Quantum and Non-Commutative Analysis pp 207-220 | Cite as
Reflection Equation Algebras and Quantum Groups
Chapter
Abstract
Quadratic algebras related to the reflection equations are introduced. They are quantum group comodule algebras. The quantum group F q (GL(2)) is taken as the example. The properties of the algebras (center, representations, realizations, real forms, fusion procedure etc) as well as the generalizations are discussed.
Key words
quantum group comodule algebra non-commutative homogeneous spacePreview
Unable to display preview. Download preview PDF.
References
- [1]Sklyanin,E., Boundary conditions for integrable quantum systems, J. Phys. A: Math. Gen., 21, 2375–2389 (1988).MathSciNetzbMATHCrossRefADSGoogle Scholar
- [2]Cherednik,I., Factorized particles oon a half-line and root systems, Theor. Math. Phys., 61, 55–61 (1984).MathSciNetCrossRefGoogle Scholar
- [3]Reshetikhin,N. and Semenov-Tian-Shansky,M., Quantum current algebras, Lett. Math. Phys., 19, 133–141 (1989).CrossRefADSGoogle Scholar
- [4]Kulish,P. and Sklyanin,E., The general U(sl(2)) invariant XXZ integrable quantum spin chain, J.Phys.A: Math.Gen., 24 L435 - L439 (1991).MathSciNetzbMATHCrossRefADSGoogle Scholar
- [5]Faddeev,L.,Reshetikhin,N. and Takhtajan,L., Quantization of Lie groups and Lie algebras, Algebra i Analiz, 1, 178–191 (1989).MathSciNetGoogle Scholar
- [6]Takhtajan,L., Introduction to quantum groups, Lecture Notes Phys., 370, 3–21 (1990).MathSciNetCrossRefADSGoogle Scholar
- [7]Moore,G. and Reshetikhin,N., Quantum group symmetry of CFT, Nucl. Phys., B328, 557–571 (1990).MathSciNetCrossRefADSGoogle Scholar
- [8]Alekseev,A.,Faddeev,L. and Semenov-Tian-Shansky,M., Hidden quantum groups inside Kac-Moofy algebras, Lecture Notes Math., 1510 148–158 (1992).CrossRefGoogle Scholar
- [9]Alekseev,A. and Faddeev,L., Toy model of CFT and quantum top, Commun. Math. Phys., 141 413 (1991).MathSciNetzbMATHCrossRefADSGoogle Scholar
- [10]Babelon,O., Lionville theory on the lattice, Commun. Math. Phys., 139, 619–631 (1991).MathSciNetzbMATHCrossRefADSGoogle Scholar
- [11]Freidel,L. and Maillet,J., Quadratic algebras and integrable systems, Phys. Lett., B262, 278–281; B263, 403–407 (1991).Google Scholar
- [12]Zumino,B., Introduction to the differential geometry of quantum groups. Preprint UCB-PTH-62/91 (1991).Google Scholar
- [13]Kulish,P., Finite-dimentional Zamolodchikov-Faddeev algebra and q-oscillators Phys. Lett., A161, 50–53 (1991).MathSciNetCrossRefGoogle Scholar
- [14]Kulish,P., Quantum groups and quantum algebras as symmetries of dynamical sys tems. Preprint YITP/K-959 (1991).Google Scholar
- [15]Kulish,P. and Sklyanin,E., Algebraic structures related to reflection equations, Preprint YITP/K-980; J.Phys.A: Math. Gen., 25, (1992).Google Scholar
- [16]Manin,Yu., Topics in noncommutative geometry, (Princeton Univ. Press, 1991 )Google Scholar
- [17]Majid,S., Hopf algebras and Yang-Baxter equations, I. J. M. P., A5, 1–90 (1990).MathSciNetzbMATHGoogle Scholar
- [18]Majid,S., Examples of braided groups, J. Math. Phys., 32, 3246–3253 (1991).MathSciNetzbMATHCrossRefADSGoogle Scholar
- [19]Kulish,P.,Reshetikhin,N. and Sklyanin,E., Yang-Baxter equation and representation theory, Lett. Math. Phys., 5, 393–399 (1981).MathSciNetzbMATHCrossRefADSGoogle Scholar
- [20]Jimbo,M., A q-analogue of U(gl(N+1)), Hecke algebra and Yang- Baxter equation, Lett. Math. Phys., 11, 247–252 (1986).Google Scholar
- [21]Jing,N. and Yamada,H., Polynömes zonaux pour le groupe linéaire général quantique. Preprint IAS (1990).Google Scholar
- [22]Noumi,M., Macdonald’s symmetric polynomials as zonal spherical functions on some quantum homogeneous spaces. Preprint UT-Komaba (1992).Google Scholar
- [23]Kulish,P.,Sasaki,R. and Schwiebert,C., Constant solutions of reflection equations. Preprint YITP/U-92–07 (1992).Google Scholar
- [24]Mezincescu,L. and Nepomechie,R., Fusion procedure for open chains. Preprint CERN-TH. 6152 /91 (1991).Google Scholar
- [25]Cremmer,E. and Gervais J-L., The quantum strip, Commun. Math. Phys., 144, 279–291 (1991).MathSciNetCrossRefADSGoogle Scholar
- [26]Noumi,M. and Mimachi,K., Big q-Jacobi polynomials, q-Hahn polynomials and a family of quantum 3-spheres, Lett. Math. Phys., 19, 299–305 (1990).MathSciNetzbMATHCrossRefADSGoogle Scholar
- [27]Hashimoto,M. and Hayashi,T., Quantum multilinear algebra. Preprint Nagoya Univ. (1991).Google Scholar
- [28]Gurevich,D. and Rubtsov,V., Yang-Baxter equation and deformation of algebras, Lecture Notes Math., 1510, 47–55 (1992).MathSciNetCrossRefGoogle Scholar
Copyright information
© Springer Science+Business Media Dordrecht 1993