Occurrence and distribution of the human pathogen Vibrio vulnificus in a subtropical Gulf of Mexico estuary

  • Erin K. Lipp
  • Cesar Rodriguez-Palacios
  • Joan B. Rose
Part of the Developments in Hydrobiology book series (DIHY, volume 159)


Water and sediment samples from Charlotte Harbor, Florida were examined for the autochthonous human pathogen, Vibrio vulnificus, for 1 year (March 1997–February 1998). Within the estuary, mean water column levels of V. vulnificus ranged between 58 CFU/100 ml and 1.21 x 103 CFU/100 ml while sediment levels were up to 2 orders of magnitude greater. Vibrio vulnificus was detected throughout the year in Charlotte Harbor. The highest concentrations (5.14 x 103 CFU/100 ml) of the year were found at warm temperatures and moderate salinities in September. The lowest mean concentration occurred in March at 26 CFU/100 ml. Although concentrations of Vibrio vulnificus were positively correlated with temperature, salinity was a more important factor influencing variability of this organism. In Charlotte Harbor, an optimal salinity of 15 psu (practical salinity units) was found for recovery of high concentrations of the pathogen. There were significant positive and negative correlations above and below 15 psu, respectively. Results from this study suggest that unlike temperate estuaries, in regions of moderate year round temperatures, such as the tropics or subtropics, salinity strongly controls the geographical and seasonal distribution of V. vulnificus between sediment and water column.

Key words

Vibrio vulnificus Gulf of Mexico human pathogen bacteria disease microbial ecology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arias, C. R., M. C. Mackin, R. Aznar, E. Garay M. J. Pujalte,1999. Low incidence of Vibrio vulnificus among Vibrio isolates from seawater and shellfish of the western Mediterranean coast.J. Appl. Microbiol. 86: 125–134.PubMedCrossRefGoogle Scholar
  2. Brauns, L. A. J. D. Oliver, 1994. Polymerase chain reaction of whole cell lysates for the detection of Vibrio vulnificus. Food Biotechnol. 81: 1–6.CrossRefGoogle Scholar
  3. Coleman, S. S., D. M. Melanson, E. G. Biosca J. D. Oliver, 1996. Detection of Vibrio vulnificus biotypes 1 and 2 in eels and oysters by PCR amplification. Appl. Envir. Microbiol. 62: 1378–1382.Google Scholar
  4. DePaola, A., G. M. Capers D. Alexander, 1994. Densities of Vibrio vulnificus in the intestines of fish from the U.S. Gulf coast. Appt Envir. Microbiol. 60: 984–988.Google Scholar
  5. Gerba C. P. J. S. McLeod, 1976. Effect of sediments on the survival of Escherichin coil in marine waters. Appl. Envir. Microbiol. 32: 1 14–120.Google Scholar
  6. Ghinsberg,R.C.,.R.Dror,Y.Nitzan, 1999. Isolation of Vibrio vulnificus from seawater and sand along the Dan region coast of the Mediterranean. Microbios 97: 7–17.PubMedGoogle Scholar
  7. Hgi, L., J. L. Larsen I. Dalsgaard, 1998. Occurrence of Vibrio vulnificus biotypes in Danish marine environments. Appl. Envir. Microbiol. 64: 7–13.Google Scholar
  8. Kaspar, C. W. M. L. Tamplin, 1993. Effects of temperature and salinity on the survival of Vibrio vulnificus in seawater and shellfish. Appl. Envir. Microbiol. 59: 2425–2429.Google Scholar
  9. Kelly, M. T., 1982. Effect of temperature and salinity on Vibrio (Benecken) vulnificus occurrence in a Gulf coast environment. Appl. Envir. Microbiol. 44: 820–824.Google Scholar
  10. Koh, E. L., J.-H. Huyn P. A. LaRock, 1994. Pertinence of indicator organisms and sampling variables to Vibrio concentrations. Appl. Envir. Microbiol. 60: 3897–3900.Google Scholar
  11. Lipp, E. K. R. Hammond, 1996. Ecology and virulence of halophilic vibrion in Florida. Flor. J. Envir. Health 153: 6–9.Google Scholar
  12. Lipp, E. K., R. Kurz, R. Vincent, C. Rodriguez-Palacios, S. R. Farrah J. B. Rose, In Press. The effects of seasonal variability and weather on microbial fecal pollution and enteric pathogens in a subtropical estuary. Estuaries.Google Scholar
  13. Lipp, E. K. J. B. Rose, 1997. The role of seafood in foodborne diseases in the United States of America. Revue scientifique et technicale, Office internationale des Epizooties 16: 620–640.Google Scholar
  14. Massad, G. J. D. Oliver, 1987. New selective and differential medium for Vibrio cholerne and Vibrio vulnificus. Appl. Envir. Microbiol. 53: 2262–2264.Google Scholar
  15. Motes, M. L., A. DePaola, D. W. Cook, J. E. Veazey, J. C. Hunsicker, W. E. Garthwright, R. J. Blodgett S. J. Chirtel, 1998. Influence of water temperature and salinity on Vibrio vulnificus in northern Gulf and Atlantic coast oysters. Appl. Envir. Microbiol. 64: 1459–1465.Google Scholar
  16. Oliver, J. D., 1995. The viable but non-culturable state in the human pathogen Vibrio vulnificus. FEMS Microbial Ecol. 133: 203–208.CrossRefGoogle Scholar
  17. Oliver, J. D., F. Hite, D. McDougald, N. L. Andon L. M. Simpson, 1995. Entry into, and resuscitation from, the viable but nonculturable state by Vibrio vulnificus in an estuarine environment. Appl. Envir. Microbiol. 61: 2624–2630.Google Scholar
  18. O’Neill, K. R., S. H. Jones D. J. Grimes, 1990. Incidence of Vibrio vulnificus in northern New England water and shellfish. FEMS Microbiol. Lett. 72: 163–168.Google Scholar
  19. Peele, T. C., 1936. Adsorption of bacteria by soils. Cornell University Agricultural Experiment Station. Memoir 197: 17 pp.Google Scholar
  20. Rivera, S., T. Lugo C. Hazen, 1989. Autoecology of Vibrio vulnificus and Vibrio parah aemolvticus in tropical waters. Wat. Res. 23: 923–931.Google Scholar
  21. Schmidt, N., E. K. Lipp, J. B. Rose M. E. Luther, 2001. Analysis of ENSO related trends in Florida precipitation and streamflow. J. Climate 14: 615–628.CrossRefGoogle Scholar
  22. Shukla, B. N., D. V. Singh S. C. Snayal, 1995. Attachment of non-culturable toxigenic Vibrio cholerne 01 and non-01 and Aeromonds spp. to the aquatic arthropod Gerris spinolae and plants in the River Ganga, Varanasi. FEMS Immunol. Med. Microbiol. 12: 113–120.Google Scholar
  23. Tamplin, M., G. E. Rodrick, N. J. Blake T. Cuba, 1982. Isolation and characterization of Vibrio vulnificus from two Florida estuaries. Appl. Envir. Microbiol. 44: 1466–1470.Google Scholar
  24. Williams, L. A. P. A. LaRock, 1985. Temporal occurrence of Vibrio species and Aeromonas hydrophila in estuarine sediments. Appl. Envir. Microbiol. 50: 1490–1495.Google Scholar
  25. Whitman, R. J. G. J. Flick, 1995. Microbial contamination of shellfish: Prevalence, risk to human health and control strategies. Ann. Rev. Public Health 16: 123–140.Google Scholar
  26. Wright, A. C., G. A. Mice11, W. L. Landry, J. B. Christy, W. D. Watkins J. G. Morris Jr., 1993. Rapid identification of Vibrio vulnificus on nonselective media with an alkaline phosphataselabeled oligonucleotide probe. Appl. Envir. Microbiol. 59 (2): 541–546.Google Scholar
  27. Wright, A. C., R. T. Hill, J. A. Johnson, M. C. Roghman, R. R. Colwell J. G. Morris Jr., 1996. Distribution of Vibrio vulnificus in the Chesapeake Bay. Appl. Envir. Microbiol. 62: 717–724.Google Scholar
  28. Yamamoto, K., A. C. Wright, J. B. Kaper J. G. Morris Jr., 1990. The cytolysin gene of Vihrio vulnificus sequence and relationship to the Vihrio cholerae El Tor hemolysin gene. Infection and Immunity 58: 2706–2709.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Erin K. Lipp
    • 1
  • Cesar Rodriguez-Palacios
    • 2
  • Joan B. Rose
    • 1
  1. 1.College of Marine ScienceUniversity of South FloridaSt. PetersburgUSA
  2. 2.Resource Management DivisionSarasota CountySarasotaUSA

Personalised recommendations