Termites and Soil Properties

  • John A. Holt
  • Michel Lepage

Abstract

This chapter reviews the advances made in our knowledge of the effects of termites on the physical, chemical and biological properties of soils. Emphasis has been placed on more recent contributions, particularly those that explore new concepts in the ecology of termites and soils. There are sections dealing with the effects of termite activity on soil profile development, soil physical properties, soil chemical properties, soil microbiology and plant growth. The physical effects of termites on soils range from micromorphological to soil profile evolution and structure. Recent evidence points to the substantial positive influence of termites on soil hydraulic conductivity and infiltration rates. Their influence on organic matter decomposition and nutrient recycling rates are well recognized and in some landscapes termite mounds act as foci for nutrient redistribution. New information on the microbiology of termite mounds suggests that most are sites of diverse bacterial and fungal activity. Furthermore, the association between mound-building termites and the microbial population present in the structures has a synergistic effect on organic matter decomposition and hence nutrient cycling and availability. Examination of the effects of termite activity on plant production generally indicates a positive influence.

Key words

Termites soil profile morphology soil structure soil nutrients hydraulic conductivity infiltration nutrient cycling mound microorganisms plant growth. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abbadie, L. and Lepage, M. (1989) The role of subterranean fungus comb chambers (Isoptera, Macrotermitinae) in soil nitrogen cycling in a preforest savanna (Côte d’Ivoire). Soil Biology and Biochemistry 8, 1067–1071.CrossRefGoogle Scholar
  2. 2.
    Akamigbo, F. (1984) The role of the nasute termites in the genesis and fertility of Nigerian soils. Pedologie 34, 179–189.Google Scholar
  3. 3.
    Aloni, K. and Soyer, J. (1987) Cycle des materiaux de construction des termitières d’humivores en savane au Shaba meridional (Zaire). Revue de Zoologie Africaine 101, 329–357.Google Scholar
  4. 4.
    Anderson, A. (1994) Studies on termite excretory nitrogen. In Proceedings of the 5th Workshop on Tropical Entomology, pp. 249–253, Townsville, July 1991.Google Scholar
  5. 5.
    Arshad, M.A. (1981) Physical and chemical properties of termite mounds of two species of Macrotermes (Isoptera, Termitidae) and the surrounding soils of the semiarid savanna of Kenya. Soil Science 132, 161–174.CrossRefGoogle Scholar
  6. 6.
    Arshad, M.A. (1982) Influence of the termite Macrotermes michaelseni (Sjost) on soil fertility and vegetation in a semi-arid savanna ecosystem. Agro-Ecosystems 8, 47–58.CrossRefGoogle Scholar
  7. 7.
    Arshad, M.A., Mureria, N.K. and Keya, S.O. (1982) Effect of termite activities on the soil microflora. Pedobiologia 24, 161–167.Google Scholar
  8. 8.
    Badawi, A., Faragalla, A.A. and Dabbour, A. (1982) The role of termites in changing certain chemical characteristics of the soil. Sociobiology 7, 135–144.Google Scholar
  9. 9.
    Bagine, R.K.N. (1984) Soil translocation by termites of the genus Odontotermes (Holmgren) (Isoptera: Macrotermitinae) in an arid area of Northern Kenya. Oecologia 64, 263–266.CrossRefGoogle Scholar
  10. 10.
    Becker, G. (1975) Termites and fungi Material und Organismen 30, 465–478.Google Scholar
  11. 11.
    Black, H.I.J. and Okwakol, M.J.N. (1997) Agricultural intensification, soil biodiversity and agroecosystem function in the tropics: the role of termites. Applied Soil Ecology 6, 37–53.CrossRefGoogle Scholar
  12. 12.
    Bonell, M., Coventry, R.J. and Holt, J.A. (1986) Erosion of termite mounds under natural rainfall in semi-arid tropical Northeastern Australia. Catena 13, 11–28.CrossRefGoogle Scholar
  13. 13.
    Boyer, P. (1975) Les différents aspects de l’action des termites sur les sols tropicaux. Annals de Sciences naturelles et Zoologie 17, 447–504.Google Scholar
  14. 14.
    Boyer, P. (1982) Quelques aspects de l’action des termites su sol sur les argiles. Clay Minerals 17, 453462.Google Scholar
  15. 15.
    Brouwer, J. And Bouma, J (1997) Soil and crop growth variability in the Sahel: highlights of research (1990–95) at ICRISAT Sahelian Center. Information Bulletin no. 49, Patancheru 502 324, Andhra Pradesh, India.Google Scholar
  16. 16.
    Congdon, R.A., Holt, J.A. and Hicks, W.S. (1993) The role of mound-building termites in the nitrogen economy of semi-arid ecosystems. In Proceedings of the 6th Australasian Conference on Grassland Invertebrate Ecology, (R.A. Prestidge, Ed.), pp.100–106, Hamilton, New Zealand, Feb. 1993. AgResearch, Hamilton, New Zealand.Google Scholar
  17. 17.
    Coventry, R.J., Holt, J.A. and Sinclair, D.F. (1988) Nutrient cycling by mound-building termites in low-fertility soils of semi-arid tropical Australia. Australian Journal of Soil Research 26, 375–390.CrossRefGoogle Scholar
  18. 18.
    Darlington, J.P.E.C. (1982) The underground passages and storage pits used in foraging by a nest of the termite Macrotermes michaelseni in Kajiado, Kenya. Journal of Zoology (London) 198, 237–247.CrossRefGoogle Scholar
  19. 19.
    Darlington, J.P.E.C. (1984) Two types of mound built by the termite Macrotermes subhyalinus in Kenya. Insect Science and its Application 5, 481–492.Google Scholar
  20. 20.
    Darlington, J.P.E.C. (1985) The structure of mature mounds of the termite Macrotermes michaelseni in Kenya. Insect Science and its Application 6 149–156.Google Scholar
  21. 21.
    Eldridge, D.J. (1994) Nests of ants and termites influence infiltration in a semi-arid woodland. Pedobiologia 38, 481–492.Google Scholar
  22. 22.
    Elkins, N.Z., et al. (1986) The influence of subterranean termites on the hydrological characteristics of a Chihuahuan desert ecosystem. Oecologia 68, 521–528.CrossRefGoogle Scholar
  23. 23.
    Eschenbrenner, V. (1986) Contribution des termites a la micro-agregation des sols tropicaux. ORSTOM, ser. Pedologie 22, 397–408.Google Scholar
  24. 24.
    Eschenbrenner, V. (1988) Les glébules des sols de Côte d’Ivoire. Nature et origine en milieu ferrallitique; modalités de leur concentration; rôle des termites. Tomes 1 and 2, ORSTOM, Paris.Google Scholar
  25. 25.
    Folster, H. (1964) The pedisediments of the southern Sudanese pediplane. Origin and soil formation. Pedologie 14, 64–84.Google Scholar
  26. 26.
    Garnier-Sillam, E. and Harry, M. (1995) Distribution of humic compounds in mounds of some soil-feeding termite species of tropical rainforests: its influence on soil structure stability. Insectes Sociaux 42, 167–185.CrossRefGoogle Scholar
  27. 27.
    Garnier-Sillam, E. and Toutain, F. (1995) Distribution of polysaccharides within the humic compounds of soils subjected to a humiverous termite Thoracotermes macrothorax Sjostedt. Pedobiologia 39, 462–469.Google Scholar
  28. 28.
    Garnier-Sillam, E., Toutain, F. and Renoux J. (1988) Comparison de l’influence de deux termitieres (humivore et champignonniste) sur la stabilite structurale des sols forestiers tropicaux. Pedobiologia 32, 89–97.Google Scholar
  29. 29.
    Gillman, L.R., Jefferies, M.K. and Richards, G.N. (1972) Non-soil constituents of termite (Coptotermes acinaciformis) mounds. Australian Journal of Biological Sciences 25, 1005–1013.Google Scholar
  30. 30.
    Grasse, P.P. (1958) Sur le nid et la biologie de Cornitermes cumulans (Kollar), termites Bresilien. Insectes Sociaux 2 189–199.Google Scholar
  31. 31.
    Greaves, T. (1962) Studies of foraging galleries and the invasion of living trees by Coptotermes acinaciformis and C. brunneus. Australian Journal of Zoology 10, 630–651.CrossRefGoogle Scholar
  32. 32.
    Gupta, S.R., Rajvanshi, R. and Singh, J.S. (1981) The role of the termite Odontotermes gurdaspurensis (Isoptera: Termidae) in plant decomposition in a tropical grassland. Pedobiologia 22, 254–261.Google Scholar
  33. 33.
    Hemandez, D.L. and Febres, A. (1989) Cambios quimicos en suelos de Sabana de costa de marfil introducidos por la presencia de termitas. Acta Biologia Venezuela 12, 64–71.Google Scholar
  34. 34.
    Holt, J.A. (1987) Carbon mineralization in Northeastern Australia: the role of termites. Journal of Tropical Ecology 3, 255–263.CrossRefGoogle Scholar
  35. 35.
    Holt, J.A. (1998) Microbial activity in the mounds of some Australian termites. Applied Soil Ecology 9, 183187.Google Scholar
  36. 36.
    Holt, J. A. and Coventry, R.J. (1990) Nutrient cycling in Australian savannas. Journal of Biogeography 17, 427–432.CrossRefGoogle Scholar
  37. 37.
    Holt, J.A., Abe, T. and Kirtibutr, N. (1998) Microbial biomass and some chemical properties of Macrotermes carbonarius (Hagen) mounds near Korat, Thailand. Sociobiology 31, 1–8.Google Scholar
  38. 38.
    Holt, J.A., Bristow, K.L. and Mclvor, J.G. (1996) The effects of grazing pressure on soil and litter animals and some hydraulic properties of two soils in semi-arid tropical Australia. Australian Journal of Soil Research 34, 69–79.CrossRefGoogle Scholar
  39. 39.
    Holt, J.A., Coventry, RJ. and Sinclair, D.F. (1980) Some aspects of the biology and pedological significance of mound-building termites in a red and yellow earth landscape near Charters Towers, North Queensland. Australian Journal of Soil Research 18, 97–109.CrossRefGoogle Scholar
  40. 40.
    Holt, J.A., Robertson, L.N. and Radford, B.J. (1993) Effects of tillage and residue treatments on the termite population of a central Queensland vertosol. Australian Journal of Soil Research 31, 311–317.CrossRefGoogle Scholar
  41. 41.
    Kang, B.T. (1978) Effect of some biological factors on soil variability in the tropics III. Effect of Macrotermes mounds. Plant and Soil 50, 241–251.CrossRefGoogle Scholar
  42. 42.
    Keya, S.O., Mureria, N.K. and Arshad, M.A. (1982) Population dynamics of soil microorganisms in relation to proximity of termite mounds in Kenya. Journal of Arid Environments 5, 353–359.Google Scholar
  43. 43.
    Khalil, M.A.K., et al. (1990) The influence of termites on atmospheric trace gases: CH4, CO2, CHCl3, N20, CO, H2, and light hydrocarbons. Journal of Geophysical Research 95, 3619–3634.CrossRefGoogle Scholar
  44. 44.
    Konaté, S., et al. (1999) Evidence for the influence of termites in interstratified clay minerals formation in tropical soils. Comptes Rendus de l’Académie des Sciences, Paris,in press.Google Scholar
  45. 45.
    Kooyman, C.H..R. and Onck, R.F.M. (1987) The interactions between termite activity, agricultural practices and soil characteristics in Kisii district, Kenya. Agricultural University Wageningen Papers, 87–3.Google Scholar
  46. 46.
    Laker, M., et al. (1982) Effects of the termite Trinervitermes trinervoides Sjostedt on the organic carbon and nitrogen contents and particle size distribution of soils. Revue d’ Ecologie et Biologie du Sol 19, 27–39.Google Scholar
  47. 47.
    Lal, R. (1987) Tropical Ecology and Physical Edaphology. John Wiley and Sons, Chichester.Google Scholar
  48. 48.
    Lee, K.E. and Wood, T.G. (1971) Termites and Soils. Academic Press, London.Google Scholar
  49. 49.
    Lenz, M. (1994) Food resources, colony growth and caste development in wood-feeding termites. In Nourishment and Evolution in Insect Societies ( J.H. Hunt and C.A. Nalepa, Eds.), pp. 131–157, Westview Press, Boulder.Google Scholar
  50. 50.
    Lepage, M. (1974) Les termites d’une savane sahelienne (Ferlo Septentrional, Senegal): peuplements, consommation, role dans I’ecosysteme. Doctoral Thesis, Université de Dijon, Dijon, France.Google Scholar
  51. 51.
    Lepage, M., Morel, G. and Resplandino, C. (1974) Découverte de galeries de termites atteignant la nappe phréatique profonde dans le nord du Senegal. Comptes Rendues de 1 Académie des Sciences, Paris 278, 1855 1859.Google Scholar
  52. 52.
    Leprun, J.C. and Roy-Noel, J. (1976) Minéralogie des argiles et répartition des nids épigés de deux espèces du genre Macrotermes au Sénégal occidental (presquile du Cap-Vert). Insectes Sociaux 23, 535–547.CrossRefGoogle Scholar
  53. 53.
    Lobry de Bruyn, L.A. and Conacher, A.J. (1990) The role of termites and ants in soil modification: a review. Australian Journal of Soil Research 28, 55–93.Google Scholar
  54. 54.
    Lobry de Bruyn, L. and Conacher, A.J. (1995) Soil modification by termites in the central wheatbelt of Western Australia. Australian Journal of Soil Research 33, 179–193.Google Scholar
  55. 55.
    Logan, J.W.M. (1992) Termites (Isoptera): a pest or resource for small farmers in Africa. Tropical Science 32, 71–79.Google Scholar
  56. 56.
    McComie, L.D. and Dhanarajan, G. (1993) The physical and chemical composition of mounds of Macrotermes carbonarius (Hagen) (Termitidae, Macrotermitinae), in Penang, Malaysia Journal of Soil Science 44, 427–433.Google Scholar
  57. 57.
    Mackay, W.P. and Whitford, W.G. (1988) Spatial variability of termite gallery production in Chihuahuan desert plant communities. Sociobiology 14, 281–289.Google Scholar
  58. 58.
    Maduakor, H.O., Okere, A.N. and Onyeanuforo, C.C. (1995) Termite mounds in relation to the surrounding soils in the forest and derived savanna zones of southeastern Nigeria. Biology and Fertility of Soils 20, 157–162.CrossRefGoogle Scholar
  59. 59.
    Mando, A. (1997) The impact of termites and mulch on the water balance of crusted Sahelian soil. Soil Technology 11, 121–138.CrossRefGoogle Scholar
  60. 60.
    Mando, A. (1997) The role of termites and mulch in the rehabilitation of crusted Sahelian soils. Tropical Resource Management Papers No. 16. Wageningen Agricultural University, Netherlands.Google Scholar
  61. 61.
    Mando, A. (1997) Effect of termites and mulch on the physical rehabilitation of structurally crusted soils in the Sahel. Land Degradation and Development 8, 269278.Google Scholar
  62. 62.
    Mando, A. and Miedema, R. (1997) Termite-induced change in soil structure after mulching degraded (crusted) soil in the Sahel. Applied Soil Ecology 6, 241249.Google Scholar
  63. 63.
    Mando, A., Stroosnijder, L. and Brussaard, L. (1996) Effects of termites on infiltration into crusted soil. Geoderma 74, 107–113.CrossRefGoogle Scholar
  64. 64.
    Martius, C. (1994) Diversity and ecology of termites in Amazonian forests. Pedobiologia 38, 407–428.Google Scholar
  65. 65.
    Meiklejohn, J. (1965) Microbiological studies on large termite mounds Rhodesia, Zambia and Malawi Journal of Agricultural Research 3, 67–79.Google Scholar
  66. 66.
    Miedema, R., et al. (1994) Variability in the growth of Faidherbia albida near Niamey, Niger, Africa: micromorphological aspects of termite activity. In Soil Micromorphology: Studies in Management and Genesis. Proceedings of the.IX International Working Meeting on Soil Micromorphology (A.J. RingroseVoase and G.S. Humphreys, Eds.), pp. 411–419, Townsville, Australia, July 1992. Developments in Soil Science 22, Elsevier, Amsterdam,.Google Scholar
  67. 67.
    Mielke, H.W. and Mielke, P.W. (1982) Termite mounds and chitemene agriculture: a statistical analysis of their association in southwestern Tanzania. Journal of Biogeography 9, 499–504.CrossRefGoogle Scholar
  68. 68.
    Mohindra, P. and Mukerji, K.G. (1982) Fungal ecology of termite mounds. Revue d’ Ecologie et Biologie du Sol 19, 351–361.Google Scholar
  69. 69.
    Nazaroff, P.S. (1931) Note on the spongey ironstone of Angola. Geological Magazine 68, 443–446.CrossRefGoogle Scholar
  70. 70.
    Nutting, W.L., Haverty, M.I. and LaFage, J.P. (1987) Physical and chemical alteration of soil by two subterranean termite species in Sonoran Desert grassland. Journal of Arid Environments 12, 233–239.Google Scholar
  71. 71.
    Nyamapfene, K.W. (1986) The use of termite mounds in Zimbabwe peasant agriculture. Tropical Agriculture 63, 191–192.Google Scholar
  72. 72.
    Oades, J.M. (1984) Soil organic matter and structural stability: mechanisms and implications for management. Plant and Soil 76, 319–337.CrossRefGoogle Scholar
  73. 73.
    Okwakol, M.J.N. (1987) Effects of Cubitermes testaceus (Williams) on some physical and chemical properties of soil in a grassland area of Uganda. African Journal of Ecology 25, 147–153.CrossRefGoogle Scholar
  74. 74.
    Omo-Malaka, S.L. (1977) A note on the bulk density of termite mounds. Australian Journal of Soil Research 15, 93–94.CrossRefGoogle Scholar
  75. 75.
    Ouedraogo, P. and Lepage, M. (1997) Rôle des termitières de Macrotermes subhyalinus dans une brousse tigrée (Yatenga, Burkina Faso). In Fonctionnement et gestion des écosystèmes forestiers contractés sahéliens, ( M. d’Herbés, J.M.K. Ambouta and R. Peltier, Eds.), pp. 91–94, John Libbey Eurotext, Paris.Google Scholar
  76. 76.
    Paul, E.A. and Clark, F.E. (1996) Soil Microbiology and Biochemistry 2 nd Edn. Academic Press, London.Google Scholar
  77. 77.
    Paul, J. and Vanna, A.J. (1993) Characterization of cellulose and hemicellulose degrading Bacillus sp. from termite infested soil. Current Science 64, 262265.Google Scholar
  78. 78.
    Paul, J., Sarkar, A. and Vanna, A. (1985) Cellulose digesting bacteria from live termite mound soils. Current Science 54, 1098–1101.Google Scholar
  79. 79.
    Raunet, M. (1979) Importance et interactions des processus géochimiques, hydrologiques et biologiques (termites) sur les surfaces d’aplanissement tropicales granito-gneissiques. Agronomie Tropicale 34, 40–53.Google Scholar
  80. 80.
    Rohrmann, G.F. (1978) The origin, structure, and nutritional importance of the comb in two species of Macrotermitinae (Insects, Isoptera). Pedobiologia 18, 89–98.Google Scholar
  81. 81.
    Rohrmann, G.F. and Rossman, A.Y. (1980) Nutrient strategies of Macrotermes ukuzii (Isoptera: Termitidae). Pedobiologia 20, 61–73.Google Scholar
  82. 82.
    Salick, J., Herrera, R. and Jordan, C.F. (1983) Tennitaria: nutrient patchiness in nutrient-deficient rain forests. Biotropica 15, 1–7.CrossRefGoogle Scholar
  83. 83.
    Sannasi, A. and Sundara-Rajulu, G. (1967) Occurrence of antimicrobial substance in the exudate of physogastric queen termite, Termes redemanni Wasmann. Current Science 16, 436–437.Google Scholar
  84. 84.
    Sands, W.A. (1961) Nest structure and size distribution in the genus Trinervitermes (Isoptera, Termitidae, Nasutitermitinae) in West Africa. Insectes Sociaux 8, 177–187.CrossRefGoogle Scholar
  85. 85.
    Sands, W.A. (1969) The association of termites and fungi. In Biology of Termites, Vol 1 ( K. Krishna and F.M. Weesner, Eds.), pp. 495–524, Academic Press, London.Google Scholar
  86. 86.
    Sarkar, A. (1991) Isolation and characterization of thermophylic, alkaliphilic, cellulose-degrading Bacillus the rmoalcaliphilus sp. nov. from termite (Odontotermes obesus) mound soil of a semiarid area. Geomicrobiology Journal 9, 225–232.CrossRefGoogle Scholar
  87. 87.
    Sarkar, A., Vanna, A. and Sarkar, A. (1988) Influence of cellulolytic organisms associated with a termite, Odontotermes obesus, on carbon mobility in a semiarid ecosystem. Arid Soil Research and Rehabilitation 2, 75–84.Google Scholar
  88. 88.
    Saxena, S., Bahadur, J. and Vanna, A. (1993) Cellulose and hemicellulose degrading bacteria from termite gut and mound soils of India. Indian Journal of Microbiology 33, 55–60.Google Scholar
  89. 89.
    Singh, U.R., Singh, J. and Singh, I.D. (1978) Microbial association with termites in a tropical deciduous forest at Varanasi. Tropical Ecology 19, 163–173.Google Scholar
  90. 90.
    Slaytor, M. and Chappell, D.J. (1994) Nitrogen metabolism in termites. Comparative Biochemistry and Physiology 107B, 1–10.CrossRefGoogle Scholar
  91. 91.
    Smeathman, H. (1781) Of the termites in Africa and other hot climates. Philosophical Transactions of the Royal Society of London 71, 60–85.CrossRefGoogle Scholar
  92. 92.
    Soyer, J. (1987) Role des termites dans la formation du complexe de la stone-line. Geo-Eco-Crop 11, 97–108.Google Scholar
  93. 93.
    Spain, A.V. and Mclvor, J.G. (1988) The nature of herbaceous vegetation associated with termitaria in north-eastern Australian Journal of Ecology 76, 18 1191.Google Scholar
  94. 94.
    Spain, A.V. and Reddell, P. (1996) 613C values of selected termites (Isoptera) and termite-modifed materials. Soil Biology and Biochemistry 28, 1585 1593.Google Scholar
  95. 95.
    Steinke, T.D. and Nel, L.O. (1989) Some effects of termitaria on veld in the eastern Cape. Journal of the Grassland Society of South Africa 6, 152–155.CrossRefGoogle Scholar
  96. 96.
    Stoops, G. (1989) Relict properties of soils in humid tropical regions with special reference to central Africa. Catena Supplement 16, 95–106.Google Scholar
  97. 97.
    Tardy, Y. and Roquin, C. (1992) Geochemistry and evolution of lateritic landscapes. In Weathering, Soils and Paleosols ( I.P. Martini and W. Chesworth, Eds.), pp. 407–443, Elsevier, London.Google Scholar
  98. 98.
    Thomas, R.J. (1987) Distribution of Termitomyces Heim and other fungi in the nests and major workers of Macrotermes bellicosus (Smeathman) in Nigeria. Soil Biology and Biochemistry 19, 329–333.CrossRefGoogle Scholar
  99. 99.
    Trapnell, C.G. and Webster, R. (1986) Microaggregates in red earths and related soils in East and Central Africa, their classification and occurrence. Journal of Soil Science 37, 109–123.CrossRefGoogle Scholar
  100. 100.
    Truckenbrodt, W., Kotschoubey, B. and Schellmann, W. (1991) Composition and origin of the clay cover on North Brazilian laterites. Geologische Rundschau 80, 591–610.CrossRefGoogle Scholar
  101. 101.
    Varma, A. et al. (1994) Lignocellulose degradation by microorganisms from termite hills and termite guts: a survey on the present state of art FEMS Microbiology Reviews 15, 9–28.CrossRefGoogle Scholar
  102. 102.
    Watson, J.P. (1977) The use of mounds of the termite Macrotermes falciger (Gerstacker) as a soil amendment. Journal of Soil Science 28, 664–672.CrossRefGoogle Scholar
  103. 103.
    Watson, J.P. (1960) Some observations on soil horizons and insect activity in granite soils. Proceedings of the 1st Federal Science Congress of Rhodesia and Nyasaland, pp. 271–276.Google Scholar
  104. 104.
    Whitford, W.G., Ludwig, J.A. and Noble, J.C. (1992) The importance of subterranean termites in semi-arid ecosystems in south-eastern Australia. Journal of Arid Environments 22, 87–91.Google Scholar
  105. 105.
    Wiesner, E. (1990) Elevated permeabilities caused by termites. Bulletin of the International Association of Engineering Geology 42, 117–121.CrossRefGoogle Scholar
  106. 106.
    Williams, M.A.J. (1968) Termites and soil development near Brocks Creek, Northern Territory. Australian Journal of Science 31, 153–154.Google Scholar
  107. 107.
    Wood, T.G. (1996) The agricultural importance of termites in the tropics. Agricultural Zoology Reviews 7, 117–155.Google Scholar
  108. 108.
    Wood, T.G. and Johnson, R.A. (1983) Modification of soils in Nigerian savanna by soil-feeding Cubitermes (Isoptera, Termitidae). Soil Biology and Biochemistry 15, 575–579.CrossRefGoogle Scholar
  109. 109.
    Zoberi, M.H. (1979) The ecology of some fungi in a termite hill. Mycologia 71, 537–545.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • John A. Holt
    • 1
  • Michel Lepage
    • 2
  1. 1.Department of Tropical Plant Sciences, School of Tropical BiologyJames Cook UniversityTownsvilleAustralia
  2. 2.Laboratoire d’EcologieEcole Normale SupérieurParis CedexFrance

Personalised recommendations