Translating Graded Modalities into Predicate Logics

  • H. J. Ohlbach
  • R. Schmidt
  • U. Hustadt
Part of the Applied Logic Series book series (APLS, volume 2)


From Minsky’s early frame systems, which were defined purely operationally, and Brachman’s kl-one knowledge representation system [4, 35] to the language AℒC of Schmidt-Schauß and Smolka’s [28] paper there has been a continuous trend in designing knowledge representation systems more and more according to logical principles with clear syntax and semantics and logical inferences as basic operations. AℒC in particular is a language with the usual logical connectives ⊓, ⊔, ⌝ and the additional constructs (all R C) and (some R C). For example, the following is an AℒC definition which defines a ‘concept’ proud-father as a father all of whose children are successful persons.


Sugar Coherence Prefix Univer Suffix 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Andréka, I. Németi, I. Sain. On interpolation, amalgamation, universal algebra and Boolean algebras with operators. Unpublished manuscript, Univ. of Budapest, 1995.Google Scholar
  2. [2]
    Y. Auffray, P. Enjalbert. Modal theorem proving: An equational viewpoint. Journal of Logic and Computation, 2, 247–297, 1992.CrossRefGoogle Scholar
  3. [3]
    F. Baader, B. Hollunder. A terminological knowledge representation system with complete inference algorithms. In: M. M. Richter, H. Boley, (eds.), Proc. of the International Workshop on Processing Declarative Knowledge (PDK’91), Univ. of Kaiserslautern, 1991.Google Scholar
  4. [4]
    R. J. Brachman, J. G. Schmolze. An overview of the KL-ONE knowledge representation system. Cognitive Science, 9, 171–216, 1985.CrossRefGoogle Scholar
  5. [5]
    R. J. Brachman, R. E. Fikes, H. J. Levesque. KRYPTON: A functional approach to knowledge representation. IEEE Computer, 16, 67–73, 1983.CrossRefGoogle Scholar
  6. [6]
    C. Cerrato. General canonical models for graded normal logics (Graded modalities IV). Studia Logica, 49, 241–252, 1990.CrossRefGoogle Scholar
  7. [7]
    F. de Caro. Graded modalities II. Studia Logica, 47, 1–10, 1988.CrossRefGoogle Scholar
  8. [8]
    F. M. Donini, M. Lenzerini, D. Nardi, W. Nutt. The complexity of concept languages. In: J Allen, R Fikes, E Sandewall, (eds.), Proc. of KR’91, pp. 151–162. Morgan Kaufmann, 1991.Google Scholar
  9. [9]
    F. M. Donini, M. Lenzerini, D. Nardi, W. Nutt. Tractable concept languages. In Proc. of IJCAI’91, pp. 458–463, 1991.Google Scholar
  10. [10]
    L. Farifas del Cerro, A. Herzig. Quantified modal logic and unification theory. Rapport LSI 293, Languages et Systèmes Informatique, Univ. Paul Sabatier, Toulouse, 1988.Google Scholar
  11. [11]
    M. Fattorosi-Barnaba, C. Cerrato. Graded modalities III. Studia Logica, 47, 99–110, 1988.CrossRefGoogle Scholar
  12. [12]
    M. Fattorosi-Barnaba, F. de Caro. Graded modalities I. Studia Logica, 44, 197–221, 1985.CrossRefGoogle Scholar
  13. [13]
    K. Fine. For Some Propositions and so Many Possible Worlds. PhD thesis, Univ. of Warwick, 1969.Google Scholar
  14. [14]
    K. Fine. In so many possible worlds. Notre Dame Journal of Formal Logic, 13, 516–520, 1972.Google Scholar
  15. [15]
    D. M. Gabbay, H. J. Ohlbach. Quantifier elimination in second-order predicate logic. South African Computer Journal, 7, 35–43, 1992. Also in: Proc. of KR’92, 425–436. Also available as Technical Report MPI-I-92–231, Max-Planck-Institut für Informatik, Saarbrücken, July 1992.Google Scholar
  16. [16]
    D. M. Gabbay. An irreflexivity lemma with applications to axiomatizations of conditions on linear frames. In: U. Mönnich, (ed.), Aspects of Philosophical Logic, pp. 67–89. Reidel, 1981.Google Scholar
  17. [17]
    L. R Goble. Grades of modality. Logique et Analyse, 13, 323–334, 1970.Google Scholar
  18. [18]
    A. Herzig. Raisonnement automatique en logique modale et algorithmes d’unification. PhD thesis, Univ. Paul-Sabatier, Toulouse, 1989.Google Scholar
  19. [19]
    H. J. Levesque, R. J. Brachman. Expressiveness and tractability in knowledge representation and reasoning. Computational Intelligence, 3, 78–93, 1987.CrossRefGoogle Scholar
  20. [20]
    B. Nebel, G. Smolka. Representation and reasoning with attributive descriptions. In: K.-H. Blasius, U. Hedtstück, C.-R. Rollinger, (eds.), Sorts and Types in Artificial Intelligence, Lecture Notes in Artificial Intelligence, Vol. 418, pp. 112–139. Springer-Verlag, Berlin, 1990.Google Scholar
  21. [21]
    B. Nebel. Reasoning and Revision in Hybrid Representation Systems, Lecture Notes in Artificial Intelligence, Vol. 422, Springer-Verlag, 1990.Google Scholar
  22. [22]
    H. J. Ohlbach, R. A. Schmidt. Functional translation and second–order frame properties of modal logics. Technical Report MPI–I–95–2–002, Max–Planck–Institut für Informatik, Saarbrücken, January 1995.Google Scholar
  23. [23]
    H. J. Ohlbach. A resolution calculus for modal logics. In: E. Lusk and R. Overbeek, (eds.), Proc. of CADE’88, Lecture Notes in Computer Science, Vol. 310, pp. 500–516. Springer-Verlag, 1988.Google Scholar
  24. [24]
    H. J. Ohlbach. Semantics based translation methods for modal logics. Journal of Logic and Computation, 1, 691–746, 1991.CrossRefGoogle Scholar
  25. [25]
    A. N. Prior. Egocentric logic. N6us, 2, 191–207, 1968.Google Scholar
  26. [26]
    H. Sahlqvist. Completeness and correspondence in the first and second order semantics for modal logics. In: S. Kanger, (ed.), Proceedings of the 3rd Scandinavian Logic Symposium, 1973, pp. 110143. North Holland, Amsterdam, 1975.Google Scholar
  27. [27]
    K. Schild. A correspondence theory for terminological logics: Preliminary report. In: Proc. of IJCA!’91, pp. 466–471, 1991.Google Scholar
  28. [28]
    M. Schmidt-SchauB, G. Smolka. Attributive concept description with complements. Artificial Intelligence, 48, 1–26, 1991.CrossRefGoogle Scholar
  29. [29]
    J. van Benthem. Modal Logic and Classical Logic. Bibliopolis, Naples, 1983.Google Scholar
  30. [30]
    J. van Benthem. Correspondence theory. In: D. Gabbay, F. Guenther, (eds.), Handbook of Philosophical Logic, Vol. II, pp. 167–247. Reidel, Dordrecht, 1984.Google Scholar
  31. [31]
    W. van der Hoek, M. de Rijke. Generalized quantifiers and modal logic. ITLI Prepublication Series for Logic, Semantics and Philosophy of Language LP-91–01, Institue for Language, Logic and Information, Univ. of Amsterdam, 1991.Google Scholar
  32. [32]
    W. van der Hoek, M. de Rijke. Counting objects. Journal of Logic and Computation, 5, 325–345, 1995.CrossRefGoogle Scholar
  33. [33]
    W. van der Hoek. Modalities for Reasoning about Knowledge and Quantities. PhD thesis, Vrije Univ. Utrecht, 1992.Google Scholar
  34. [34]
    W. van der Hoek. On the semantics of graded modalities. Journal of Applied Non-Classical Logics, 2, 81–123, 1992.Google Scholar
  35. [35]
    W. A. Woods, J. G. Schmolze. The Kt.-ONE family. Computers and Mathematics with Applications, 23, 133–177, 1992.CrossRefGoogle Scholar
  36. [36]
    N. K. Zamov. Modal resolutions. Izvestiya VUZ. Mathematika,33, 22–29, 1989. Also published in Soviet Mathematics,Allerton Press.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1996

Authors and Affiliations

  • H. J. Ohlbach
    • 1
  • R. Schmidt
    • 1
  • U. Hustadt
    • 1
  1. 1.Max Planck InstiuteSaarbrückenGermany

Personalised recommendations