential for plant development, Plant Cell 6, 25–41.PubMedGoogle Scholar
  57. Chambers, S.M., Heuch, J.H.R. and Pinie, A. (1991) Micropropagation and in vitro flowering of the bamboo Dendrocalamus hamiltoni Munro, Plant Cell Tiss. Org. Cult 27, 45–48.CrossRefGoogle Scholar
  58. Chandler, J., Wilson, A. and Dean, C. (1996) Arabidopsis mutants showing an altered response to vernalization, Plant 10, 637–644.CrossRefGoogle Scholar
  59. Chang, W-C. and Hsing, Y-I. (1980) In vitro flowering of embryoids derived from mature root callus of ginseng (Panax ginseng), Nature 284, 341–342.CrossRefGoogle Scholar
  60. Chao, Q., Rothenberg, M., Solano, R., Terzaghi, W. and Ecker, J.R. (1997) Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins, Cell 89, 1133–1144.PubMedCrossRefGoogle Scholar
  61. Charest, P.J., Holbrook, L.A., Gabard, J., Iyer, V.N. and Miki, B.I. (1988) Agrobacterium-mediated transformation of thin cell layer explants from Brassica napus L, Theor. Appl. Genet 75, 438–445.CrossRefGoogle Scholar
  62. Chaudhury, A.M., Letham, S., Craig, S. and Dennis, E.S. (1993) ampl-A mutant with high cytokinin levels and altered embryonic pattern, faster vegetative growth, constitutive photomorphogenesis and precocious flowering, Plant J 4, 907–916.Google Scholar
  63. Chen, Q., Atkinson, A., Otsuga, D., Christensen, T., Reynolds, L. and Drews, G.N. (1999) The Arabidopsis FILAMENTOUS FLOWER gene is required for flower formation, Development 126, 2715–2726.PubMedGoogle Scholar
  64. Chen, X. and Meyerowitz, E. M. (1999) HUA1 and HUA2 are two members of the floral homeotic AGAMOUS pathway, Mol. Cell 3, 349–360.PubMedCrossRefGoogle Scholar
  65. Chlyah, A. (1974) Inter-tissue correlations in organ fragments. Organogenic capacity of tissues excised from stem segments of Torenia fournieri Lind. Cultured separately in vitro, Plant Physiol 54, 341–348.PubMedCrossRefGoogle Scholar
  66. Chlyah, A. and Tran Thanh Van, M. (1975) Differential reactivity in epidermal cells of Begonia rex excised and growth in vitro, Physiol. Plant 35, 16–20.CrossRefGoogle Scholar
  67. Chou, M-L. and Yang, C-H. (1998) FLD interacts with genes that affect different developmental phase transitions to regulate Arabidopsis shoot development, Plant.1 15, 231–242.Google Scholar
  68. Chou, M-L. and Yang, C-H. (1999) Late-flowering genes interact with early-flowering genes to regulate flowering time inArabidopsis thaliana, Plant Cell Physiol 40, 702–708.PubMedCrossRefGoogle Scholar
  69. Chouard, P. and Aghion, D. (1961) Modalité de la formation des bourgeons floraux sur des culture de segments de tigre de tabac, C.R. Acad. Sci. Paris, 252, 3864–3866.Google Scholar
  70. Chuck, G., Robbins, T., Nijjar, C., Ralston, E., Courtney-Gutterson, N. and Dooner, H.K. (1993) Tagging and cloning of a petunia flower colour gene with the maize transposable element Activator, Plant Cell 5, 371–378.PubMedGoogle Scholar
  71. Chuck, G., Meeley, R.B. and Hake, S. (1998) The control of maize spikelet meristem fate by the APEIALA2-like gene indeterminate spikeletl, Genes Dec 12, 1145–1154.CrossRefGoogle Scholar
  72. Chung, Y-Y., Kim, S-R., Finkel, D., Yanofsky, M.F. and An, G (1994) Early flowering and reduced apical dominance result from ectopie expression of a rice MADS box gene, Plant Mol. Biol 26, 657–665.PubMedCrossRefGoogle Scholar
  73. Clark, S.E. (2001) Meristems: start your signalling, Cure Opin. Plant Biol. 4, 28–32.CrossRefGoogle Scholar
  74. Clark, S.E., Running, M.P. and Meyerowitz, E.M. (1993) CLAVATA], a regulator of meristem and flower development in Arabidopsis, Development 119, 197–418.Google Scholar
  75. Clark, J.H. and Dean, C. (1994) Mapping FRI, a locus controlling flowering time and vernalization response in Arabidopsis thaliana, Mot. Gen. Genet 242, 81–89.Google Scholar
  76. Clark, S.E., Running, M.P. and Meyerowitz, E.M. (1995) CLAVATA3 is a regulator of shoot and floral meristem development affecting the same processes as CLAVATAJ, Development 121, 2057–2067.Google Scholar
  77. Coen, E.S. and Carpenter, R. (1986) Transposable elements in Antirrhinum majus: generators of genetic diversity, Trends Genet 2, 292–296.CrossRefGoogle Scholar
  78. Coen, E.S., Roemro, J.M., Doyle, S., Elliott, R., Murphy, G. and Carpenter, R. (1990) floricaula: a homeotic gene required for flower development in Antirrhinum majus, Cell 63, 1311–1322.Google Scholar
  79. Coen, E.S. and Meyerowitz, E.M. (1991) The war of the whorls: genetic interactions controlling flower development, Nature, 353, 31–37.PubMedCrossRefGoogle Scholar
  80. Coen, E.S. (1996) Floral symmetry, EMBO J 16, 6777–6788.Google Scholar
  81. Colombo, L., Franken, J., Koetje, E., van Went, J., Dons, H.J.M., Angenant, G.C. and van Tunen, A.J. (1995) The petunia MADS box gene FBPII determines ovule identity, Plant Cell 7, 1859–1868.PubMedGoogle Scholar
  82. Compton, M.E. and Veilleux, R.E. (1992) Thin cell layer morphogenesis, Hort. Rev 14, 239–264.Google Scholar
  83. Corbesier, L., Lejeune, P. and Bernier, G (1998) The role of carbohydrates in the induction of flowering in Arabidopsis thaliana: comparison between the wild-type and a starchless mutant, Planta 206, 131–137.PubMedCrossRefGoogle Scholar
  84. Courtney-Gutterson, N., Napoli, C., Lemieux, C., Morgan, A., Firoozabady, E. and Robinson, K.E.P. (1994) Modification of flower color in florist’s chrysanthemum: Production of a white-flowering variety through molecular genetics, Biotechnology 12, 268–271.PubMedCrossRefGoogle Scholar
  85. Cousson, A. and Tran Thanh Van, K. (1983) Light-and sugar-mediated control of direct de novo flower differentiation from tobacco thin cell layers, Plant Physiol 72, 33–36.PubMedCrossRefGoogle Scholar
  86. Cousson, A. and Tran Thanh Van, K. (1992) Influence of ionic composition of the culture medium on de novo flower formation in tobacco thin cell layers, Can. J. Bot 71, 506–511.CrossRefGoogle Scholar
  87. Cousson, A., Toubart, P. and Tran Thanh Van, K. (1989) Control of morphogenetic pathway in thin cell layers of tobacco by pH, Can. J. Bot 67, 650–654.CrossRefGoogle Scholar
  88. Covington, M.F., Panda, S., Liu, X.L., Strayer, C.A., Wagner, D.R. and Kay, S.A. (2001) ELF3 modulates resetting of the circadian clock in Arabidopsis, Plant Cell 13, 1305–1315.PubMedGoogle Scholar
  89. Creemers-Molenaar, J., Harkkert, J.C., Van Staveren, M.J. and Gilissen, L.J.W. (1994) Histology of the morphogenic response in thin cell layer explants from vegetative tobacco plants, Ann. Bot 73, 547–555.CrossRefGoogle Scholar
  90. Cutler, S., Ghassemian, M., Bonetta, D., Conney, S. and McCourt, P. (1996) A protein farnesyl transferase involved in abscisic acid signal transduction in Arabidopsis, Science 273, 1239–1241.PubMedCrossRefGoogle Scholar
  91. Das, P., Samantaray, S. and Rout, G.R. (1996) Organogenesis and in vitro flowering of Echinochloa colona. Effect of growth regulators and explant types, Biol. Plant 38, 335–342.CrossRefGoogle Scholar
  92. Davies, K.M., Bloor, S.J., Spiller, G.B. and Deroles, S.C. (1998) Production of yellow colour in flowers: redirection of flavonoid biosynthesis in Petunia, Plant J 13, 259–266.CrossRefGoogle Scholar
  93. Demeulemeester, M.A.C., Rademacher, W., Van de Mierop, A. and De Proft, M.P. (1995) Influence of gibberellin biosynthesis inhibitors on stem elongation and floral initiation on in vitro chicory root explants under dark and light conditions, Plant Growth Reg 17, 47–52.CrossRefGoogle Scholar
  94. Deng, X.W., Caspar, T. and Quail, P.H. (1991) COP]: a regulatory locus involved in light-controlled development and gene expression inArabidopsis, Genes Dev 5, 1172–1182.PubMedCrossRefGoogle Scholar
  95. Deroles, S.C., Bradley, J.M., Schwinn, K.E., Markham, K.R., Bloor, S., Manson, D.G. and Davies, K.M. (1998)Mol. Breed 4, 59–66.Google Scholar
  96. de Vetten, N., Horst, J.T., van Schalk, H-P., de Boer, A., Mol, J. and Kroes, R. (1999) Acytochrome b5 is required for full activity of flavonoid 3’,5’-hydroxylase, a cytochrome P450 involved in the formation of blue flower colors, Proc. Natl. Acad. Sci. USA 96, 778–783.PubMedCrossRefGoogle Scholar
  97. Dickens, C.W.S. and van Staden, J. (1990) The in vitro flowering of Kalanchöe blossfeldiana Poellniz. II. The effects of growth regulators and gallic acid, Plant Cell Physiol 31, 757–762.Google Scholar
  98. Dielen, V, Lecouvet, V, Dupont, S. and Kinet, J-M. (2001) In vitro control of floral transition in tomato (Lycopersicon esculentum Mill.), the model for autonomously flowering plants, using the late flowering uniflora mutant, J. Exp. Bot 52, 715–723.PubMedGoogle Scholar
  99. Dijkwel, P.P., Huijser, C., Weisbeek, P.J., Chua, N.H. and Smeekens, S.C.M. (1997) Sucrose control of phytochrome signaling in Arabidopsis, Plant Cell 9, 583–595.PubMedGoogle Scholar
  100. Doebley, J., Stec, A. and Hibbard, L. (1997) The evolution of apical dominance in maize, Nature 386, 485–488.PubMedCrossRefGoogle Scholar
  101. Donnison, I.S. and Francis, D. (1993) Determination of floral organ type in cultured Silene shoot apices, Physiol. Plant 89, 315–322.CrossRefGoogle Scholar
  102. Doodeman, M., Boersma, E.A., Koomen, W. and Bianchi, F. (1984) Genetic analysis of instability in Petunia hybrida. 1. A highly unstable mutation induced by a transposable element inserted at the AN] locus for flower colour, Theor. Appl. Genet 67, 345–355.CrossRefGoogle Scholar
  103. Dooner, H.K., Robbins, T. and Jorgensen, R.A. (1991) Genetic and developmental control of anthocyanin biosynthesis, Annu. Rev. Genet 25, 173–199.PubMedCrossRefGoogle Scholar
  104. Domelas, M.C., van Lammeren, A.A.M. and Kreis, M. (2000) Arabidopsis thaliana SHAGGY-related protein kinases (AtSKl1 and 12) function in perianth and gynoecium development, Plant J 21, 419–429.CrossRefGoogle Scholar
  105. Duan, J-X. and Yazawa, S. (1994) In vitro floral development in xDoriella Tiny (Do is pulcherrima x Kingiella philippinensis), Sci. Hort 59, 253–264.CrossRefGoogle Scholar
  106. Duan, J-X. and Yazawa, S. (1995) Floral induction and development in Phalaenopsis in vitro, Plant Cell Tiss. Org. Cult 43, 71–74.CrossRefGoogle Scholar
  107. Dunlap, J.C. (1999) Molecular bases for circadian clocks, Cell 96, 271–290.PubMedCrossRefGoogle Scholar
  108. Eberhard, S., Doubrava, N., Marfa, V., Mohnen, D., Southwick, A., Darvill, A. and Albersheim, P. (1989) Pectic cell wall fragments regulate tobacco thin cell layer explant morphogenesis, Plant Cell 1, 747–755.PubMedGoogle Scholar
  109. Ecker, J.R. (1995) The ethylene signal transduction pathway in plants, Science 268, 667–675.PubMedCrossRefGoogle Scholar
  110. Egea-Cortines, M., Saedler, H. and Sommer, H. (1999) Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhiunum majus, EMBO J 18, 5370–5379.PubMedCrossRefGoogle Scholar
  111. Egea-Cortines, M. and Davies, B. (2000) Beyond the ABCs: ternary complex formation in the control of floral organ identity, Trends Plant Sci 5, 471–476.CrossRefGoogle Scholar
  112. Eimert, K., Wang, S-M., Lue, W-L. and Chen, J.C. (1995) Monogenic recessive mutations causing both late floral initiation and excess starch accumulation in Arabidopsis, Plant Cell 7, 1703–1712Google Scholar
  113. Elomaa, P., Honkanen, J., Puska, R., Seppänen, P., Helariutta, Y, Koes, R., Gerats, A.G.M., Mol, J.N.M. and Stuitje, A.R. (1993) Agrobacterium-mediated transfer of antisense chalcone synthase cDNA to Gerbera hybrida inhibits flower pigmentation, Biotechnology 11, 508–511.CrossRefGoogle Scholar
  114. Endrizzi, K., Moussain, B., Haecker, A., Levin, J.Z. and Laux, T. (1996) The SHOOT MERISTEMLESS gene is required for maintenance of undifferentiated cells in arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem genes WUSCHEL and ZWILLE, Plant J 10, 967–979.PubMedCrossRefGoogle Scholar
  115. Estruch, J.J., Granell, A., Hansen, G, Prinsen, E., Redig, P., Van Onckelen, H., Schwarz-Sommer, Z., Sommer, H. and Spena, A. (1993) Floral development and expression of floral homeotic genes are influenced by cytokinins, Plant J 4, 379–384.PubMedCrossRefGoogle Scholar
  116. Evans, M.M.S. and Barton, M.K. (1997) Genetics of angiosperm shoot apical meristem development, Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 673–701.PubMedCrossRefGoogle Scholar
  117. Feldmann, K.A. (2001) Cytochrome P450s as genes for crop improvement, Curl: Opin. Plant Biol 4, 162–167.CrossRefGoogle Scholar
  118. Ferrândiz, C., Gu, Q., Martienssen, R. and Yanofsky, M.F. (2000) Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALAI and CAULIFLOWER, Development 127, 725–734.PubMedGoogle Scholar
  119. Finer, J.J., Vain, P., Jone, M.W. and McMullen, M.D. (1992) Development of the particle inflow gun for DNA delivery to plant cells, Plant Cell Rep 11, 323–328.CrossRefGoogle Scholar
  120. Finnegan, E.J., Peacock, W.J. and Dennis, E.S. (1996) Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development, Proc. Natl. Acad. Sci. USA 93, 8449–8454.PubMedCrossRefGoogle Scholar
  121. Finnegan, E.J., Genger, R.G., Kovac, K., Peacock, W.J. and Dennis, E.S. (1998) Methylation controls the low-temperature induction of flowering in Arabidopsis, Proc. Natl. Acad. Sci. USA 95, 5824–5829.PubMedCrossRefGoogle Scholar
  122. Fischer, R., Buckle, I. And Hain, R. (1997) Stilbene synthase gene expression causes changes in flower colour and male sterility in tobacco, PlantJ 11, 489–498.Google Scholar
  123. Fletcher, J.C. (2001) The ULTRAPETALA gene controls shoot and floral meristem size in Arabidopsis, Development 128, 1323–1333.PubMedGoogle Scholar
  124. Forkmann, G and Danglemayr, B. (1980) Genetic control of chalcone isomerase activity in flowers of Dianthus caryophyllus, Biochem. Genet 18, 519–527.PubMedCrossRefGoogle Scholar
  125. Fowler, S., Lee, K., Onouchi, H., Samach, A., Richardson, K., Morris, B., Coupland, G and Putterill, J. (1999) GIGANTEA: a circadian cloack-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains, EMBO J 18, 4679–4688.PubMedCrossRefGoogle Scholar
  126. Franks, R.G, Wang, C., Levin, J.Z. and Liu, Z. (2002) SEUSS, a member of a novel family of plant regulatory proteins, represses floral homeotic gene expression with LEUNIG, Development 129, 253–263.PubMedGoogle Scholar
  127. Fuerst, R.A.U.A., Soni, R., Murray, J.A.H. and Lindsey, K. (1996) Modulation of cyclin transcript levels in cultured cells of Arabidopsis thaliana,PlantPhysiol 112, 1023–1033.Google Scholar
  128. Fujioka, T., Fujita, M. and Miyamoto, Y. (1999) In vitro flowering and pod setting on non-symbiotically germinated pea, J. Jap. Soc. Hort. Sci 68, 117–123.CrossRefGoogle Scholar
  129. Furuya, M. (1993) Phytochromes: their molecular species, gene families and functions, Annu. Rev. Plant Physiol. Plant Mol. Biol 44, 617–645.CrossRefGoogle Scholar
  130. Gamburg, K.Z. (1995) Clonal propagation, flowering and fruiting of tomato in vitro, Fiz. Biolcrm. Kul. Rast. 27, 360–366.Google Scholar
  131. Garcia-Luis, A., Santamarina, P. and Guardiola, J.L. (1989) Flower formation from Citrus unshiu buds cultured in vitro, Ann. Bot 64, 515–519.Google Scholar
  132. Gendall, A.R., Levy, Y.Y., Wilson, A. and Dean, C. (2001) The VERNALIZATION 2 gene mediates the epigenetic regulation of vemalization in Arabidopsis, Cell 107, 525–535.PubMedCrossRefGoogle Scholar
  133. Gendy, C., Séne, M., Bui Van Le, Vidal, J. and Tran Thanh Van, K. (1996) Somatic embryogenesis and plant regeneration in Sorghum bicolor (L.) Moench, Plant Cell Rep 15, 900–904.CrossRefGoogle Scholar
  134. Gertsson, U.E. (1988) Development of micropropagated plants from different clones of Senecfio x hybridus in relation to BAP concentration and temperature in vitro, J. Hort. Sci 63, 489–496.Google Scholar
  135. Gibson, S.I. (2000) Plant sugar-response pathways. Part of a complex regulatory web, Plant Physiol 124, 1532–1539.PubMedCrossRefGoogle Scholar
  136. Goldsbrough, A.P., Tong, Y. and Yoder, J.I. (1996) LC as a non-destructive visual reporter and transposition excision marker gene for tomato, Plant J 9, 927–933.CrossRefGoogle Scholar
  137. Gollin, J., Darvill, A.G. and Albersheim, P. (1984) Plant cell wall fragments inhibit flowering and promote vegetative growth in Lemna gibba, Biol. Cell 51, 275–280.Google Scholar
  138. Goodrich, J., Puangsomlee, P., Martin, M., Long, D., Meyerowitz, E.M. and Coupland, G (1997) A polycomb-group gene regulates homeotic gene expression inArabidopsis, Nature 386, 44–51.PubMedCrossRefGoogle Scholar
  139. Goosey, L. and Sharrock, R. (2001) The Arabidopsis compact inflorescence genes: phase-specific growth regulation and the determination of inflorescence architecture, Plant J 26, 549–559.PubMedCrossRefGoogle Scholar
  140. Goto, K. and Meyerowitz, E. M. (1994) Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA, Genes Dev 8, 1548–1560.CrossRefGoogle Scholar
  141. Goto, K., Kyozuka, J. and Bowman, J.L. (2001) Turning floral organs into leaves, leaves into floral organs, Curr. Opin. Genet. Dev 11, 449–456.PubMedCrossRefGoogle Scholar
  142. Grbié, V. and Bleecker, A.B. (1996) An altered body plan is conferred on Arabidopsis plants carrying dominant alleles of two genes, Development 122, 2395–2403.Google Scholar
  143. Green, R.M. and Tobin, E.M. (1999) Loss of the circadian clock-associated protein 1 in Arabidopsis results in altered clock-regulated gene expression, Proc. Natl. Acad. Sci. USA 96, 4176–4179.PubMedCrossRefGoogle Scholar
  144. Griesbach, R.J. (1998) The effect of the Ph6 gene on the color of Petunia hybrida Vilm. flowers, J. Amer. Soc. Hort, Sci 123, 647–650.Google Scholar
  145. Griffith, M.E., Conceiçâo, A.D. and Smyth, D.R. (1999) PETAL LOSS gene regulates initiation and orientation of second whorl organs in the Arabidopsis flower, Development 126, 5635–5644.PubMedGoogle Scholar
  146. Gulati, A., Bharel, S., Jain, S.K., Abdin, M.Z. and Srivastava, P.S. (1996) In vitro micropropagation and flowering in Artemisia annua, J. PlantBiochem. Biotech 5, 31–35.Google Scholar
  147. Guo, H., Yang, H., Mockler, T.C. and Lin, C. (1998) Regulation of flowering time by Arabidopsis photoreceptors, Science 279, 1360–1363.PubMedCrossRefGoogle Scholar
  148. Gupta, S. and Maheshwari, S.C. (1970) Growth and flowering of Lemna paucicostata II. Role of growth regulators, Plant Cell Physiol 11, 97–106.Google Scholar
  149. Gutterson, N. (1995) Anthocyanin biosynthetic genes and their application to flower color modification through sense suppression, Hort. Sci 30, 964–966.Google Scholar
  150. Hackett, W.P. (1985) Juvenility, maturation, and rejuvenation in woody plants, Hort. Rev 7, 109–155.Google Scholar
  151. Halliday, K.J., Devlin, P.F., Whitelam, G.C., Hanhart, C.J. and Koomneef, M. (1996) The ELONGATED gene of Arabidopsis acts independently of light and gibberellins in the control of elongation growth, Plant) 9, 305–312.CrossRefGoogle Scholar
  152. Handro, W. and Floh, E.I.S. (2000) Neo-formation of flower buds and other morphogenetic responses in tissue cultures of Melia azedarach, Plant Cell Tiss, Org. Cult 64, 73–76.CrossRefGoogle Scholar
  153. Hante, T.T. and Tran Thanh Van, K. (1980) Formation in vitro de fleurs à partir des couches minces epidermiques et sous-epidermiques diploids et haploids chez le Nicotiana tabacum L. et chez Nicotiana plumbaginifolia, Z. Pflanzenphysiol 101, 1–8.Google Scholar
  154. Hanh, T.T., Lie-Schricke, H. and Tran Thanh Van, K. (1981) Formation directe de bourgeons à partir des fragments et de couches cellulaires minces de differents organs chez le Psophocarpus tetragonolobus (l.) DC., Z. Pflanzenphysiol 102, 127–139.Google Scholar
  155. Harada, H. and Murai, Y. (1998) In vitro flowering on long-teen subcultured pear shoots, J. Hort. Sci. Biotech 73, 225–228.Google Scholar
  156. Hartmann, U., Hoehmann, S., Nettesheim, K., Wisman, E., Saedler, H. and Huijser, P. (2000) Molecular cloning of SVP: a negative regulator of the floral transition in Arabidopsis, Plant J 21, 351–360.PubMedCrossRefGoogle Scholar
  157. Hedden, P. and Phillips, A.L. (2000a) Manipulation of hormone biosynthetic genes in transgenic plants, Curr. Opin. Biotech 11, 130–137.PubMedCrossRefGoogle Scholar
  158. Hedden, P. and Phillips, A.L. (20006) Gibberellin metabolism: new insights revealed by the genes, Trends Plant Sci 5, 523–530.Google Scholar
  159. Hegstad, J.M., Tarter, J.A., Vodkin, L.O. and Nickell, C.D. (2000) Positioning the wp flower color locus on the soybean genome map, Crop Sci 40, 534–537.CrossRefGoogle Scholar
  160. Hetz, W., Hochholdinger, F., Schwall, M. and Feix, G. (1996) Isolation and characterization of rtcs, a maize mutant deficient in the formation of nodal roots, Plant J 10, 845–857.CrossRefGoogle Scholar
  161. Hicks, K.A., Millar, A.J., Carre, LA., Somers, D.E., Straume, M., Ry Meeks-Wagner, D. and Steve, A.K. (1996) Conditional circadian dysfunction of the Arabidopsis early flowering 3 mutant, Science 274, 790–792.PubMedCrossRefGoogle Scholar
  162. Hicks, K.A., Albertson, T.M. and Wagner, D.R. (2001) EARLYFLOWERING3 encodes a novel protein that regulates circadian clock function and flowering in Arabidopsis, Plant Cell 13, 1281–1292.PubMedGoogle Scholar
  163. Higashiuchi, Y., Kido, K., Ichii, T., Nakanishi, T., Kawai, Y. and Osaki, T. (1990) The effect of gibberellins and growth retardants on in vitro flowering of the vegetative apex of Japanese pear, Sci. Hort 41, 223–232.CrossRefGoogle Scholar
  164. Holton, T.A., Brugliera, F., Lester, D.R., Tanaka, Y., Hyland, C.D., Menting, J.GT, Lu, C.Y., Farcy, E., Stevenson, T.W. and Cornish, E.C. (1993a) Cloning and expression of cytochrome P450 genes controlling flower colour, Nature 366, 276–279.PubMedCrossRefGoogle Scholar
  165. Holton, T.A., Brugliera, F. and Tanaka, Y. (1993b) Cloning and expression of cytochrome P450 genes controlling flower colour, Plant. 14, 1003–1010.Google Scholar
  166. Holton, T.A. and Tanaka, Y. (1994) Blue roses — a pigment of our imagination?, Trends Biotech 12, 40–42.CrossRefGoogle Scholar
  167. Holton, T.A. and Cornish, E.C. (1995) Genetic and biochemistry of anthocyanin biosynthesis, Plant Cell 7, 1071–1083.PubMedGoogle Scholar
  168. Honma, T and Goto, K. (2000) The Arabidopsis floral homeotic gene PISTILLATA is regulated by discrete cis-elements responsive to induction and maintenance signals, Development 127, 2021–2030.PubMedGoogle Scholar
  169. Hudson, A. (1999) Axioms and axes in leaf formation? Curr. Opin. Plant Biol 2, 56–60.PubMedCrossRefGoogle Scholar
  170. Hudson, A. (2000) Development of symmetry in plants, Annu. Rev. Plant Physiol. Plant Mol. Biol 51, 349–370.PubMedCrossRefGoogle Scholar
  171. Immink, R.G.H., Hannapel, D.J., Ferrario, S., Busscher, M., Franken, J., Lookeren, C.M.M. and Angenent, GC. (1999). A petunia MADS box gene involved in the transition from vegetative to reproductive development, Development 126, 5117–5126.PubMedGoogle Scholar
  172. Ingram, GC., Goodrich, J., Wilkinson, M.D., Simon, R., Haughn, G.W. and Coen, E.S. (1995) Parallels between UNUSUAL FLORAL ORGANS and FIMBRIATA, genes controlling flower development in Arabidopsis and Antirrhinum, Plant Cell 7, 1501–1510.PubMedGoogle Scholar
  173. Inoue, T., Higuchi, M., Hashimoto, Y., Seki, M., Kobayashi, M., Kato, T., Tabata, S., Shinozaki, K. and Kakimoto, T. (2001) Identification of CRE] as a cytokinin receptor from Arabidospsis, Nature 409, 1060–1063.PubMedCrossRefGoogle Scholar
  174. Itoh, J., Kitano, H., Matsuoka, M. and Nagato, Y. (2000) SHOOT ORGANIZATION genes regulate shoot apical meristem organization and the pattern of leaf primordium initiation in rice, Plant Cell 12, 2161–2174.PubMedGoogle Scholar
  175. Ivanov, P., Encheva, J. and Ivanova, I. (1998) A protocol to avoid precocious flowering of sunflower plants in vitro, Plant Breed 117, 582–584.CrossRefGoogle Scholar
  176. Jack, T., Brockman, L. L. and Meyerowitz, E. M. (1992) The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens, Cell 68, 683–697.PubMedCrossRefGoogle Scholar
  177. Jackson, D. and Hake, S. (1999) Control of phyllotaxy in maize by the abphyll gene, Development 126, 315–323.PubMedGoogle Scholar
  178. Jacobsen, S.E. and Olszewski, N.E. (1993) Mutations at the SPINDLY locus of Arabidopsis alter gibberellin signal transduction, Plant Cell 5, 887–896.PubMedGoogle Scholar
  179. Jacobsen, S. E., Binkowski, K. A. and Olszewski, N. E. (1996) SPINDLY, a tetratricopeptide repeat protein involved in gibberellin signal transduction in Arabidopsis, Proc. Natl. Acad. Sci. USA 93, 9292–9296.PubMedCrossRefGoogle Scholar
  180. Jacobsen, S.E., Running, M.P. and Meyerowitz, E.M. (1999) Disruption of an RNA helicase/RNAse III gene in Arabidopsis causes unregulated cell division in floral meristems, Development 126, 5231–5243.PubMedGoogle Scholar
  181. Jenik, P.D. and Irish, V.F. (2001) The Arabidopsis floral homeotic gene APETALA3 differentially regulates intercellular signaling required for petal and stamen development, Development 128, 13–23.PubMedGoogle Scholar
  182. Jean, J.S., Jong, S., Lee, S., Nam, J., Kim, C., Lee, S.H., Chung, Y.Y., Kim, S.R., Lee, Y.H., Cho, Y.G. and An, G. (2000) Leafy hull sterile] is a homeotic mutation in a rice MADS box gene affecting rice flower development, Plant Cell 12: 871–884.Google Scholar
  183. Jofuku, K. D., den Boer, B. G. W., Van Montagu, M. and Okamuro, J. K. (1994) Control of Arabidopsis flower and seed development by the homeotic gene APETALA2, Plant Cell 6, 1211–1225.PubMedGoogle Scholar
  184. Jorgensen, R.A. (1995) Cosuppression, flower colour patterns and metastable gene expression states, Science 268, 686–691.PubMedCrossRefGoogle Scholar
  185. Juarez, C. and Banks, J.A. (1998) Sex determination in plants, Cure.. Opin. PlantBiol 1, 68–72.CrossRefGoogle Scholar
  186. Jumin, H.B. and Nito, N. (1995) Embryogenic protoplast cultures of orange jessamine (Murraya paniculata) and their regeneration into plants flowering in vitro, Plant Cell Tiss. Org. Cult 41, 277–279.CrossRefGoogle Scholar
  187. Jumin, H.B. and Nito, N. (1996) In vitro flowering of Fortunella hindsii (Champ.), Plant Cell Rep 15, 484–488.CrossRefGoogle Scholar
  188. Kakimoto, T. (1996) CKI1, a histidine kinase homolog implicated in cytokinin signai transduction, Science 274, 982–985.PubMedCrossRefGoogle Scholar
  189. Kania, T., Russenberger, D., Peng, S., Apel, K. and Melzer, S. (1997) FPFI promotes flowering in Arabidopsis, Plant Cell 9, 1327–1338.PubMedGoogle Scholar
  190. Kardailsky, I., Shukla, V.K., Ahn, J.T., Dagenais, N., Christensen, S.K., Nguyen, J.T., Chory, J., Harrison, M.J. and Weigel, D. (1999) Activation tagging of the floral inducer FT, Science 286, 1962–1965.PubMedCrossRefGoogle Scholar
  191. Kaur-Sawhney, R., Tiburcio, A.F. and Galston, A.W. (1988) Spermidine and flower bud differentiation in thin layer tobacco tissue cultures, Planta 173, 282–284.CrossRefGoogle Scholar
  192. Kaya, H., Shibahara, K., Taoka, K., Iwabuchi, M., Stillman, B. and Araki, T. (2001) FA SCIA TA genes for chromatin assembly factor-1 in Arabidopsis maintain the cellular organization of apical meristems, Cell 104, 131–142.PubMedCrossRefGoogle Scholar
  193. Kayes, J.M. and Clark, S.E. (1998) CLAVATA2, a regulator of meristem and organ development in Arabidopsis, Development 125, 3843–3851.PubMedGoogle Scholar
  194. Kempin, S. A., Savidge, B. and Yanofsky, M. F. (1994) Molecular basis of the cauliflower phenotype in Arabidopsis, Science 267, 522–525.CrossRefGoogle Scholar
  195. Kim, K.N. and Ernst, S.G. (1994) Effects of inhibitors on phenocritical events of in vitro shoot organogenesis in tobacco thin cell layers, Plant Sci 103, 59–66.CrossRefGoogle Scholar
  196. King, R.W., Blundell, C. and Evans, L.T. (1993) The behaviour of shoot apices of Lolium temulentum in vitro as the basis of an assay system for florigenic extracts, Austr. J. Plant Physiol 20, 337–348.CrossRefGoogle Scholar
  197. Kintzios, S. and Michaelakis, A. (1999) Induction of somatic embryogenesis and in vitro flowering from inflorescences of chamomile (Chamomilla recutita L.), Plant Cell Rep 18, 684–690.CrossRefGoogle Scholar
  198. Kiyosue, T. and Wada, M. (2000) LKP1 (LOV ketch protein 1): a factor involved in the regulation of flowering time in Arabidopsis, Plant J 23, 807–815.PubMedCrossRefGoogle Scholar
  199. Kondo, T., Yoshida, Y, Nakagawa, A., Kawai, T. and Fukui, H. (1992) Structural basis of blue-colour development in flower petals from Commelina communis, Nature 358, 515–518.CrossRefGoogle Scholar
  200. Koomneef, M., Alonso-Blanco, C., Blankestijn-de Vries, H., Hanhart, C.J. and Peeters, A.J.M. (1998a) Genetic interactions among late-flowering mutants of Arabidopsis, Genetics 148, 885–892.Google Scholar
  201. Koomneef, M., Alonso-Blanco, C., Peeters, A.J.M. and Soppe, W. (1998b) Genetic control of flowering time in Arabidopsis,Annu. Rev, Plant Physiol. Plant Mol. Biol 49, 345–370.CrossRefGoogle Scholar
  202. Koomneef, M., Manhart, C.J. and van den Veen, J.H. (1991) A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana, Mol. Gen. Genet 229, 57–66.Google Scholar
  203. Koomneef, M., Elgersma, A., Hanhart, C.J., Van Loenen-Martinet, E.P., Van Rijn, L. and Zeevaart, J.A.D. (1985) A gibberellin insensitive mutant of Arabidopsis thaliana, Physiol. Plant 65, 33–39.CrossRefGoogle Scholar
  204. Koomneef, M. and van der Veen, J.H. (1980) Induction and analysis of gibberellin-sensitive mutants in Arabidopsis thaliana (L.) Heynh., Theor. Appl. Genet 58, 257–263.CrossRefGoogle Scholar
  205. Kotilainen, M., Elomaa, P., Uimari, A., Albert, V.A., Yu, D. and Teeri, T.H. (2000) GRCDJ, an AGL2-like MADS-box gene, participates in the C function during stamen development in Gerbera hybrida, Plant Cell 12, 1893–1902.PubMedGoogle Scholar
  206. Kovoor, A. (1981) Palm tissue culture: state of the art and its application to the coconut, FAO Plant Production and Protection Paper 30. FAO, UN, Rome.Google Scholar
  207. Krizek, B.A. (1999) Ectopie expression of AINTEGUMENTA in Arabidopsis plants results in increased growth of floral organs, Deu Genet 25, 224–236.CrossRefGoogle Scholar
  208. Kulkami, V.M., Choudhari, A.N., Shah, B.S. and Harinarayanna, G (1995) In vitro flowering in pearl millet (Pennisetum glaucum (L.) R.Br.), Indian J. Exp. Biol 33, 142–143.Google Scholar
  209. Kumar, T.A. and Reddy, G.M. (1997) Identification and expression of AGAMOUS gene homologue during in vitro flowering from cotyledons of groundnut, J. PlantBiochem. Biotech. 6, 81–84.Google Scholar
  210. Laufs, P., Dockx, J., Kronenberg, J. and Traas, J. (1998)MGOUNI and MGOUN2: two genes required for primordium initiation at the shoot apical and floral meristems in Arabidopsis thaliana, Development 125, 1253–1260.Google Scholar
  211. Laux, T., Mayer, K.F.X., Berger, J. and Juergen, G. (1996) The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis, Development 122, 87–96.PubMedGoogle Scholar
  212. Ledger, S.E., Dare, A.P. and Putterill, J. (1996) COL2 is a homologue of the Arabidopsis flowering time gene CONSTANS, Plant Physiol 112, 862–879.Google Scholar
  213. Lee, H., Suh, S-S., Park, E., Cho, E., Ahn, J.H., Kim, S-G, Lee, J.S., Kwon, Y.M. and Lee, I. (2000) The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis, Genes Dev 14, 2366–2376.PubMedCrossRefGoogle Scholar
  214. Lee, I., Aukerman, M.J., Gore, S.L., Lohman, K.N., Michaels, S.D., Weaver, L.M., John, M.C., Feldman, K.A. and Amasino, R.M. (1994a) Isolation of LUMINIDEPENDENS: a gene involved in the control of flowering time in Arabidopsis, Plant Cell 6, 75–83.PubMedGoogle Scholar
  215. Lee, I., Michaels, S. D., Masshardt, A. S. and Amasino, R. M. (1994b) The late-flowering phenotype of FRIGIDA and mutations in LUMINIDEPENDENS is suppressed in the Landsberg erecta strain of Arabidopsis, Plant J 6, 903–909.CrossRefGoogle Scholar
  216. Lee, I., Wolfe, D.S., Nilsson, O. and Weigel, D. (1997) A leafy coregulator encoded by unusual floral organs, Curr. Biol 7, 95–104.PubMedCrossRefGoogle Scholar
  217. Lee-Stadlemann, O.Y., Lee, S., Hackett, W.P. and Read, P.E. (1989) The formation of adventitous buds in vitro on micro-sections of hybrid Populus leaf mid veins, Plant Sci 61, 263–272.CrossRefGoogle Scholar
  218. Lenhard, M and Laux, T. (1999) Shoot meristem formation and maintenance, Curr. Opin. Plant Biol 2, 44–50.PubMedCrossRefGoogle Scholar
  219. Lenhard, M., Bohnert, A., Jürgens, G and Laux, T. (2001) Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS, Cell 105, 805–814.PubMedCrossRefGoogle Scholar
  220. Lerouge, P., Roche, P., Faucher, C., Fabienne, M., Truchet, G, Prom, J.C. and Der, J. (1990) Symbiotic host specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal, Nature 344, 781–784.PubMedCrossRefGoogle Scholar
  221. Levin, J. Z. and Meyerowitz, E. M. (1995) UFO: An Arabidopsis gene involved in both floral meristem and floral organ development, Plant Cell 7, 529–548.PubMedGoogle Scholar
  222. Leyser, H.M.O. and Fumer, I.J. (1992) Characterization of three shoot apical meristem mutants of Arabidopsis thaliana, Development 116, 397–403.Google Scholar
  223. Levy, Y.Y. and Dean, C. (1998) The transition to flowering, Plant Cell 10, 1973–1989.PubMedGoogle Scholar
  224. Li, Y., Zhang, H. and Han, B-W. (1996) Changes of endogenous hormone contents during floral bud and vegetative bud differentiation in thin cell layer culture of Cichorium intybus L. explant, Acta Bot. Sin 38, 131–135.Google Scholar
  225. Lin, C., Ahmad, M., Chan, A.R. and Cashmore, A.R. (1996) CRY2: a second member of the Arabidopsis cryptochrome gene family, Plant Physiol 110, 1047–1135.CrossRefGoogle Scholar
  226. Lin, T. P., Caspar, T., Somerville, C. and Preiss, J. (1988) Isolation and characterization of a starchless mutant of Arabidopsis thaliana (L.) Heyn lacking ADPglucose pyrophosphorylase activity, Plant Physiol 86, 1131–1135.PubMedCrossRefGoogle Scholar
  227. Lister, C., Jackson, D. and Martin, C. (1993) Transposon-induced inversion in Antirrhinum modifies nivea gene expression to give novel flower color pattern under the control of cycloidecrradialis Plant Cell 5, 1541–1553.Google Scholar
  228. Liu, D. and Crawford, N.M. (1998) Characterization of the germinal and somatic activity of the Arabidopsis transposable element Tag 1, Genetics 148, 445–456.PubMedGoogle Scholar
  229. Lin, D. Zhang, S., Fauquet, C. and Crawford, N.M. (1999) The Arabidopsis transposon Tagl is active in rice, undergoing germinal transposition and restricted, late somatic excision, Mol. Gen. Genet 262, 413–420.Google Scholar
  230. Liu, D., Galli, M. and Crawford, N.M. (2001) Engineering variegated floral patterns in tobacco plants using the Arabidopsis transposable element Tagl, Plant Cell Physiol 42, 419–423.PubMedCrossRefGoogle Scholar
  231. Liu, Z. and Meyerowitz, E. M. (1995) LEUNIG regulates AGAMOUS expression in Arabidopsis flowers, Development 121, 975–991.PubMedGoogle Scholar
  232. Liu, Z., Running, M.P. and Meyerowitz, E.M. (1997) TSO1 functions in cell division during Arabidopsis flower development, Development 124: 665–672.PubMedGoogle Scholar
  233. Lloyd, A.M., Walbot, V. and Davis, R.W. (1992) Arabidopsis and Nicotiana anthocyanin production activated by maize regulators R and CI, Science 258, 1773–1775.PubMedCrossRefGoogle Scholar
  234. Long, J.A., Moan, E.I., Medford, J.I. and Barton, M.K. (1996) A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis, Nature 379, 66–69.PubMedCrossRefGoogle Scholar
  235. Lotan, T, Ohto, M-A., Yee, K.M., West, M.A.L., Lo, R., Kwong, R.W., Yamagishi, K., Fischer, R.L., Goldberg, R.B. and Harada, J.J. (1998) Arabidopsis LEAFY COTYLEDON is sufficient to induce embryo development in vegetative cells, Cell 93, 1195–1205.PubMedCrossRefGoogle Scholar
  236. Lu, Y-P., Li, Z-S. and Rea, P.A. (1997) AtMRP] gene of Arabidopsis encodes a glutathione S-conjugate pump: isolation and functional definition of a plant ATP-binding cassette transporter gene, Proc. Natl. Acad. Sci. USA 94, 8243–8248.PubMedCrossRefGoogle Scholar
  237. Luo, D., Carpenter, R., Vincent, C., Copsey, L. and Coen, E. (1996) Origin of floral asymmetry in Antirrhinum, Nature 383, 794–799.PubMedCrossRefGoogle Scholar
  238. Luo, D., Carpenter, R., Copsey, L., Vincent, C., Clark, J. and Coen, E. (1999) Control of organ asymmetry in flowers of Antirrhinum, Cell 99, 367–376.PubMedCrossRefGoogle Scholar
  239. Lynn, K., Fernandez, A., Aida, M., Sedbrook, J., Tasaka, M., Masson, P. and Barton, M.K. (1999) The PINHEAD/ZWILLE gene acts pleiotropically in Arabidopsis development and has overlapping functions with the ARGONAUTE] gene, Development 126, 469–481.PubMedGoogle Scholar
  240. Ma, H., Yanofsky, M.F. and Meyerowitz, E.M. (1991) AGL1–AGL6, and Arabidopsis gene family with similarity to floral homeotic and transcription factor genes, Genes Dev 5, 484–495.PubMedCrossRefGoogle Scholar
  241. Macknight, R., Bancroft, I., Page, T., Lister, C., Schmidt, R., Love, K., Westphal, L., Murphy, G, Sherson, S. and Cobbett, C. (1997) FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domains, Cell 89, 737–745.PubMedCrossRefGoogle Scholar
  242. Maes, T., Van de Steene, N., Zethof, J., Karimi, M., D’Hauw, M., Mares, G, Van Montagu, M. and Gerats, T. (2001) Petunia Apt-like genes and their role in flower and seed development, Plant Cell 13, 229–244.PubMedGoogle Scholar
  243. Mandel, M. A., Gustafson-Brown, C., Savidge, B. and Yanofsky, M. F. (1992) Molecular characterization of the Arabidopsis floral homeotic gene APETALAI, Nature 360, 273–277.PubMedCrossRefGoogle Scholar
  244. Mandel, M.A. and Yanofsky, M.F. (1998) The ArabidopsisAGL9 MADS box gene is expressed in young flower primordia, Sex PlantReprod 11, 22–28.CrossRefGoogle Scholar
  245. Marfa, V., Gollin, D., Eberhardt, S., Mohnen, D., Darvill, A. and Albersheim, P. (1991) Oligogalacturonides are able to induce flowers to form on tobacco explants, Plant J 1, 217–225.CrossRefGoogle Scholar
  246. Markham, K.R., Gould, K.S., Winefield, C.S., Mitchell, K.A., Bloor, S.J. and Boase, M.R. (2000) Anthocyanic vacuolar inclusions — their nature and significance in flower colouration, Phytochemistry 55, 327–336.PubMedCrossRefGoogle Scholar
  247. Mauro, M.L., Trovato, M., De Paolis, A., Gallelli, A., Costantino, P. and Altamura, M.M. (1996) The plant oncogene rolD stimulates flowering in transgenic tobacco plants, Dev. Biol 180, 693–700.PubMedCrossRefGoogle Scholar
  248. McConnell, J.R. and Barton, M.K. (1998) Leaf polarity and meristem formation in Arabidopsis, Development 125, 2935–2942.PubMedGoogle Scholar
  249. McDaniel, C.N., Sangry, H.K. and Singer, S.R. (1989) Node counting in axillary buds of Nicotiana tabacum cv. Wisconsin 38, a day-neutral plant, Amer. J. Bot 76, 403–408.CrossRefGoogle Scholar
  250. McKelvie, A.D. (1962) A list of mutant genes in Arabidopsis thaliana (L.) Heynh., Radiat. Bot 1, 233–241.CrossRefGoogle Scholar
  251. McSteen, P., Laudencia-Chingcuanco, D. and Colasanti, J. (2000) A floret by any other name: control of meristem identity in maize, Trends Plant Sci 5, 61–66.Google Scholar
  252. McSteen, P. and Hake, S. (2001) barren inflorescence2 regulates axillary meristem development in the maize inflorescence, Development 128, 2881–2891.Google Scholar
  253. Meeks Wagner, D., Dennis, E.S., Tran Thanh Van, K. and Peacock, W.J. (1989) Tobacco genes expressed during in vitro floral initiation and their expression during normal plant development, Plant Cell 1, 25–35.PubMedGoogle Scholar
  254. Mena, M., Ambrose, B.A., Meeley, R.B., Briggs, S.P., Yanofsky, M.F. and Schmidt, R.J. (1996) Diversification of C-function activity in maize flower development, Science 61, 1537–1540.CrossRefGoogle Scholar
  255. Meyer, P., Heidmann, I., Forkmann, G. and Saedler, H (1987) A new petunia flower colour generated by transformation of a mutant with a maize gene, Nature 330, 677–678.PubMedCrossRefGoogle Scholar
  256. Meyerowitz, E.M. (1997) Genetic control of cell division patterns in developing plants, Cell 88, 299–308.PubMedCrossRefGoogle Scholar
  257. Meyerowitz, E.M. (1998) Genetic and molecular mechanisms of pattern formation in Arabidopsis flower development, J. Plant Res 111, 233–242.CrossRefGoogle Scholar
  258. Michaels, S.D. and Amasino, R.M. (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering, Plant Cell 11, 949–956.PubMedGoogle Scholar
  259. Miles, C.O. and Main, L. (1985) Kinetics and mechanism of the cyclisation of 2’,6’-dihydroxy-4,4’-dimetghoxychalcone; influence of the 6’-hydroxyl group on the rate of cyclisation under neutral conditions, J. Chem. Soc. Perkin Trans. 11, 1639–1642.Google Scholar
  260. Millar, A.J., Carré, I.A., Strayer, C.A., Chua, N.H. and Kay, S.A. (1995) Circadian clock mutants in Arabidopsis identified by luciferase imaging, Science 267, 1161–1163.PubMedCrossRefGoogle Scholar
  261. Misera, S., Mueller, A.J., Weiland-Heidecker, U. and Juergens, G (1994) The FUSCA genes of Arabidopsis: negative regulators of light responses, Mol. Gen. Genet 244, 242–252.PubMedCrossRefGoogle Scholar
  262. Mohnen, D., Eberhardt, S., Marfa, V., Doubrava, N., Toubart, P., Gollin, D.J., Gruber, T.A., Nuri, W., Albersheim, P. and Darvill, A. (1990) The control of root, vegetative shoot and flower morphogenesis in tobacco thin cell-layer explants (TCLs), Development 108, 191–201.PubMedGoogle Scholar
  263. Mol, J.N.M., Holton, T.A. and Koes, R.E. (1995) Floriculture: genetic engineering of commercial traits, Trends Biotech 13, 350–355.CrossRefGoogle Scholar
  264. Mol, J., Grotewold, E. and Koes, R. (1998) How genes paint flowers and seeds, Trends Plant Sci 3, 212–217.CrossRefGoogle Scholar
  265. Mooney, M., Desnos, T., Harrison, K., Jones, J., Carpenter, R. and Coen, E. (1995) Altered regulation of tomato and tobacco pigmentation genes caused by the DELILA gene of Antirrhinum, Plant J 7, 333–339.CrossRefGoogle Scholar
  266. Motte, P., Saedler, H. and Schwarz-Sommer, Z. (1998) STYLOSA and FISTULATA: regulatory components of the homeotic control of Antirrhinum floral organogenesis, Development 125, 71–84.PubMedGoogle Scholar
  267. Moussian, B., Schoof, H., Haecker, A., Jurgens, G and Laux, T. (1998) Role of the ZWILLE gene in the regulation of central shoot meristem cell fate during Arabidopsis embryogenesis, EMBO J 17, 1799–1809.PubMedCrossRefGoogle Scholar
  268. Msikita, W., Skirvin, R.M., Juvik, J.A., Splittstoesser, W.E. and Ali, N. (1990) Regeneration and flowering in vitro of `Burpless Hybrid’ cucumber from excised seed, HortScience 25, 474–477.Google Scholar
  269. Mulin, M. and Tran Thanh Van, K. (1989) Obtention of in vitro flowers from thin epidermal cell layers of Petunia hybrida (Bort.), Plant Sci 62, 113–121.CrossRefGoogle Scholar
  270. Muller, J-F., Goujaud, J. and Caboche, M. (1985) Isolation in vitro of napthaleneacetic acid-tolerant mutants of Nicotiana tabacum, which are impaired in root morphogenesis, Mol. Gen. Genet 199, 194–200.CrossRefGoogle Scholar
  271. Mutafstchiev, S., Cousson, A. and Tran Thanh Van, K. (1987) Modulation of cell growth and differentiation by pH and oligosaccharides, in British Plant Growth regulator Group, Monograph 16.Google Scholar
  272. Nadgauda, R.S., Parasharami, V.A. and Mascarenhas, A.F. (1990) Precocious flowering and seedling behaviour in tissue cultured bamboos, Nature 344, 335–336.CrossRefGoogle Scholar
  273. Nadgauda, R.S., John, C.K., Parasharami, V.A., Joshi, M.S. and Mascarenhas, A.F. (1997) A comparison of in vitro with in vivo flowering in bamboo, Bambusa arundinacea, Plant Cell Tiss. Org. Cult 48, 181–188.CrossRefGoogle Scholar
  274. Napoli, C., Lemieux, C. and Jorgensen, R. (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans, Plant Cell 2, 279–290.Google Scholar
  275. Napp-Zinn, K. (1962) Uber die genetischen grundlagen des vernalisations bedurgnisses bei Arabidopsis thaliana. I. Die zahl der beteiligting faktoren, Z. Vererbungsl 93, 154.Google Scholar
  276. Nelson, D.C., Lasswell, J., Rogg, L.E., Cohen, M.A. and Bartel, B. (2000) FKFI, a clock-controlled gene that regulates the transition to flowering in Arabidopsis, Cell 101, 331–340.PubMedCrossRefGoogle Scholar
  277. Nhut, D.T. (1998) Micropropagation of lily (Lilium longiflorum) via in vitro stem node and pseudo-bulblet culture, Plant Cell Rep 117, 913–6.CrossRefGoogle Scholar
  278. Nhut, D.T., Bui, V.L., Fukai, S., Tanaka, M. and Tran Thanh Van, K. (2000) Direct somatic embryogenesis through pseudo-bulblet thin cell layer of Lilium longiflorum, Abstract of 2000 World Congress on In Vitro Biology San Diego, California, p. 46. A.Google Scholar
  279. Nhut, D.T., Bui, V.L., Tanaka, M. and Tran Thanh Van, K. (200la) Shoot induction and plant regeneration from receptacle tissue of Lilium longiflorum, Sci. Hort 87, 131–8.Google Scholar
  280. Nhut, D.T., Bui, V.L., Fukai, S., Tanaka, M. and Tran Thanh Van, K. (200 lb) Effects of activated charcoal, explant size, explant position and sucrose concentration on plant and shoot regeneration of Lilium longiflorum via young stem culture, Plant Growth Reg 33, 59–65.Google Scholar
  281. Nhut, D.T., Bui, V.L. and Tran Thanh Van, K. (2001e) Manipulation of the morphogenetic pathways of Lilium longiflorum transverse thin cell layer explants by auxin and cytokinin, In Vitro Cell. Dev. Biol 37, 44–49.Google Scholar
  282. Nhut, D.T., Bui, V.L., da Silva, J.A.T. and Aswath, C.R. (2001d) Thin cell layer culture system in Lilium: Regeneration and Transformation Perspectives, In Vitro Cell, Dev. Biol 37, 516–523.Google Scholar
  283. Nhut, D.T., Huong, N.T.D., Bui, V.L., da Silva, J.A.T., Fukai, S. and Tanaka, M. (2001e) The changes in shoot regeneration potential of protocorm-like bodies derived from Lilium longiflorum young stem explants exposed to medium volume, pH, light intensity and sucrose concentration pretreatment, J. Hort. Sci. Biotech 77, 79–82.Google Scholar
  284. Nhut, D.T., Bui, V.L., Minh, N.T., da Silva, J.A.T., Fukai, S., Tanaka, M. and Tran Thanh Van, K. (2001f) Direct somatic embryogenesis through pseudo-bulblet transverse thin cell layers of Lilium longiflorum, Plant Sei 77, 79–82.Google Scholar
  285. Nhut, D.T. (2001g) Effect of explant age on direct somatic embryogenesis by culturing young stem transverse thin cell layers of Lilium longiflorum, Sci. Hort (Summited paper).Google Scholar
  286. Nhut, D.T. and da Silva, J.A.T. (2001h) The control of in vitro direct main stem formation of Lilium longiflorum derived from receptacle culture and micropropagation by using in vitro stem nodes, J. Plant Physiol (Summited paper).Google Scholar
  287. Nhut, D.T., da Silva, J.A.T., Bui, V.L. and Tran Thanh Van, K. (2001i) Thin cell layer (TCL) morphogenesis as a powerful tool in woody plant and fruit crop micropropagation and biotechnology, floral genetics and genetic transformation,, In: X and Y (eds.) Cell and tissue culture in forestry, Kluwer Academic Publishers.Google Scholar
  288. Noda, K., Glover, B.J., Linstead, P. and Martin, C. (1994) Flower colour intensity depends on specialized cell shape controlled by a Myb-related transcription factor, Nature 369, 661–664.PubMedCrossRefGoogle Scholar
  289. Okada, K., Ueda, J., Komaki, M.K., Bell, C.J. and Shimura, Y. (1991) Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation, Plant Cell 3, 677–684.PubMedGoogle Scholar
  290. Otsuga, D., DeGuzman, B., Prigge, M.J., Drews, G.N. and Clark, S.E. (2001) REVOLUTA regulates meristem initiation at lateral positions, Plant 25, 223–236.CrossRefGoogle Scholar
  291. Oud, J.S.N., Schneiders, H., Kool, A.J. and van Grinsven, M.Q.J.M. (1995) Breeding of transgenic orange Petunia hybrida varieties, Euphytica 85, 403–409.CrossRefGoogle Scholar
  292. Page, T., Macnight, R., Yang, C-I-I. and Dean, C. (1999) Genetic interactions of the Arabidopsis flowering time gene FCA, with genes regulating floral initiation, Plant 17, 231–239.CrossRefGoogle Scholar
  293. Park, D.H., Somers, D.E., Kim, Y.S., Choy, Y.H., Lim, H.K., Soh, M.S., Kim, H.J., Kay, S.A. and Nam, H.G. (1999) Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene, Science 285, 1579–1582.PubMedCrossRefGoogle Scholar
  294. Parks, B.M. and Quail, P.H. (1991) Phytochrome-deficient hyl and hy2 long hypocotyls mutants of Arabidopsis are defective in phytochrome chromophore biosynthesis, Plant Cell 3, 1177–1186.PubMedGoogle Scholar
  295. Pautot, V., Dockx, J., Ramant, O., Kronenberger, J., Grandjean, O., Jublot, D. and Traas, J. (2001) KNAT2: evidence for a link between Knotted-like genes and carpel development, Plant Cell 13, 1719–1734.PubMedGoogle Scholar
  296. Pedersen, C., Hansen, C.W., Brandt, K. and Kristiansen, K. (1996) Alstroemeria plantlets can be induced to flowering by cold treatment during in vitro culture, Sci. Hort 66, 217–228.Google Scholar
  297. Pelaz, S., Ditta, G, Baumann, E., Wisman, E. and Yanofsky, M. (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes, Nature 405, 200–203.PubMedCrossRefGoogle Scholar
  298. Peng, J., Carol, P., Richards, D. E., King, K. E., Cowling, R. J., Murphy, G P. and Harberd, N. P. (1997) The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses, Genes Dev 11, 3194–3205.PubMedCrossRefGoogle Scholar
  299. Pepper, A.E. and Chory, J. (1997) Extragenic suppressors of the atabidopsis det1 mutant identify elements of flowering time and light response regulatory pathways, Genetics 145, 1125–1137.PubMedGoogle Scholar
  300. Perica, M.C. and Berljak, J. (1996) In vitro growth and regeneration of Drosera spatulata Labill. on various media, HortScience 31, 1033–1034.Google Scholar
  301. Pidkowich, M.S., Klenz, J.E. and Haughn, G.W. (1999) The making of a flower: control of floral meristem identity in Arabidopsis, Trends Plant Sci 4, 64–70.CrossRefGoogle Scholar
  302. Pinero, M. and Coupland, G (1998) The control of flowering time and floral identity in Arabidopsis, PlantPhysiol 117, 1–8.CrossRefGoogle Scholar
  303. Pnueli, L., Hareven, D., Broday, L., Hurwitz, C. and Lifschitz, E. (1994) The TM5 MADS box gene mediates organ differentiation in the three inner whorls of tomato flowers, Plant Cell 6, 175–186.PubMedGoogle Scholar
  304. Pnueli, L., Carmel-Goren, L., Harevan, D., Gutfinger, T., Alvarez, J., Ganal, M., Zamir, D. and Lifschitz, E. (1998) The SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1, Development 125, 1979–1989.Google Scholar
  305. Porath, D. and Galun, E. (1967) In vitro culture of hermaphrodite floral buds of Cucumis melo L.: microsporogenesis and ovary formation, Ann. Bot 31, 283–289.Google Scholar
  306. Pouteau, S., Nicholls, D., Tooke, F., Coen, E. and Battey, N. (1997) The induction and maintenance of flowering in Impatiens, Development 124, 3343–3351.Google Scholar
  307. Pouteau, S. (2001) Conceptual context of floral repression in Arabidopsis, Flower: Nwsltr 31, 12–18. Purohit, M., Pande, D., Dana, A. and Srivastava, P.S. (1996) In vitro flowering and high xanthotoxin in Ammi majus L., J. Plant Biochem. Biotech. 4, 73–76.Google Scholar
  308. Putterill, J., Robson, F., Lee, K., Simon, R. and Coupland, G (1995) The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors, Cell 80, 847–857.PubMedCrossRefGoogle Scholar
  309. Putterill, J., Ledger, S.E., Lee, K., Robson, F., Murphy, G and Coupland, G. (1997) The flowering time gene CONSTANS and homologue CONSTANS LIKE 1 exist as a tandem repeat on chromosome 5 of Arabidopsis, Plant Physiol 114, 396–405.Google Scholar
  310. Qian, D., Zhou, D., Ju, R., Cramer, C.L. and Yang, Z. (1996) Protein famesyltransferases in plants: molecular characterization and involvement in cell cycle control, Plant Cell 8, 2381–2394.PubMedGoogle Scholar
  311. Quattrocchio, F., Wing, J.F., van der Woude, K., Mol, J.N.M. and Koes, R. (1998) Analysis of bHLH and MYB domain proteins: species-specific regulatory differences are caused by divergent evolution of target anthocyanin genes, Plant J 13, 475–488.PubMedCrossRefGoogle Scholar
  312. Rajeevan, M.S. and Lang, A. (1987) Comparison of de novo flower-bud formation in a photoperiodic and a day-neutral tobacco, Planta 171, 560–564.CrossRefGoogle Scholar
  313. Ramanayake, S.M.S.D. (1999) Viability of excised embryos, shoot proliferation and in vitro flowering in a species of rattan Calamus thwaitesii Becc., J. Hort. Sci. Biotech 74, 594–601.Google Scholar
  314. Ray, A., Land, J.D., Golden, T. and Ray, S. (1996) SHORT INTEGUMENT (SIN1), a gene required for ovule evelopment in Arabidopsis, also controls flowering time, Development 122, 2631–2638.PubMedGoogle Scholar
  315. Rédei, GP. (1962) Supervital mutants of Arabidopsis, Genetics 47, 443–460.Google Scholar
  316. Reed, J.W., Nagpal, P., Poole, D.S., Furuya, M. and Chory, J. (1993) Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout A rabidopsis development, Plant Cell 5, 147–157.PubMedGoogle Scholar
  317. Reed, J. W., Nagatani, A., Elich, T. D., Fagan, M. and Chory, J. (1994) Phytochrome Aand Phytochrome B have overlapping but distinct functions in Arabidopsis development, Plant Physiol 104, 1139–1149.PubMedGoogle Scholar
  318. Reinhardt, D., Mandel, T. and Kuhlemeier, C. (2000) Auxin regulates the initiation of and radial position of plant lateral organs, Plant Cell 12, 507–518.PubMedGoogle Scholar
  319. Richmond, T.A. and Bleecker, A.B. (1999) A defect in beta-oxidation causes abnormal inflorescence development in Arabidopsis, Plant Cell 11, 1911–1923.Google Scholar
  320. Rinne, P.L.H. and van der Schoot, C. (1998) Symplastic fields in the tun ca of the shoot apical meristem coordinate morphogenetic events, Development 125, 1477–1485.PubMedGoogle Scholar
  321. Roberts, N.J., Luckman, GA. and Menary, R.C. (1993) In vitro flowering of Boronia megastigma Nees. and the effect of 6-benzylaminopurine, J. Plant Growth Reg 12, 117–122.CrossRefGoogle Scholar
  322. Robertson, S., Li, Y., Scutt, C., Willis, M. and Gilmartin, P. (1997) Spatial expression dynamics of/fen-9 delineate the thrird whorl in male and female flowers of dioecious Silene latifolia, Plant J 12, 155–168.CrossRefGoogle Scholar
  323. Robinson, K.E.P. and Firoozabady, E. (1993) Transformation of floriculture crops, Sci. Hort 55, 83–99.CrossRefGoogle Scholar
  324. Roe, J.L., Rivin, C.J., Sessions, R.A., Feldmann, K.A. and Zambryski, P.C. (1993) The TOUSLED gene in A. thaliana encodesa protein kinase homolog that is required for leaf and flower development, Cell 75, 938–950.CrossRefGoogle Scholar
  325. Roldân, M., Gomez-Mena, C., Ruiz-Garcia, L., Salinas, J. and Martinez-Zapater, J.M. (1999) Sucrose availability on the aerial part of the plant promotes morphogenesis and flowering of Arabidopsis in the dark, Plant J 20, 581–590.PubMedCrossRefGoogle Scholar
  326. Rounsley, S.D., Ditta, G.S. and Yanofsky, M.F. (1995) Diverse roles for MADS box genes in Arabidopsis development, Plant Cell 7, 1259–1269.PubMedGoogle Scholar
  327. Rout, G.R. and Das, P. (1994) Somatic embryogenesis and in vitro flowering of three bamboos, Plant Cell Rep 13, 683–686.CrossRefGoogle Scholar
  328. Running, M.P. and Meyerowitz, E.M. (1996) Mutations in the PERIANTHIA gene of Arabidopsis specifically alter floral organ number and initiation pattern, Development 122, 1261–1269.PubMedGoogle Scholar
  329. Running, M.P., Fletcher, J.C. and Meyerowitz, E.M. (1998) The WIGGUM gene is required for proper regulation of floral meristem size in Arabi dopsis, Development 125, 2545–2553.Google Scholar
  330. Running, M.P. and Hake, S. (2001) The role of floral meristems in patterning, Carr. Opin. Plant Biol 4, 69–74.CrossRefGoogle Scholar
  331. Sablowski, R. W. and Meyerowitz, E. M. (1998) A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETAL43/PISTILLATA, Cell 92, 93–103.CrossRefGoogle Scholar
  332. Sakai, H., Medrano, L.J. and Meyerowitz, E.M. (1995) Role of SUPERMAN in maintaining Arabidopsis floral whorl boundaries, Nature 378, 199–203.PubMedCrossRefGoogle Scholar
  333. Sakai, T., Kagawa, T., Kasahara, M., Swartz, T.E., Christie, J.M., Briggs, W.R., Wada, M. and Okada, K. (2001) Arabidopsis nphl and npll: blue light receptors that mediate both phototropism and chloroplast relocation, Proc. Natl. Acad. Sci. USA 98, 6969–6974.PubMedCrossRefGoogle Scholar
  334. Samach, A., Onouchi, H., Gold, S., Ditta, G., Schwarz-Sommer, Z., Yanofsky, M. and Coupland, G. (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis, Science 288, 1613–1616.Google Scholar
  335. Sankhla, D., Davis, T.D., Sankhla, N. And Upadhyaya, A. (1995) In vitro regeneration of the heat-tolerant `German Red’ carnation through organogenesis and somatic embryogenesis, Gartenbauwissenschaft 60, 228–233.Google Scholar
  336. Sarma, D., Sarma, S. And Baruah, A. (1999) Micropropagation and in vitro flowering of Rauvolfia tetraphylla; A potent source of anti-hypertension drugs, Planta Med 65, 277–278.Google Scholar
  337. Satoh, N., Hong, S.K., Nishimura, A., Matusoka, M., Kitano, H. And Nagato, Y. (1999) Initiation of shoot apical meristem in rice: characterization of four SHOOTLESS genes, Development 126, 3629–3636.Google Scholar
  338. Savidge, B., Rounsley, S.D. and Yanofsky, M.F. (1995) Temporal relationships between the transcription of two Arabidopsis MADS box genes and the floral organ identity genes, Plant Cell 7, 721–733.PubMedGoogle Scholar
  339. Sawa, S., Ito, T., Shirnura, Y. And Okada, K. (1999) FILAMENTOUS FLOWER, a meristem and organ identity gene of Arabidopsis, encodes a protein with a zinc finger and HMG-related domains, Genes Dev 13, 1079–1088.Google Scholar
  340. Schaffer, R., Ramsay, N., Samach, A., Corden, S., Putterill, J., Carré, I. A. and Coupland, G. (1998) The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering, Cell 93, 1219–1229.PubMedCrossRefGoogle Scholar
  341. Schoof, H., Lenhard, M., Haecker, A., Mayer, K.F.X., Jürgens, G and Laux, T. (2000) The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes, Cell 100, 635–644.PubMedCrossRefGoogle Scholar
  342. Schultz, E.A. and Haugh, G.W. (1991) LEAFY, a homeotic gene that regulates inflorescence development in Arabidopsis, Plant Cell 3, 771–781.PubMedGoogle Scholar
  343. Scorza, R. (1982) In vitro flowering, Hort. Rev 4, 106–127.Google Scholar
  344. Scorza, R. and Janick, J. (1980) In vitro flowering of Passi flora suberosa L., J. Amer. Soc. Hort. Sci. 105, 892–898.Google Scholar
  345. Segers, G, Gadisseur, I., Bergounioux, C., Engler, J.A., Jacqmard, A., Montagu, M.V. and Inzé, D. (1996) The Arabidopsis cyclin-dependent kinase gene cdc2bAt is preferentially expressed during S and G2 phases of the cell cycle, Plant J 10, 601–612.PubMedCrossRefGoogle Scholar
  346. Sessions, A., Nemhauser, J.L., McColl, A., Roe, J.L., Feldmann, K.A. and Zambryski, P.C. (1997) ETTIN patterns the Arabidopsis floral meristem and reproductive organs, Development 124, 4481–4491.PubMedGoogle Scholar
  347. Shannon, S. and Meeks-Wagner, D.R. (1991) A mutation in the Arabidopsis TFLI gene affects inflorescence meristem development, Plant Cell 3, 877–892.PubMedGoogle Scholar
  348. Sheldon, C.C., Bum, J.E., Perez, P.P., Metzger, J., Edwards, J.A., Peacock, W.J. and Dennis, E.S. (1999) The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation, Plant Cell 11, 445–458.PubMedGoogle Scholar
  349. Shevade, A., Sharma, R. and Verma, R.C. (1997) In vitro flowering in colchltetraploid Phlox drummondii, Phytomorphology 47, 173–175.Google Scholar
  350. Siegfried, K.R., Eshed, Y., Baum, S.F., Otsuga, D., Drews, G.N. and Bowman, J.L. (1999) Members of the YABBY gene family specify abaxial cell fate in Arabidopsis, Development 126, 4117–4128.Google Scholar
  351. Silverstone, A. L., Ciampaglio, C. N. and Sun, T. (1998) The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway, Plant Cell 10, 155–169.PubMedGoogle Scholar
  352. Simon, R. and Coupland, G (1996) Arabidopsis genes that regulate flowering time in response to day-length, Semin. Cell. Dev. Biol 7, 19–25.Google Scholar
  353. Simon, R., Igeno, M.I. and Coupland, G (1996) Activation of floral meristem identity genes in Arabidopsis, Nature 384, 59–62.CrossRefGoogle Scholar
  354. Sitbon, M. (1989) Observations on the in vitro production of vernalized sugar beet (Beta vulgaris L.), Plant Breed 102, 338–340.CrossRefGoogle Scholar
  355. Somers, D.E., Sharrock, R.A., Teppernran, J.M. and Quail, P.H. (1991) The hy3 long hypocotyl mutant of Arabidopsis is deficient in phytochrome B, Plant Cell 3, 1263–1274.PubMedGoogle Scholar
  356. Somers, D.E., Webb, A.A.R., Pearson, M. and Kay, S.A. (1998) The short period mutant, toc-1, alters circadian clock regulation of multiple outputs throughout development in Arabidopsis thaliana, Development 125, 485–494.Google Scholar
  357. Somers, D. E., Schultz, T. F., Milnamow, M. and Kay, S. A. (2000) ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis, Cell 101, 319–329.PubMedCrossRefGoogle Scholar
  358. Sommer, H., Beitrân, J-P., Huijser, P., Pape, H., Lönnig, W-E., Saedler, H. and Schwarz-Sommer, Z. (1990) Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors, EMBO J 9, 605–613.PubMedGoogle Scholar
  359. Soppe, W.J.J., Bentsink, L. and Koomneef, M. (1999) The early-flowering mutant efs is involved in the autonomous promotion pathway of Arabidopsis thaliana, Development 126, 4763–4770.Google Scholar
  360. Souer, E., van Houwelingen, A., Kloos, D., Mol, J. and Koes, R. (1996) The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries, Cell 85, 159–170.PubMedCrossRefGoogle Scholar
  361. Souer, E., van der Kroll, A., Kloos, D., Spelt, C., Bliek, M., Mol, J. and Koes, R. (1998) Genetic control of branching pattern and floral identity during Petunia inflorescence development, Development 125, 733–742.Google Scholar
  362. Srinivasan, C. and Mullins, M. (1978) Control of flowering in the grapevine (Vitis vinifera L.): Formation of inflorescence in vitro by isolated tendrils, Plant Physiol 61, 127–130.PubMedCrossRefGoogle Scholar
  363. Stafford, H.A. (1994) Anthocyanins and betalains: evolution of the mutually exclusive pathways, Plant Sci 101, 91–98.CrossRefGoogle Scholar
  364. Stephen, R. and Jayabalan, N. (1998) In vitro flowering and seed setting formation of coriander (Cari andrum sativum L.), Cure Sci 74, 195–197.Google Scholar
  365. Sticklen, M.B. (1991) Direct somatic embryogenesis and fertile plants from rice root cultures, J. Plant Physiol 138, 577–580.CrossRefGoogle Scholar
  366. Stimart, D.P. and Ascher, P.D. (1978) Tissue culture of bulb scale section for asexual propagation of Lilium longiflorum Thumb, J. Amer. Soc. Hort. Sci 103, 1982–1984.Google Scholar
  367. Sugano, S., Andronis, C., Ong, M.S., Green, R.M., and Tobin, E.M. (1999) The protein kinase CK2 is involved in regulation of circadian rhythms in Arabidopsis, Proc. SD Acad. Sci. USA 96: 12362–12366.CrossRefGoogle Scholar
  368. Sugiyama, M. (1999) Organogenesis in vitro, Cue. Opin. Plant Biol 2, 61–64.CrossRefGoogle Scholar
  369. Sung, Z.R., Belachew, A., Shunong, B. and Bertrand-Garcia, R. (1992) EVE, an Arabidopsis gene required for vegetative shoot development, Science 258, 1645–1647.PubMedCrossRefGoogle Scholar
  370. Suzuki, K., Zue, H., Tanaka, Y., Fukui, Y., Mizutani, M. and Kusumi, T. (1997) Function of Arabidopsis thaliana homeodomain proteins Athbs in plant morphogenesis responding to environmental stimuli, Plant Cell Physiol 38, 38.Google Scholar
  371. Takada, S., Hibara, K-I., Ishida, T. and Tasaka, M. (2001) The CUP-SHAPED COTYLEDON] gene of Arabidopsis regulates shoot apical meristem formation, Development 128, 1127–1135.PubMedGoogle Scholar
  372. Tanaka, O. (1986) Flower induction by nitrogen deficiency in Lemna paucicostata 6746, Plant Cell Physiol 27, 875–880.Google Scholar
  373. Tanaka, Y., Fukui, Y, Fukuchi-Mizutani, M., Holton, T.A., Higgens, E. and Kusumi, T. (1995) Molecular cloning and characterization of Rosa hybrida dihydroflavonol 4-reductase gene, Plant Cell Physiol 36, 1023–1031.PubMedGoogle Scholar
  374. Tanaka, Y., Tsuda, S. and Kusumi, T. (1998) Metabolic engineering to modify flower colour, Plant Cell Physiol 39, 1119–1126.CrossRefGoogle Scholar
  375. Tang, W. (2000) High frequency plant regeneration via somatic embryogenesis and organogenesis and in vitro flowering of regenerated plantlets of Panax ginseng, Plant Cell Rep 19, 727–732.CrossRefGoogle Scholar
  376. Taylor, S., Hofer, J. and Murfet, I. (2001) Stamina pistilloida, the pea ortholog of Fim and UFO, is required for normal development of flowers, inflorescences, and leaves, Plant Cell 13, 31–46.PubMedGoogle Scholar
  377. Telfer, A. and Poethig, R.S. (1998) HASTY: a gene that regulates the timing of shoot maturation in Arabidopsis thaliana, Development 125, 1889–1898.PubMedGoogle Scholar
  378. Thakur, R., Rao, P.S. and Bapat, V.A. (1998) In vitro plant regeneration in Melia azedarach L., Plant Cell Rep 18, 127–131.CrossRefGoogle Scholar
  379. Theissen, G, Becker, A., Di Rosa, A., Kanno, A., Kim, J.T., Munster, T., Winter, K-U. and Saedler, H. (2000) A short history of MADS-box genes in plants, Plant Mol. Biol 42, 115–149.PubMedCrossRefGoogle Scholar
  380. Theissen, G (2001) Development of floral organ identity: stories from the MADS house, Cure Opin. Plant Biol 4, 75–85.CrossRefGoogle Scholar
  381. Thorpe, T., Tran Thanh Van, K. and Caspar, T. (1978) Isoperoxidases in epidermal layers of tobacco and changes during organ formation in vitro, Physiol. Plant 44, 388–394.CrossRefGoogle Scholar
  382. Tisserat, B., Galletta, P.D. and Jones, D. (1990) In vitro flowering from Citrus limon lateral buds, J. Plant Physiol 136, 56–60.CrossRefGoogle Scholar
  383. Tisserat, B. and Galletta, P.D. (1995) In vitro flowering and fruiting of Capsicum frutescens L., HortScience 30, 130–132.Google Scholar
  384. Tran Thanh Van, M. (1973a) In vitro control of de novo flower, bud, root and callus differentiation from excised epidermal tissues, Nature 246, 44–45.CrossRefGoogle Scholar
  385. Tran Thanh Van, M. (1973b) Direct flower neoformation from superficial tissue of small explant of Nicotiana tabacum, Planta 115, 87–92.Google Scholar
  386. Tran Thanh Van, M. (1974a) Methods of acceleration of growth and flowering in a few species of orchids, Am. Orchid. Soc. Bull 43, 699–707.Google Scholar
  387. Tran Thanh Van, M. (1974b) Growth and flowering of Cyrnbidium buds normally inhibited by apical dominance, J. Amer. Soc. Hort. Sci 99, 450–453.Google Scholar
  388. Tran Thanh Van, K. (1977) Regulation of morphogenesis, In: Plant tissue culture and its biotechnological application, Springer-Verlag, pp. 367–385.Google Scholar
  389. Tran Thanh Van, K. (1980) Control of morphogenesis by inherent and exogenously applied factors in thin cell layers, Intl. Rev. Cytol 32, 291–311.Google Scholar
  390. Tran Thanh Van, K. (1981) Control of morphogenesis, Annu. Rev. Plant Physiol 32, 291–311.CrossRefGoogle Scholar
  391. Tran Thanh Van, K. (1991) Molecular aspects of flowering, In: Harding, J., Singh, F. and Mol, J.N.M. (eds.) Genetics and breeding of ornamental species, Kluwer Academic Publishers, The Netherlands, pp. 253–269.Google Scholar
  392. Tran Thanh Van, K. and Dien, N.T. (1975) Étude au niveau cellulaire de la differenciation in vitro et de novo de bourgeons vegetatifs, de racines, ou de cal à partir de couches minces de cellules de type-epidermique de Nicotiana tabacum Wisc, Can. J. Bot 53, 553–550.CrossRefGoogle Scholar
  393. Tran Thanh Van, K. and Chlyah, A. (1976) Differenciation de bouton floraux, de bourgeons végétatifs, de raciness et de cals à partir de l’assis sous-épidermiques de ramification florales de Nicotiana tabacum L. Wisc.38. Etude infrastructurale, Can. J. Bot 54, 1979–1996.CrossRefGoogle Scholar
  394. Tran Thanh Van, K. and Marcotte, J.C. (1981) Differential organogenic responses related to the nature of cytokinins, XIII International Botanical Congress, Sydney, Abstr. p. 50.Google Scholar
  395. Tran Thanh Van, K., Toubart, P., Cousson, A., Darvill, A.G., Gollin, D.J., Chelf, P. and Albersheim, P. (1985a) Manipulation of the morphogenetic pathways of tobacco explants by oligosaccharins, Nature 314, 615–617.CrossRefGoogle Scholar
  396. Tran Thanh Van, K., Yilmaz, A. and Trinh, H.T. (1985b) How to programme in vitro different morphogenetic expression in some conifers, In: J.M. Bonga and D.J. Durzan (eds.) Cell and tissue culture in forestry, Martinus Nijhoff Publishers, Dordrecht.Google Scholar
  397. Tran Thanh Van, K. and Trinh, T.H. (1986) Fundamental and applied aspects of differentiation in vitro and in vivo, In: D.A. Evans, W.R. Sharp and P.V. Ammirato (eds) Handbook of plant cell culture, techniques and application, Vol 4, McMillan Publishing Company, New York, pp. 316–335.Google Scholar
  398. Tran Thanh Van, K. and Mutaftschiev, S. (1990) Signals influencing cell elongation, cell enlargement, cell division and morphogenesis, In: Nijkam HJJ, van der Plaas LHW and Aartij J (eds.) Progress in Plant cellular and Molecular Biology, Kluwer Academic, pp 514–519.CrossRefGoogle Scholar
  399. Tran Thanh Van, K., Richard, L. and Gendy, C.A. (1990) An experimental model for the analysis of plant/ cell differentiation: thin cell layer. Concept, strategy, methods, records and potential, In: D. Durzan and R. Rodriguez (eds.) NATO Biotechnology Series. Plenum press, New York, pp 215–224.Google Scholar
  400. Tran Thanh Van, K. and Bui Van Le (2000) Curent status of thin cell layer method for the induction of organogenesis or somatic embryogenesis, In: Somatic embryogenesis in woody plants, Vol 6, S.J. Mohan, P.K. Gupta and R.J. Newton (eds), Kluwer Academic, Publishers, Dordrecht, pp 51–92.Google Scholar
  401. Trinh, T.H., Mante, S., Pua, E-C. and Chua, N-H. (1987) Rapid production of transgenic flowering shoots and F1 progeny from Nicotiana plumbaginifolia epidermal peels, Biotechnology 5, 1081–1084.CrossRefGoogle Scholar
  402. Tröbner, W., Ramirez, L., Motte, P., Hue, I., Huijser, P., Lönnig, W-E., Saedler, H., Sommer, H. and Schwartz-Sommer, Z. (1992) GLOBOSA: a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis, EvIBO J 11, 4693–4704.Google Scholar
  403. Tsujikawa, T., Ichii, T., Nakanishi, T., Ozaki, T. and Kawai, Y. (1990) In vitro flowering of Japanese pear and the effect of GA4+7, Sci. Hort 41, 233–245.CrossRefGoogle Scholar
  404. Ur, R.L., Abuja, P.S., Banerjee, S. and Bhargava, S.C. (1998) Analysis of asymmetric intergeneric somatic hybrid plants produced between Hyoscyamus muticus L. and double mutant of Nicotiana tabacum L., J. Gen. Breed 52, 333–337.Google Scholar
  405. van den Ende, G, Cross, A.F., Kemp, A. and Barendse, G.W.M. (1984) Floral morphogenesis in thin-layer tissue cultures of Nicotiana tabacum, Physiol. Plant 62, 83–88.CrossRefGoogle Scholar
  406. van der Geer, P., Hunter, T. and Lindberg, R.A. (1994) Receptor protein-tyrosine kinases and their signal transduction pathways, Annu. Rev. Cell Biol 10, 251–337.PubMedCrossRefGoogle Scholar
  407. van der Krol, A.R., Lenting, P.E., Veenstra, J., van der Meer, I.M., Koes, R.E., Gerats, A.G.M., Mol, J.N.M. and Stuitje, A.R. (1988) An anti-sense chalcone synthase gene in transgenic plants inhibits flower pigmentation, Nature 333, 866–869.CrossRefGoogle Scholar
  408. van der Krol, A.R., Mur, L.A., Beld, M., Mol, J.N.M. and Stuit, J.A.R. (1990) Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression, Plant Cell 2, 291–299.PubMedGoogle Scholar
  409. van Houwelingen, A., Souer, E., Spelt, K., Kloos, D., Mol, J. and Loes, R. (1998) Analysis of flower pigmentation mutants generated by random transposon mutagenesis in Petunia hybrida, Plant J 13, 39–50.Google Scholar
  410. Van Staden, J. and Dickens, C.W.S. (1991) In vitro induction to flowering and its relevance to micropropagation, In: Y.P.S. Bajaj (ed.) Biotechnology in agriculture and forestry Vol. 17, High-Tech and micropropagation I, Springer-Verlag, Belin, Germany pp. 85–109.Google Scholar
  411. Vaz, A.P.A. and Kerbauy, GB. (1998) Effects of mineral nutrients on in vitro flowering of Psygmorchis pusilla (Orchidaceae), Abstract of 25 6 ’ International Horticultural Congress, Gent, Belgium, p. 417.Google Scholar
  412. Verbeke, J.A. (1992) Fusion events during floral morphogenesis, Annu. Rev. Plant Physiol. Plant Mol. Biol. 43, 583–598.CrossRefGoogle Scholar
  413. Vemoux, T., Kronenberger, J., Grandjean, O., Laufs, P. and Traas, J. (2000) PIN-FORMED I regulates cell fate at the periphery of the shoot apical meristem, Development 127, 5157–5165.Google Scholar
  414. Vetrilova, M. (1973) Genetic and physiological analysis of induced late mutants of Arabidopsis thaliana (L.) Heynh., Biol. Plant 15, 391–397.CrossRefGoogle Scholar
  415. Vishwanath, P.M. (1998) Micropropagation studies in Ceropegia spp., In Vitro Cell. Dev. Biol 34, 240–243.Google Scholar
  416. Vollbrecht, E., Reiser, L. and Hake, S. (2000) Shoot meristem size is dependent on inbred background and presence of the maize homeobox gene, knotted 1, Development 127, 3161–3172.Google Scholar
  417. Vongs, A., Kakutani, T., Martienssen, R.A. and Richards, E.J. (1993) Arabidopsis thaliana DNA methylation mutants, Science 260, 1926–1928.PubMedCrossRefGoogle Scholar
  418. Wada, K. and Tostsuka, T. (1982) Long-day flowering of Penile plants cultured in nitrogen-poor media, Plant Cell Physiol 23, 977–985.Google Scholar
  419. Wagner, D., Sablowski, R.W. and Meyerowitz, E.M. (1999) Transcriptional activation of APETALAI by LEAFY, Science 285, 582–584.CrossRefGoogle Scholar
  420. Waites, R. and Hudson, A. (1995) phantastica: a gene required for dorsoventrality of leaves in Antirrhinum malus, Development 121 2143–2154.Google Scholar
  421. Wang, G, Xu, Z., Chia, T-F. and Chua, N-H. (1997) In vitro flowering of Dendrobium candidum, Sci. China Sen. C Life Sci 40, 35–42.CrossRefGoogle Scholar
  422. Wang, Z. Y. and Tobin, E. M. (1998) Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED (CCAI) gene disrupts circadian rhythms and suppresses its own expression, Cell 93, 1207–1217.PubMedCrossRefGoogle Scholar
  423. Wang, S., Tang, L. and Chen, F. (2001) In vitro flowering of bitter melon, Plant Cell Rep 20, 393–397.CrossRefGoogle Scholar
  424. Wardell, W.L. and Skoog, F. (1969a) Flower formation in excised tobacco stem segments; I. Methodology and effects of plant hormones, Plant Physiol 44, 1402–1406.PubMedCrossRefGoogle Scholar
  425. Wardell, W.L. and Skoog, F. (1969b) Flower formation in excised tobacco stein segments; II. Reversible removal of IAA inhibition by RNA base analogues, Plant Physiol 44, 1407–1412PubMedCrossRefGoogle Scholar
  426. Weigel, D. 1995. The genetics of flower development: from floral induction to ovule morphogenesis, Annu. Rev. Genet 29, 19–39.PubMedCrossRefGoogle Scholar
  427. Weigel, D., Alvarez, J., Smyth, D. R., Yanofsky, M. F. and Meyerowitz, E.M. (1992) LEAFY controls floral meristem identity in Arabidopsis, Cell 69, 843–859.PubMedCrossRefGoogle Scholar
  428. Weller, J.L., Murfet, I.C. and Reid, J.B. (1997e) Pea mutants with reduced sensitivity to far-red light define an important role for phytochrome A in day-length detection, Plant Physiol 114, 1225–1236.PubMedGoogle Scholar
  429. Weller, J.L., Reid, J.B., Taylor, S.A. and Murfet, I.C. (19976) The genetic control of flowering in pea, Trends Plant Sci 2, 412–418.Google Scholar
  430. White, D.W.R., Woodfield, D.R. and Caradus, J.R. (1998) Mortal: a mutant of white clover defective in nodal root development, Plant Physiol 116, 913–921.PubMedCrossRefGoogle Scholar
  431. Whitelam, GC., Johnson, E., Peng, J., Carol, P., Anderson, M.L., Cowl, J.S. and Harberd, N.P. (1993) Phytochrome A null mutants of Arabidopsis display a wild-type phenotype in white light, Plant Cell 5, 757–768.PubMedGoogle Scholar
  432. Whitelam, GC. and Harberd, N.P. (1994) Action and function of phytochrome family members revealed through the study of mutant and transgenic plants, Plant Cell Environ 17, 615–625.CrossRefGoogle Scholar
  433. Wiennann, R. and Vieth, K. (1983) Outer pollen wall, an important site for flavonoids, Protoplasma 118, 230–233.CrossRefGoogle Scholar
  434. Wilkinson, M., de Andrade Silva, E., Zachgo, S., Saedler, H. and Schwarz-Sommer, Z. (2000) CHORIPETALA and DESPENTEADO: general regulators during plant development and potential targets ofFIMBRIATA-mediated degradation, Development 127, 3725–3734.PubMedGoogle Scholar
  435. Williams-Carrier, R.E., Lie, Y.S., Hake, S. and Lemaux, P.G. (1997) Ectopic expression of the maize knI gene phenocopies of the Hooded mutant of barley, Development 124, 3737–3745.PubMedGoogle Scholar
  436. Wilson, R. N., Heckman, J. W. and Somerville, C. R. (1992) Gibberellin is required for flowering in A. thaliana under short days, Plant Physiol 100, 403–408.PubMedCrossRefGoogle Scholar
  437. Wiiniewska, J., Trejgell, A. and Tretyn, A. (2001) Influence of animal peptide growth factors on flowering of Pharbitis nil in vitro, Abstract l7h International Conference on Plant Growth Regulators, p. 112, Brno, Czech Republic.Google Scholar
  438. http://www.salk.edu/LABS/.bio-w/flower web.html
  439. Yamaguchi, T., Fukada-Tanaka, S., Inagaki, Y., Saito, N., Yonekura-Sakakibara, K., Tanaka, Y., Kusumi, T. and Iida, S. (2001) Genes encoding the vacuolar Na+/H+ exchanger and flower coloration, Plant Cell Physiol 42, 451–461.PubMedCrossRefGoogle Scholar
  440. Yang. C-H., Cheng, L-J. and Sung, Z.R. (1995) Genetic regulation of shoot development in Arabidopsis: the role of EMT’ genes, Dev. Biol 169, 421–435.PubMedCrossRefGoogle Scholar
  441. Yanofsky, M.F., Ma, H., Bowman, J.L., Drews, G.N., Feldmann, K.A. and Meyerowitz, E.M. (1990) The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors, Nature 346, 35–39.PubMedCrossRefGoogle Scholar
  442. Yoshida, N., Yanai, Y., Chen, L., Kato, Y., Hiratsuka, J., Miwa, T., Sung, Z.R. and Takahashi, S. (2001) EMBRYONIC FLOWER2, a novel polycomb group protein homolog, mediates shoot development and flowering in Arabidopsis, Plant Cell 13, 2471–2481.PubMedGoogle Scholar
  443. Yoshiyuki, N:, Maki, I. And Yasuyoshi, H. (1998) Organogenesis and in vitro flowering of temperate cymbidium using rhizome, Abstract of 25 International Horticultural Congress, Gent, Belgium, p. 412.Google Scholar
  444. Yu, D., Kotilainen, M., Pollanen, E., Mehto, M., Elomaa, P., Helariutta, Y., Albert, V.A. and Teeri, T.H. (1999) Organ identity genes and modified patterns of flower development in Gerbera hybrida (Asteraceae), Plant 17, 51–62.CrossRefGoogle Scholar
  445. Yu, H., Yang, S.H. and Goh, C.J. (2000) DOH I, a class 1 knox gene, is required for maintenance of the basic plant architecture and floral transition in orchid, Plant Cell 12, 2143–2159.PubMedGoogle Scholar
  446. Yu, L.P., Simon, E.J., Trotochaud, A.E. and Clark, S.E. (2000) POLTERGEIST functions to regulate meristem development downstream of the CLAVATA loci, Development 127, 1661–1670.PubMedGoogle Scholar
  447. Zagotta, M.T., Shannon, S., Jacobs, C. and Meeks-Wagner, D.R. (1992) Early-flowering mutants of Arabidopsis thaliana, Austr. J. Plant Physiol 19, 411–418.CrossRefGoogle Scholar
  448. Zagotta, M.T., Hicks, K.A., Jacobs, C.I., Young, J.C., Hangarter, R.P. and Meeks-Wagner, D.R. (1996) The Arabidopsis ELF3 gene regulates vegetative photomorphogenesis and the photoperiodic induction of flowering, Plant J 10, 691–702.PubMedCrossRefGoogle Scholar
  449. Zhang, Z. and Leung, D.W.M. (2000) A comparison of in vitro with in vivo flowering in gentian, Plant Cell Tiss. Org. Cult 63, 223–226.CrossRefGoogle Scholar
  450. Zucker, A., Ahroni, A., Tzfira, T., Ovadis, M., Itzhaki, H., Scklarman, E., Ben-Meir, H. and Vainstein, A. (1998) In Abstr. 9th Intl. Congr. Plant Tiss. Cell Cult, 35.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • Jaime A. Teixeira da Silva
    • 1
  • Duong Tan Nhut
    • 2
  1. 1.Department of Applied Plant BiologyUniversity of Lisbon, Faculty of Science (FCUL)LisbonPortugal
  2. 2.Institute of Biology in DalatDalat, Lam DongVietnam

Personalised recommendations