Advertisement

Translating Graded Modalities into Predicate Logics

  • H. J. Ohlbach
  • R. Schmidt
  • U. Hustadt
Part of the Applied Logic Series book series (APLS, volume 2)

Abstract

From Minsky’s early frame systems, which were defined purely operationally, and Brachman’s kl-one knowledge representation system [4, 35] to the language AℒC of Schmidt-Schauß and Smolka’s [28] paper there has been a continuous trend in designing knowledge representation systems more and more according to logical principles with clear syntax and semantics and logical inferences as basic operations. AℒC in particular is a language with the usual logical connectives ⊓, ⊔, ⌝ and the additional constructs (all R C) and (some R C). For example, the following is an AℒC definition which defines a ‘concept’ proud-father as a father all of whose children are successful persons.

Keywords

Modal Logic Accessibility Relation Predicate Logic Empty Clause Normal Modal Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Andréka, I. Németi, I. Sain. On interpolation, amalgamation, universal algebra and Boolean algebras with operators. Unpublished manuscript, Univ. of Budapest, 1995.Google Scholar
  2. [2]
    Y. Auffray, P. Enjalbert. Modal theorem proving: An equational viewpoint. Journal of Logic and Computation, 2, 247–297, 1992.CrossRefGoogle Scholar
  3. [3]
    F. Baader, B. Hollunder. A terminological knowledge representation system with complete inference algorithms. In: M. M. Richter, H. Boley, (eds.), Proc. of the International Workshop on Processing Declarative Knowledge (PDK’91), Univ. of Kaiserslautern, 1991.Google Scholar
  4. [4]
    R. J. Brachman, J. G. Schmolze. An overview of the KL-ONE knowledge representation system. Cognitive Science, 9, 171–216, 1985.CrossRefGoogle Scholar
  5. [5]
    R. J. Brachman, R. E. Fikes, H. J. Levesque. KRYPTON: A functional approach to knowledge representation. IEEE Computer, 16, 67–73, 1983.CrossRefGoogle Scholar
  6. [6]
    C. Cerrato. General canonical models for graded normal logics (Graded modalities IV). Studia Logica, 49, 241–252, 1990.CrossRefGoogle Scholar
  7. [7]
    F. de Caro. Graded modalities II. Studia Logica, 47, 1–10, 1988.CrossRefGoogle Scholar
  8. [8]
    F. M. Donini, M. Lenzerini, D. Nardi, W. Nutt. The complexity of concept languages. In: J Allen, R Fikes, E Sandewall, (eds.), Proc. of KR’91, pp. 151–162. Morgan Kaufmann, 1991.Google Scholar
  9. [9]
    F. M. Donini, M. Lenzerini, D. Nardi, W. Nutt. Tractable concept languages. In Proc. of IJCAI’91, pp. 458–463, 1991.Google Scholar
  10. [10]
    L. Farifas del Cerro, A. Herzig. Quantified modal logic and unification theory. Rapport LSI 293, Languages et Systèmes Informatique, Univ. Paul Sabatier, Toulouse, 1988.Google Scholar
  11. [11]
    M. Fattorosi-Barnaba, C. Cerrato. Graded modalities III. Studia Logica, 47, 99–110, 1988.CrossRefGoogle Scholar
  12. [12]
    M. Fattorosi-Barnaba, F. de Caro. Graded modalities I. Studia Logica, 44, 197–221, 1985.CrossRefGoogle Scholar
  13. [13]
    K. Fine. For Some Propositions and so Many Possible Worlds. PhD thesis, Univ. of Warwick, 1969.Google Scholar
  14. [14]
    K. Fine. In so many possible worlds. Notre Dame Journal of Formal Logic, 13, 516–520, 1972.Google Scholar
  15. [15]
    D. M. Gabbay, H. J. Ohlbach. Quantifier elimination in second-order predicate logic. South African Computer Journal, 7, 35–43, 1992. Also in: Proc. of KR’92, 425–436. Also available as Technical Report MPI-I-92–231, Max-Planck-Institut für Informatik, Saarbrücken, July 1992.Google Scholar
  16. [16]
    D. M. Gabbay. An irreflexivity lemma with applications to axiomatizations of conditions on linear frames. In: U. Mönnich, (ed.), Aspects of Philosophical Logic, pp. 67–89. Reidel, 1981.Google Scholar
  17. [17]
    L. R Goble. Grades of modality. Logique et Analyse, 13, 323–334, 1970.Google Scholar
  18. [18]
    A. Herzig. Raisonnement automatique en logique modale et algorithmes d’unification. PhD thesis, Univ. Paul-Sabatier, Toulouse, 1989.Google Scholar
  19. [19]
    H. J. Levesque, R. J. Brachman. Expressiveness and tractability in knowledge representation and reasoning. Computational Intelligence, 3, 78–93, 1987.CrossRefGoogle Scholar
  20. [20]
    B. Nebel, G. Smolka. Representation and reasoning with attributive descriptions. In: K.-H. Blasius, U. Hedtstück, C.-R. Rollinger, (eds.), Sorts and Types in Artificial Intelligence, Lecture Notes in Artificial Intelligence, Vol. 418, pp. 112–139. Springer-Verlag, Berlin, 1990.Google Scholar
  21. [21]
    B. Nebel. Reasoning and Revision in Hybrid Representation Systems, Lecture Notes in Artificial Intelligence, Vol. 422, Springer-Verlag, 1990.Google Scholar
  22. [22]
    H. J. Ohlbach, R. A. Schmidt. Functional translation and second–order frame properties of modal logics. Technical Report MPI–I–95–2–002, Max–Planck–Institut für Informatik, Saarbrücken, January 1995.Google Scholar
  23. [23]
    H. J. Ohlbach. A resolution calculus for modal logics. In: E. Lusk and R. Overbeek, (eds.), Proc. of CADE’88, Lecture Notes in Computer Science, Vol. 310, pp. 500–516. Springer-Verlag, 1988.Google Scholar
  24. [24]
    H. J. Ohlbach. Semantics based translation methods for modal logics. Journal of Logic and Computation, 1, 691–746, 1991.CrossRefGoogle Scholar
  25. [25]
    A. N. Prior. Egocentric logic. N6us, 2, 191–207, 1968.Google Scholar
  26. [26]
    H. Sahlqvist. Completeness and correspondence in the first and second order semantics for modal logics. In: S. Kanger, (ed.), Proceedings of the 3rd Scandinavian Logic Symposium, 1973, pp. 110143. North Holland, Amsterdam, 1975.Google Scholar
  27. [27]
    K. Schild. A correspondence theory for terminological logics: Preliminary report. In: Proc. of IJCA!’91, pp. 466–471, 1991.Google Scholar
  28. [28]
    M. Schmidt-SchauB, G. Smolka. Attributive concept description with complements. Artificial Intelligence, 48, 1–26, 1991.CrossRefGoogle Scholar
  29. [29]
    J. van Benthem. Modal Logic and Classical Logic. Bibliopolis, Naples, 1983.Google Scholar
  30. [30]
    J. van Benthem. Correspondence theory. In: D. Gabbay, F. Guenther, (eds.), Handbook of Philosophical Logic, Vol. II, pp. 167–247. Reidel, Dordrecht, 1984.Google Scholar
  31. [31]
    W. van der Hoek, M. de Rijke. Generalized quantifiers and modal logic. ITLI Prepublication Series for Logic, Semantics and Philosophy of Language LP-91–01, Institue for Language, Logic and Information, Univ. of Amsterdam, 1991.Google Scholar
  32. [32]
    W. van der Hoek, M. de Rijke. Counting objects. Journal of Logic and Computation, 5, 325–345, 1995.CrossRefGoogle Scholar
  33. [33]
    W. van der Hoek. Modalities for Reasoning about Knowledge and Quantities. PhD thesis, Vrije Univ. Utrecht, 1992.Google Scholar
  34. [34]
    W. van der Hoek. On the semantics of graded modalities. Journal of Applied Non-Classical Logics, 2, 81–123, 1992.Google Scholar
  35. [35]
    W. A. Woods, J. G. Schmolze. The Kt.-ONE family. Computers and Mathematics with Applications, 23, 133–177, 1992.CrossRefGoogle Scholar
  36. [36]
    N. K. Zamov. Modal resolutions. Izvestiya VUZ. Mathematika,33, 22–29, 1989. Also published in Soviet Mathematics,Allerton Press.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1996

Authors and Affiliations

  • H. J. Ohlbach
    • 1
  • R. Schmidt
    • 1
  • U. Hustadt
    • 1
  1. 1.Max Planck InstiuteSaarbrückenGermany

Personalised recommendations