Advertisement

Reflection Equation Algebras and Quantum Groups

  • P. P. Kulish
Chapter
Part of the Mathematical Physics Studies book series (MPST, volume 16)

Abstract

Quadratic algebras related to the reflection equations are introduced. They are quantum group comodule algebras. The quantum group F q (GL(2)) is taken as the example. The properties of the algebras (center, representations, realizations, real forms, fusion procedure etc) as well as the generalizations are discussed.

Key words

quantum group comodule algebra non-commutative homogeneous space 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Sklyanin,E., Boundary conditions for integrable quantum systems, J. Phys. A: Math. Gen., 21, 2375–2389 (1988).MathSciNetzbMATHCrossRefADSGoogle Scholar
  2. [2]
    Cherednik,I., Factorized particles oon a half-line and root systems, Theor. Math. Phys., 61, 55–61 (1984).MathSciNetCrossRefGoogle Scholar
  3. [3]
    Reshetikhin,N. and Semenov-Tian-Shansky,M., Quantum current algebras, Lett. Math. Phys., 19, 133–141 (1989).CrossRefADSGoogle Scholar
  4. [4]
    Kulish,P. and Sklyanin,E., The general U(sl(2)) invariant XXZ integrable quantum spin chain, J.Phys.A: Math.Gen., 24 L435 - L439 (1991).MathSciNetzbMATHCrossRefADSGoogle Scholar
  5. [5]
    Faddeev,L.,Reshetikhin,N. and Takhtajan,L., Quantization of Lie groups and Lie algebras, Algebra i Analiz, 1, 178–191 (1989).MathSciNetGoogle Scholar
  6. [6]
    Takhtajan,L., Introduction to quantum groups, Lecture Notes Phys., 370, 3–21 (1990).MathSciNetCrossRefADSGoogle Scholar
  7. [7]
    Moore,G. and Reshetikhin,N., Quantum group symmetry of CFT, Nucl. Phys., B328, 557–571 (1990).MathSciNetCrossRefADSGoogle Scholar
  8. [8]
    Alekseev,A.,Faddeev,L. and Semenov-Tian-Shansky,M., Hidden quantum groups inside Kac-Moofy algebras, Lecture Notes Math., 1510 148–158 (1992).CrossRefGoogle Scholar
  9. [9]
    Alekseev,A. and Faddeev,L., Toy model of CFT and quantum top, Commun. Math. Phys., 141 413 (1991).MathSciNetzbMATHCrossRefADSGoogle Scholar
  10. [10]
    Babelon,O., Lionville theory on the lattice, Commun. Math. Phys., 139, 619–631 (1991).MathSciNetzbMATHCrossRefADSGoogle Scholar
  11. [11]
    Freidel,L. and Maillet,J., Quadratic algebras and integrable systems, Phys. Lett., B262, 278–281; B263, 403–407 (1991).Google Scholar
  12. [12]
    Zumino,B., Introduction to the differential geometry of quantum groups. Preprint UCB-PTH-62/91 (1991).Google Scholar
  13. [13]
    Kulish,P., Finite-dimentional Zamolodchikov-Faddeev algebra and q-oscillators Phys. Lett., A161, 50–53 (1991).MathSciNetCrossRefGoogle Scholar
  14. [14]
    Kulish,P., Quantum groups and quantum algebras as symmetries of dynamical sys tems. Preprint YITP/K-959 (1991).Google Scholar
  15. [15]
    Kulish,P. and Sklyanin,E., Algebraic structures related to reflection equations, Preprint YITP/K-980; J.Phys.A: Math. Gen., 25, (1992).Google Scholar
  16. [16]
    Manin,Yu., Topics in noncommutative geometry, (Princeton Univ. Press, 1991 )Google Scholar
  17. [17]
    Majid,S., Hopf algebras and Yang-Baxter equations, I. J. M. P., A5, 1–90 (1990).MathSciNetzbMATHGoogle Scholar
  18. [18]
    Majid,S., Examples of braided groups, J. Math. Phys., 32, 3246–3253 (1991).MathSciNetzbMATHCrossRefADSGoogle Scholar
  19. [19]
    Kulish,P.,Reshetikhin,N. and Sklyanin,E., Yang-Baxter equation and representation theory, Lett. Math. Phys., 5, 393–399 (1981).MathSciNetzbMATHCrossRefADSGoogle Scholar
  20. [20]
    Jimbo,M., A q-analogue of U(gl(N+1)), Hecke algebra and Yang- Baxter equation, Lett. Math. Phys., 11, 247–252 (1986).Google Scholar
  21. [21]
    Jing,N. and Yamada,H., Polynömes zonaux pour le groupe linéaire général quantique. Preprint IAS (1990).Google Scholar
  22. [22]
    Noumi,M., Macdonald’s symmetric polynomials as zonal spherical functions on some quantum homogeneous spaces. Preprint UT-Komaba (1992).Google Scholar
  23. [23]
    Kulish,P.,Sasaki,R. and Schwiebert,C., Constant solutions of reflection equations. Preprint YITP/U-92–07 (1992).Google Scholar
  24. [24]
    Mezincescu,L. and Nepomechie,R., Fusion procedure for open chains. Preprint CERN-TH. 6152 /91 (1991).Google Scholar
  25. [25]
    Cremmer,E. and Gervais J-L., The quantum strip, Commun. Math. Phys., 144, 279–291 (1991).MathSciNetCrossRefADSGoogle Scholar
  26. [26]
    Noumi,M. and Mimachi,K., Big q-Jacobi polynomials, q-Hahn polynomials and a family of quantum 3-spheres, Lett. Math. Phys., 19, 299–305 (1990).MathSciNetzbMATHCrossRefADSGoogle Scholar
  27. [27]
    Hashimoto,M. and Hayashi,T., Quantum multilinear algebra. Preprint Nagoya Univ. (1991).Google Scholar
  28. [28]
    Gurevich,D. and Rubtsov,V., Yang-Baxter equation and deformation of algebras, Lecture Notes Math., 1510, 47–55 (1992).MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1993

Authors and Affiliations

  • P. P. Kulish
    • 1
  1. 1.Euler International Mathematical Institute and Yukawa Institute for Theoretical PhysicsRussia

Personalised recommendations