The Salton Sea pp 129-137

Part of the Developments in Hydrobiology book series (DIHY, volume 161)

Cryptomonads from the Salton Sea, California

  • S. B. Barlow
  • P. Kugrens


Using freshly collected field samples and enrichment cultures, eight genera of cryptomonads from the Salton Sea are recorded for the first time. Comparative data from light and scanning electron microscopy were utilized to identify these genera and species. The genera included Chroomonas, Falcomonas,Hemiselmis, Plagioselmis, PyrenomonaslRhodomonas, Storeatula,Teleaulax, and the kathablepharid Leucocryptos. One putative genus remains unidentified and may represent a new taxon. SEM has not been conducted on this cryptomonad, but it has been isolated and is being maintained in culture. The genera and species identified from the Salton Sea are typical of marine rather then freshwater environments and may play an important role in primary productivity and as preferred fool organisms for zooplankton.

Key words

cryptomonads Salton Sea phytoplankton kathablepharid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brett, S. J. and R. Wetherbee, 1986. A comparative study of periplast structure in Cryptomonas cryophila and C. ovata ( Cryptophyceae ). Protoplasma 131: 23–31.Google Scholar
  2. Butcher, R. W., 1967. An Introductory Account of the Smaller Algae of British Coastal Waters IV. Cryptophyceae. Fishery Invest., Ser. 4, London: 1–54.Google Scholar
  3. Carpelan, L. H., 1961. Phytoplankton and plant productivity. In Walker, B. W. (ed.), The Ecology of the Salton Sea, California in Relation to the Sportfishery. Calif. Fish and Game, Fish Bull. 113: 33–43.Google Scholar
  4. Clay, B. L. and P. Kugrens, 1999a. Systematics of the enigmatic kathablepharids, including EM characterization of the type species, Kathablepharis phoenikoston, and new observations on K. remigera comb. nov. Protist. 150: 43–59.PubMedCrossRefGoogle Scholar
  5. Clay, B. L. and P. Kugrens, 19996. Characterization of Hemiselmis amylosa sp. nov. and phylogenetic placement of the blue-green cryptomonads H. amylosa and Falcomonas daucoides. Protist. 150: 297–310.Google Scholar
  6. Clay, B. L. and P. Kugrens, 1999e. Description and ultrastructure of Kathablepharis tenais sp. nov. and K. obesa sp. nov. — two new freshwater kathablepharids (Kathablepharididae) from Colorado and Wyoming. Europ. J. Protist. 35: 435–447.Google Scholar
  7. Clay, B. L., P. Kugrens and R. E. Lee, 1999. A revised classification of Cryptophyta. J. linn. Soc. Bot. 131: 131–151.Google Scholar
  8. Edmondson, W. T., 1965. Reproductive rate of planktonic rotifers as related to food and temperature in nature. Ecol. Monogr. 35: 61–111.Google Scholar
  9. Gillot, M., 1990. Phylum Cryptophyta (Cryptomonads). In Margulis. L., J. O. Corliss, M. Melkonian and D. J. Chapman (eds), Handbook of Protoctista. Jones and Bartlett Publishers, Boston: 139–151.Google Scholar
  10. Guillard, R. R. L., 1975. Culture of phytoplankton for feeding marine invertebrates. In Smith, W. L. and M. H. Chanley (eds), Culture of Marine Invertebrate Animals. Plenum Press. New York: 29–60.CrossRefGoogle Scholar
  11. Hill, D. R. A., 1991a. Chroomonas and other blue-green cryptomonads. J. Phycol. 27: 133–145.Google Scholar
  12. Hill, D. R. A., 1991b. Diversity of heterotrophic cryptomonads. In Patterson, D. J. and J. Larsen (eds), The Biology of Free-Living Heterotrophic Flagellates. Systematics Association Special Volume 45: 235–240.Google Scholar
  13. Hill. D. R. A., 1991e. A revised circumscription of Cryptomonas ( Cryptophyceae) based on examination of Australian strains. Phycologia 30: 170–188.Google Scholar
  14. Hill. D. R. A. and K. S. Rowan, 1989. Biliproteins of the Cryptophyceae. Phycologia 28: 455–463.CrossRefGoogle Scholar
  15. Hill. D. R. A. and R. Wetherbee, 1986. Proteomonas sulcata gen. et sp. nov. (Cryptophyceae) a cryptomonad with two morphologically distinct and alternating forms. Phycologia 27: 521–543.Google Scholar
  16. Hill. D. R. A. and R. Wetherbee, 1988. The structure and taxonomy of Rltinomonas pauca gen. et sp. nov. ( Cryptophyceae ). Phycologia 27: 355–365.Google Scholar
  17. Hill. D. R. A. and R. Wetherbee, 1989. A reappraisal of the genus Rhodomonas ( Cryptophyceae ). Phycologia 28: 143–158.Google Scholar
  18. Klaseness, D., 1984. Studies on the morphology, food selection and growth of two planktonic freshwater strains of Coleps sp. Protistologica 20: 335–349.Google Scholar
  19. Klax sness, D., 1988. Ecology of the Cryptomonadida: a first review. Ir Sandgren, C. D. (ed.), Growth and Reproductive Strategies of Feeshwater Phytoplankton. Cambridge Univ. Press, New York: 1 15–133.Google Scholar
  20. Kug ens P. and R. E. Lee, 1986. An ultrastructural survey of crypt(monad periplasts using quick-freezing freeze-fracture techn iques. J. Phycol. 23: 365–376.Google Scholar
  21. Kug ens, P. and R. E. Lee, 1991. Organization of cryptomonads. In Patterson, D. J. and J. Larsen (eds), The Biology of Free-Living heterotrophic Flagellates. The Systematics Association Special plume 45: 219–233.Google Scholar
  22. Kug ens, P., B. L. Clay and R. E. Lee, 1999. Ultrastructure and s stematics of two new freshwater cryptomonads, Pyrenomonas o,alis and Storeatula rhinosa sp. nov. J. Phycol. 35: 1079–1089.CrossRefGoogle Scholar
  23. Kugi ens, P., R. E. Lee and R. E. Andersen, 1986. Cell form and surface patterns in Chroomonas and Cryptomonas cells (Cryptophyta) as revealed by scanning electron microscopy. J. Phycol. 2. 1: 512–522.Google Scholar
  24. Kugrens, P., R. E. Lee and R. E. Andersen, 1987. Ultrastructural variations in cryptomonad flagella. J. Phycol. 23: 511–518.CrossRefGoogle Scholar
  25. Kugrens, P., R. E. Lee and J. O. Corliss, 1994. Ultrastructure, function and biogenesis of extrusive organelles in selected non-ciliate protists. Protoplasma 181: 164–190.Google Scholar
  26. Larsv’n, J., 1988. An ultrastructural study of Amphidinium poecilochroum ( Dinophyceae), a phagotrophic dinoflagellate feeding on small species of cryptophytes. Phycologia 27: 366–377.Google Scholar
  27. Lee, R. E. and P. Kugrens, 1986. The occurrence and structure of fleigellar scales in some freshwater cryptophytes. J. Phycol. 22: 549–552.Google Scholar
  28. Lee, R. E. and P. Kugrens, 1991. Katablepharis ovalis, a colorless flagellate with interesting cytological characteristics. J. Phycol. 2: 505–513.Google Scholar
  29. Lee, R. E., P. Kugrens and A. P. Mylnikov, 1991. Feeding apparatus of the colorless flagellate Katablepharis (Cryptophyceae). J. Phycol. 27: 725–733.Google Scholar
  30. Lewitus, A. J., H. B. Glasgow and J. M. Burkholder, 1999. Kleptoplastidy in the toxic dinoflagellate Pfiesteria piscicida (Dinophyceae). J. Phycol. 35: 303–312.Google Scholar
  31. Li, A., D. K. Soecker, D. W. Coats and E. J. Ada, 1996. Ingestion of fluorescently labeled and phycoerythrin containing prey by mixotrophic dinoflagellates. Aquat. Microbiol. Res. 10: 139–147.Google Scholar
  32. Munawar, M. and T. Bistricki, 1979. Scanning electron microscopy of some nanoplankton cryptomonads. Scanning Electr. Micros. 3: 247–252.Google Scholar
  33. Novarino, G., I. A. N. Lucas and S. Morrall, 1994. Observations on the genus Plagioselmis (Cryptophyceae). Cryptogamie, Algologie 15: 87–96.Google Scholar
  34. Pejler, B., 1977. Experience with rotifer cultures based on Rhodomonas. Arch. Hydrobiol. Beih. Ergebn. Limnol. 8: 264–266. Provasoli, L., 1963. Growing marine seaweeds Proc. Int. Seaweed Symp. Pergamon Press, New York: 9–17.Google Scholar
  35. Putt, M., 1990. Metabolism of photosynthate in the chloroplastretaining ciliate Loboea strobila. Mar. Ecol. Prog. Ser. 60: 271–282.Google Scholar
  36. Reynolds, C. S., 1984. Phytoplankton periodicity: the interactions of form, function and environmental variability. Freshwat. Biol. 14: 111–142.Google Scholar
  37. Sarnelle, O., 1993. Herbivore effects on phytoplankton succession in a eutrophic lake. Ecol. Monogr. 63: 129–149.Google Scholar
  38. Schnepf, E. and M. Elbrachter, 1992. Nutritional strategies in dinoflagellates: a review with emphasis on cell biological aspects. Eur. J. Protist. 28: 3–24.Google Scholar
  39. Schnepf, E., S. Winter and D. Mollenhauer, 1989. Gymnodinium aeruginosum (Dinophyta): a blue-green dinoflagellate with a vestigial, anucleate, cryptophycean endosymbiont. Plant Syst. Evol. 164: 75–91.Google Scholar
  40. Skovgaard, A., 1998. Role of chloroplast retention in a marine dinoflagellate. Aquat. Microbiol. Ecol. 15: 293–301.Google Scholar
  41. Stemberger, R. S. and J. J. Gilbert, 1985. Body size, food concentration, and population growth in planktonic rotifers. Ecology 66: 1151–1159.CrossRefGoogle Scholar
  42. Stoecker, D. K. and M. W. Silver, 1990. Replacement and aging of chloroplasts in Strombidium capitatum ( Ciliophora: Oligotrichida). Mar. Biol. 107: 491–502.Google Scholar
  43. Vgrs, N., 1992a. Heterotrophic amoebae, flagellates and Heliozoa from the Tvarminne area, Gulf Of Finland, in 1988–1990. Ophelia 36: 1–109.CrossRefGoogle Scholar
  44. Vors, N., 1992b. Ultrastructure and autecology of the marine, heterotrophic flagellate Leucocryptos marina (Braarud) Butcher 1967 (Katablepharidaceae/Kathablepharidae), with a discussion of the genera Leucocryptos and Katablepharis/Kathablepharis. Eur. J. Protist. 28: 369–389.Google Scholar
  45. Wetherbee, R., D. R. A. Hill and G. I. McFadden, 1986. Periplast structure of the cryptomonad flagellate Hemiselmis brunnescens. Protoplasma 131: 11–22.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • S. B. Barlow
    • 1
  • P. Kugrens
    • 2
  1. 1.EM Facility/Biology DepartmentSan Diego State UniversitySan DiegoUSA
  2. 2.Department of BiologyColorado State UniversityFort CollinsUSA

Personalised recommendations