Probiotics 3 pp 69-114 | Cite as

Influence of Resident Intestinal Microflora on the Development and Functions of the Intestinal-associated Lymphoid Tissue

  • M. C. Moreau
  • V. Gaboriau-Routhiau


Gut-associated lymphoid tissue (GALT) is under constant exposure to environmental antigens. The digestive flora is the main antigenic stimulus. A huge population of live bacterial cells, estimated at 1014 in number, colonises the human gastrointestinal tract (Luckey and Floch, 1972). Bacterial numbers and composition vary considerably along the gastrointestinal tract, constituting complex ecosystems which depend on the physiology of the host and on interactions between bacteria. It has recently been shown that GALT has the ability to develop tolerance towards resident bacterial flora (Duchmann, 1995). Conversely, the digestive flora considerably influences the development and functioning of GALT. To understand the relationships between the digestive flora and GALT, it is important to consider the evolution of bacterial equilibrium during the main biological stages of life, from a digestive point of view, i.e. infancy (up to 2 years of age), adulthood and old age, as well as the bacterial colonisation of the different parts of the intestine.


Intestinal Flora Oral Tolerance Food Hypersensitivity Gnotobiotic Mouse Digestive Flora 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrieux, C., Pirès, R., Moreau, M.C. and Bouvet, J.P. (1998) Release of soluble co-receptor (Protein Fv) of secretory immunoglobulins after colonization of axenic rats by the human gut flora, Scand. J. Immunol., 48, 192–195.PubMedCrossRefGoogle Scholar
  2. Aroeira, L.S., Cardillo, F., De Albuquerque, D.A., Vaz, N.M. and Mengel, J. (1995) Anti-II-10 treatment does not block either the induction or the maintenance of orally induced tolerance to ovalbumin, Scand. J. Immunol., 41, 319–323.PubMedCrossRefGoogle Scholar
  3. Arulanandam, B.P., VanCleave, V.H. and Metzger, D.W. (1999) IL-12 is a potent neonatal vaccine adjuvant; Eur. J. Immunol.,29 256–264.PubMedCrossRefGoogle Scholar
  4. Babb, J.L., Kiyono, H., Michalek, S.M. and McGhee, J.R., (1981) LPS regulation of the immune response: suppression of immune response to orally administered T-independent antigen, J. Immunol., 127, 1052–1057.PubMedGoogle Scholar
  5. Bandeira, A., Mota-Santos, T., Itohara, S., Degermann, S., Heusser, C., Tonegawa, S. and Coutinho, A. (1990) Localization of γ/δ T cells to the intestinal epithelium is dependant of normal microbial colonization, J. Exp. Med., 172, 239–244.PubMedCrossRefGoogle Scholar
  6. Barone, K.S., Jain, S.L. and Michael, J.G. (1995) Effect of in vivo depletion of CD4+ and CD8+ cells on the induction and maintenance of oral tolerance, Cell. Immunol., 163, 19–29.PubMedCrossRefGoogle Scholar
  7. Beagley, K.W., Fujihashi, K., Lagoo, A. S., Lagoo-Deenadaylan, S., Black, C. A., Sharmanov, A.T., Yamamoto, M., McGhee, J.R., Elson, C. O. and Kyiono, H. (1995) Differences in intraepithelial lymphocyte T cells subsets isolated from murine small versus large intestine, J. Immunol., 154, 5611–5619.PubMedGoogle Scholar
  8. Beagley, K. W., Bao, S. and Husband, A.J. (1998) Mucosal IgA responses in cytokine knockout mice: Differential cytokine requirement for IgA secretion by B-1 and B-2 cells, Mucosal Immunol. Update, 6, No 4, 15–19.Google Scholar
  9. Benlounes, N., Dupont, C., Candalh, C., Blaton, M.A., Darmon, N., Desjeux, J.F. and Heyman, M. (1996) The threshold for immune cell reactivity to milk antigens decreases in cow’s milk allergy with intestinal symptoms, J. Allergy Clin. Immunol., 98, 781–789.PubMedCrossRefGoogle Scholar
  10. Björkstén, B. (1998) Environmental influence on the development of childhood immunity, Nutr. Rev., 56, S106–S112.PubMedCrossRefGoogle Scholar
  11. Bona, C. and Bot, A. (1997) Neonatal immunoresponsiveness, The Immunologist, 5, 5–9.Google Scholar
  12. Borriello, S.P. (1995) Clostridial disease of the gut, Clin. Infect. Dis., 20 (Suppl 2), 5242–5250.CrossRefGoogle Scholar
  13. Bos, N.A., Meeuwsen, G., Wostman B.S., Pleasants, J.R. and Benner, R. (1988) The influence of exogenous antigenic stimulation on the specificity repertoire of background immunoglobulin-secreting cells of different isotypes, Cell. Immunol., 112, 371–380.PubMedCrossRefGoogle Scholar
  14. Bouvet, J.P., Pirès, R., Iscaki, S. and Pillot, J. (1993) Nonimmune macromolecular complexes of Ig in human gut lumen: probable enhancement of antibody functions, J. Immunol.,151 2562–2571.PubMedGoogle Scholar
  15. Bouvet, J.P. and Fischetti, V.A. (1999) Diversity of antibody-mediated immunity at the mucosal barrier, Infect. Immun., 67, 3687–3691.Google Scholar
  16. Brandtzaeg, P. (1995) Molecular and cellular aspects of the secretory immunolobulin system, APMIS, 103, 1–19.PubMedCrossRefGoogle Scholar
  17. Brandtzaeg, P. (1998) Development and basic mechanisms of human gut immunity, Nutr. Rev., 56, S5–S18.PubMedCrossRefGoogle Scholar
  18. Brandwein, S.L., MacCabe, R.P., Cong, Y., Wiates, K.B., Ridwan, B.U., Dean, P.A., Ohkusa, T., Birkenmeier, E.H., Sundberg, J.P. and Elson, C.O. (1997) Spontaneously colitic C3H/HeJBir mice demonstrate selective antibody reactivity to antigens of the enteric bacterial flora, J. Immunol., 159, 44–52.PubMedGoogle Scholar
  19. Bruce, M.G. and Ferguson, A. (1986a) Oral tolerance to ovalbumin in mice: studies of chemically modified and “biologically filtered” antigen, Immunology, 57, 627–630.PubMedGoogle Scholar
  20. Bruce, M.G. and Ferguson, A. (1986b) The influence of intestinal processing on the immunogenicity and molecular size of absorbed, circulating ovalbumin in mice, Immunology, 59, 295–300.PubMedGoogle Scholar
  21. Cebra, J. J., Bos, N. A., Cebra, E. R. Kramer, D. R. Kroese, F. G. M. and Schrader, C. E. (1995) Cellular and molecular biologic approaches for analyzing the in vivo development and maintenance of gut mucosal IgA responses, in Mestecky et al.,(eds), Advances in Mucosal Immunology,Plenum press, New-York, pp 429–434.CrossRefGoogle Scholar
  22. Cebra, J.J., Jiang, H.Q., Sterzi, J. and Tlaskalova-Hogenova, H. (1999) The role of mucosal microbiota in the development and maintenance of the mucosal immune system, in Ogra et al.,(eds), Mucosal Immunology, Academic Press, pp 267–280.Google Scholar
  23. Cerf-Bensussan, N. and Guy-Grand, D. (1991) Intestinal intraepithelial lymphocytes, Gastroenterol. Clin. North Am., 20, 549–576.PubMedGoogle Scholar
  24. Challacombe, S.J. and Tomasi, T.B. (1980) Systemic tolerance and secretory immunity after oral immunization, J. Exp. Med., 152, 1459–1472.PubMedCrossRefGoogle Scholar
  25. Chen, Y., Kuchroo, V.K., Inobe, J.I., Hafler, D.A. and Weiner, H.L. (1994) Regulatory T cell clones induced by oral tolerance: Suppression of autoimmune encephalomyelitis, Science, 265, 1237–1240.PubMedCrossRefGoogle Scholar
  26. Clements, J.D., Hartzog, N.M. and Lyon, F.L. (1988) Adjuvant activity of Escherichia coli heat-labile enterotoxin and effect on the induction of oral tolerance in mice to unrelated protein antigens, Vaccine, 6, 269–277.PubMedCrossRefGoogle Scholar
  27. Cockfield, S.M., Urmson, J., Pleasants, J.R. and Halloran, P.F. (1990) The regulation of expression of MHC products in mice, J. Immunol., 144, 2967–2974.PubMedGoogle Scholar
  28. Crabbe, P., Bazin, H., Eyssen, H. and Heremans, J.F. (1968) The normal microbial flora as a major stimulus for proliferation of plasma cells synthetizing IgA in the gut, Int. Arch. Allergy, 34, 362–375.PubMedCrossRefGoogle Scholar
  29. Crabbe, P., Nash, D., Bazin, H., Eyssen, H. and Heremans, J.F. (1970) Immunohistochemical observations on lymphoid tissues from conventional and germ-free mice, Lab. Invest., 22, 448–457.PubMedGoogle Scholar
  30. Craig, S.W. and Cebra, J.J. (1971) Peyer’s patches an enriched source of precursors for IgA-producing immunocytes in the rabbit, J. Exp. Med, 134, 188–200.PubMedCrossRefGoogle Scholar
  31. Cukrowska, B., Lodinovà-Zadnikovà, R., Sokol, D. and Tlaskalova-Hogenovà, H. (1999) In vitro immunoglobulin response of fetal B-cells is influenced by perinatal infections and antibiotic treatment: a study in preterm infants, Eur. J. Pediatr.,158 in press.Google Scholar
  32. Dahlman, A., Ahlstedt, S., Hanson, L.A., Telemo, E., Wold, A.E. and Dahlgren, U.I. (1992) Induction of IgE antibodies and T-cell reactivity to ovalbumin in rats colonized with Escherichia coli genetically manipulated to produce ovalbumin, Immunology, 76, 225–228.PubMedGoogle Scholar
  33. De Smedt, T., Pajak, B., Muraille, E., Lespagnard, L., Heinen, E., De Baetselier, P., Urbain, J., Leo, O. and Moser, M. (1996) Regulation of dendritic cell numbers and maturation by lipopolysaccharide in vivo, J. Exp. Med., 184, 1413–1424.PubMedCrossRefGoogle Scholar
  34. Dickinson, E. C., Gorga, J. C., Garett, M., Tuncer, R., Boyle, P., Walkins, S.C., Alber, S.M., Parizhskaya, M., Trucco, M., Rowe, M. I. and Ford, H. R. (1998) Immunoglobulin A supplementation abrogates bacterial translocation and preserves the architecture of the intestinal epithelium, Surgery, 124, 284–290.PubMedCrossRefGoogle Scholar
  35. Dohan, A., MacDonald, T.T. and Spencer, J. (1993) The ontogeny of adhesion molecule expression in the human intestine, Clin. Exp. Immunol., 91, 532–537.CrossRefGoogle Scholar
  36. Duchmann, R., Kaiser, I., Hermann, E., Mayet, W., Ewe, K., Meyer zum Buschenfelde, K.H. (1995) Tolerance exists towards resident intestinal flora but is broken in active inflammatory bowel disease, Clin. Exp. Immunol., 102, 448–455.PubMedCrossRefGoogle Scholar
  37. Ducluzeau, R. (1989) Role of experimental microbial ecology in gastroenterology, in E. Bergogne-Berezin (ed.), Microbial Ecology and Intestinal Secretions, Springer-Verlag, Paris, pp 7–26.Google Scholar
  38. Elson, C.O. and Ealding, W. (1984) Cholera toxin feeding did not induce oral tolerance in mice and abrogated oral tolerance to an unrelated protein antigen, J. Immunol., 133, 2892–2897.PubMedGoogle Scholar
  39. Fergusson, A. (1996) Mucosal immunology: from bench to the bedside and beyond, Immunology, 89, 475–782.CrossRefGoogle Scholar
  40. Finegold, S.M., Sutter, V.L. and Mathisen, G.E. (1983) Normal indigenous intestinal flora, in D.J. Hentges (ed.), Human Intestinal Microflora in Health and Disease, Academic Press, New York, pp 3–31.CrossRefGoogle Scholar
  41. Flo, J., Goldma, H., Roux, M.E. and Massoud, E. (1996) Oral administration of a bacterial immunomodulator enhances the immune response to cholera toxin, Vaccine, 14, 1167–1173.PubMedCrossRefGoogle Scholar
  42. Freitas, A.A., Viale, A.C., Sunbiad, A., Heusser, C. and Coutinho, A. (1991) Normal serum immunoglobulins participate in the selection of peripheral B-cell repertoires, PNAS, 88, 5640–5644.PubMedCrossRefGoogle Scholar
  43. Friedman, A. and Weiner, H.L. (1994) Induction of anergy or active suppression following oral tolerance is determined by antigen dosage, PNAS, 91, 6688–6692.PubMedCrossRefGoogle Scholar
  44. Fritsché, R., Pahud, J.J., Pecquet, S. and Pfeifer, A. (1997) Induction of systemic immunologic tolerance to β—lactoglobulin by oral administration of a whey protein hydrolysate, J. Allergy Clin. Immunol., 100, 266–273.PubMedCrossRefGoogle Scholar
  45. Gaboriau-Routhiau, V. and Moreau, M.C. (1996) Gut flora allows recovery of oral tolerance to ovalbumin in mice after transient breakdown mediated by cholera toxin or Escherichia coli heat-labile enterotoxin, Pediatr. Res., 39, 625–629.PubMedCrossRefGoogle Scholar
  46. Gaboriau-Routhiau, V. and Moreau, M.C. (1997) Oral tolerance to ovalbumin in mice: Induction and long-term persistence unaffected by Staphylococcus aureus enterotoxin B and Clostridium perfringens type A enterotoxin, Pediatr. Res., 42, 503508.Google Scholar
  47. Garside, P., Steel, M., Liew, F.Y. and Mowat, A.M. (1995a) CD4+ but not CD8+ T cells are required for the induction of oral tolerance, Int. Immunol., 7, 501–504.PubMedCrossRefGoogle Scholar
  48. Garside, P., Steel, M., Worthey, E.A., Satoskar, A., Alexander, J., Bluethmann, H., Liew, F.Y. and Mowat, A.M. (1995b) T helper 2 cells are subject to high dose oral tolerance and are not essential for its induction, J. Immunol., 154, 5649–5655.PubMedGoogle Scholar
  49. Garside, P. and Mowat, A.M. (1997) Mechanisms of oral tolerance, Critical Reviews in Immunology, 17, 119–137.PubMedCrossRefGoogle Scholar
  50. Gordon, J., R., Burd, P.R. and Galli, S. (1990) Mast cells as a source of multifunctional cytokines, Immunol. Today, 11, 458–464.PubMedCrossRefGoogle Scholar
  51. Gregerson, D.S., Obritsch, W.F. and Donoso, L.A. (1993) Oral tolerance in experimental autoimmune uveoretinitis. Distinct mechanisms of resistance are induced by low vs high dose feeding protocols, J. Immunol., 151, 5751–5761.PubMedGoogle Scholar
  52. Guihot, G., Merle, V., Leborgne, M., Pivert, G., Corriol, O., Brousse, N., Ricour, C. and Colomb V. (1997) Enteral nutrition modifies Gut-Associated Lymphoid Tissue in rat regardless of the molecular form of nitrogen supply, J. Pediatr. Gastroenter. Nutr., 24, 153–161.CrossRefGoogle Scholar
  53. Guy-Grand, D., Griscelli, C. and Vassali, P. (1974) The gut-associated lymphoid system: nature and properties of large dividing cells, Eur. J. Immunol., 4 435–443.PubMedCrossRefGoogle Scholar
  54. Guy-Grand, D., Cerf-Bensussan, N., Malissen, B., Malassis-Seris, M., Briottet, C. and Vassali, P. (1991) Two gut intraepithelial CD8+ lymphocyte populations with different T cell receptors: a role for the gut epithelium in T cell differentiation, J. Exp. Med., 173, 471–481.PubMedCrossRefGoogle Scholar
  55. Halstensen, T. S., Scott, H. and Brandzeag, P. (1990) Human CD8+ intraepithelial T lymphocytes are mainly CD45RA-RB+ and show increased co-expression of CD45R0 in celiac disease, Eur. J. Immunol., 20, 1825–1829.PubMedCrossRefGoogle Scholar
  56. Hamann, L., El-Samalouti, V., Ulmer A.J., Flad, H.D. and Rietschel, E. T (1998) Components of gut bacteria as immunomodulators, Int. J Food Microbiol., 41, 141–154.PubMedCrossRefGoogle Scholar
  57. Hanson, D.G. (1981) Ontogeny of orally induced tolerance to soluble proteins in mice. I. Priming and tolerance in newborns, J. Immunol., 127, 1518–1524.PubMedGoogle Scholar
  58. Helgeland, L., Vaage, J.T., Rolstad, B., Midtvedt, T. and Brandzaeg, P. (1996) Microbial colonization influences composition and T-cell receptor Vβ repertoire of intraepithelial lymphocytes in rat intestine, Immunology, 89, 494–501.PubMedCrossRefGoogle Scholar
  59. Heppell, L.M. and Kilshaw, P. (1982) Immune responses in guinea pigs to dietary protein. I. Induction of tolerance by feeding ovalbumin, Int. Arch. Allergy Appl. Immunol., 68, 54–59.PubMedCrossRefGoogle Scholar
  60. Herias, M.V., Midved, T., Hanson, L.A. and Wold, A.E. (1998) Increased antibody production against gut-colonizing E.coli in the presence of the anaerobic bacterium Peptostreptococcus, Scand. J. Immunol., 48, 277–282.PubMedCrossRefGoogle Scholar
  61. Heyman, M., Crain-Denoyelle, A.M., Corthier, G., Morgat, J.L. and Desjeux, J.F. (1986a) Postnatal development of protein absorption in conventional and germ-free mice, Am. J Physiol., 14, G326–G331.Google Scholar
  62. Heyman, M., Dumontier, A.M. and Desjeux, J.F. (1986b) Intestinal barrier to intact horseradish peroxidase in experimental secretory diarrhea, J. Pediatr. Gastroenterol. Nutr., 5, 463–466.PubMedCrossRefGoogle Scholar
  63. Heyman, M., Darmon, N., Dupont, C., Dugas, B., Hirribaren, A., Blaton, A.M. and Desjeux, J.F. (1994) Mononuclear cells from infants allergic to cow’s milk secrete tumor necrosis factor alpha, altering intestinal function, Gastroenterology, 106, 1514–1523.PubMedGoogle Scholar
  64. Hilkens, C.M.U., Messer, G., Tesselaar, K., Van Rietschoten, A.G.I., Kapsenberg, M. and Wierenga, E.A. (1996) Lack of IL-12 signaling in human allergen-specific Th2 cells, J. Immunol., 157, 4316–4321.PubMedGoogle Scholar
  65. Holdeman, L. V., Good, I.J. and Moore, W.E.C. (1976) Human fecal flora: Variation in bacterial composition within individuals and a possible effect of emotional stress, Appl. Environ. Microbiol., 31, 359–375.PubMedGoogle Scholar
  66. Holt, P.G. and Macaubas, C. (1997) Development of long term tolerance versus sensitisation to environmental allergens during the perinatal period, Curr. Opin. Immunol., 9, 782–787.PubMedCrossRefGoogle Scholar
  67. Hudault, S. (1996) Microbial colonisation of the intestine of newborn, in J.G. Bindels, A.C. Goedhart and H.K.A. Visser (eds), Recent developments in infant nutrition, Kluwer Academic Publishers, Dordrecht, pp 307–317.CrossRefGoogle Scholar
  68. Hughes, A., Bloch, K.J., Bhan, A.K., Gillen, D., Giovino, V.C. and Harmatz, P.R. (1991) Expression of MHC class II (Ia) antigen by the neonatal enterocytes: the effect of treatment with interferon-gamma, Immunology, 72, 491–496.PubMedGoogle Scholar
  69. Husband, A.J. and Gleeson, M. (1996) Ontogeny of mucosal immunity. Environmental and behavioral influences, Brain Behavior Immun., 10, 188–204.CrossRefGoogle Scholar
  70. Husby, S., Jensenius, J.C. and Svehag, S.E. (1985) Passage of undegraded dietary antigen into the blood of healthy adults. Quantification, estimation of size distribution and relation of uptake to levels of specific antibodies, Scand. J. Immunol., 22, 83–92.PubMedCrossRefGoogle Scholar
  71. Husby, S., Mestecky, J., Moldoveanu, Z., Holland, S. and Elson, C.O. (1994) Oral tolerance in humans — T cell but not B cell tolerance after antigen feeding, J. Immunol., 152, 4663–4670.PubMedGoogle Scholar
  72. Johnson, A.G. (1994) Molecular adjuvants and immunomodulators: new approaches to immunization, Clin. Microbiol. Rev., 7, 277–289.PubMedGoogle Scholar
  73. Kaila, M., Isolauri, E., Soppi, E., Virtanen, E., Laine, S., and Arvilommi, H. (1992) Enhancement of the circulating antibody secreting cell response in human diarrhea by a human Lactobacillus strain, Pediatr. Res., 32, 141–144.PubMedCrossRefGoogle Scholar
  74. Karlsson, M.R., Kabu, H., Hanson, L.A., Telemo, E. and Dahlgren, U.I.H. (1999) Neonatal colonization of rats induces immunological tolerance to bacterial antigens; Eur. J. Immunol., 29, 109–118.PubMedCrossRefGoogle Scholar
  75. Katamaya, M., Xu, D.Z., Specian, R.D. and Deitch, E.A. (1997) Role of bacterial adherence and the mucus barrier on bacterial translocation: effects of protein malnutrition and endotoxin in rats, Ann. Surg., 225, 317–326.CrossRefGoogle Scholar
  76. Kaveri, S.V., Lacroix-Desmazes, S., Mouthon, L. and Kazatchkine, M.D. (1998) Human natural autoantibodies: Lessons from physiology and prospects for therapy, The Immunologist, 6, 227–233.Google Scholar
  77. Kawaguchi-Miyashita, M., Shimizu, K., Nanno, M., Shimada, S., Watanabe, T., Koga, Y., Matsuoka, Y., Ishikawa, H., Hashimoto, K. and Ohwaki, M. (1996) Development and cytolytic function of intestinal intraepithelial T lymphocytes in antigen-minimized mice, Immunology, 89, 268–273.PubMedCrossRefGoogle Scholar
  78. Ke, Y., Pearce, K., Lake, J.P., Ziegler, H.K. and Kapp, J.A. (1997) γδ T lymphocytes regulate the induction and maintenance of oral tolerance, J. Immunol.,158 3610–3618.PubMedGoogle Scholar
  79. Kette, K., Baklien, K., Bakken, A., Kral, J.G., Fausa, O. and Brandzaeg, P. (1995) Intestinal B-cell isotype response in relation to local bacterial load: Evidence for immunoglobulin A subclass adaptation. Gastroenterology, 109, 819–825.CrossRefGoogle Scholar
  80. Khoury, S.J., Lider, O., Al-Sabbagh, A. and Weiner, H.L. (1990) Suppression of experimental autoimmune encephalomyelitis by oral administration of myelin basic protein. III. Synergistic effect of lipopolysaccharide, Cell. Immunol., 131, 302–310.PubMedCrossRefGoogle Scholar
  81. King,C E and Toskes, P.P. (1979) Small intestine bacterial overgrowth, Gastroenterology, 76, 1035–1055.Google Scholar
  82. Kiyono, H., Babb, J.L., Michalek, S. and McGhee, J.R. (1980) Cellular basis for elevated IgA responses in C3H/HeJ mice, J. Immunol., 125, 732–737.PubMedGoogle Scholar
  83. Kolb, H. and Pozilli, P. (1999) Cow’s milk and type I diabetes: the gut immune system deserves attention, Immunol. Today, 20, 108–110.PubMedCrossRefGoogle Scholar
  84. Koning, H, Baert, M.R.M., Oranje, A.P., Savelkoul, H.F.J. and Neijens, H.J. (1996) Development of immune functions related to allergic mechanisms in young children, Pediatr. Res., 40, 363–375.PubMedCrossRefGoogle Scholar
  85. Krahenbuhl, J.P and Neutra, M. (1992) Molecular and cellular basis of immune protection of mucosal surfaces, Physiol. Rev., 72, 853–879.Google Scholar
  86. Kramer, D.R. and Cebra, J.J. (1995) Early appearance of “natural” mucosal IgA responses and germinal centers in suckling mice developing in the absence of maternal antibodies, J. Immunol., 154, 2051–2062.PubMedGoogle Scholar
  87. Kroese, F.G.M., Butcher, E.C., Stall, A.M., Lalor, P.A., Adams, S. and Herzenberg, L. A. (1989) Many of the IgA producing cells in murine gut are derived from self-replenishing precursors in the peritoneal cavity, Int. Immunol., 1, 75–80.PubMedCrossRefGoogle Scholar
  88. Lamont, A.G., Bruce, M.G., Watret, K.C. and Ferguson, A. (1988a) Suppression of an established DTH response to ovalbumin in mice by feeding antigen after immunization, Immunology, 64, 135–140.PubMedGoogle Scholar
  89. Lamont, A.G., Mowat, A., Browning, M.J. and Parrott, D.M.V. (1988b) Genetic control of oral tolerance to ovalbumin in mice, Immunology, 63, 737–739.PubMedGoogle Scholar
  90. Lamont, A.G., Mowat, A. and Parrott, D. (1989) Priming of systemic and local delayed-type hypersensitivity responses by feeding low doses of ovalbumin to mice, Immunology, 66, 595–599.PubMedGoogle Scholar
  91. Lionetti, P., Breese, E. and Spencer, J. (1993) Activation of V-133+ T cells and tissue damage in human small intestine induced by the bacterial superantigen, Staphylococcus aureus enterotoxin B, Eur. J. Immunol.,23 664–668.CrossRefGoogle Scholar
  92. Louis, E., Franchimont, D., Lamproye, A., Van Kemseke, C., Schaaf, N., Mahieu, P. and Belaiche, J. (1995) Systemic immune response after rectocolonic administration of ovalbumin in mice, Int. Arch. Allergy Immunol., 108, 19–23.PubMedCrossRefGoogle Scholar
  93. Louis, E., Franchimont, D., Deprez, M., Lamproye, A., Schaaf, N., Mahieu, P. and Belaiche, J. (1996) Decrease in systemic tolerance to fed ovalbumin in indomethacintreated mice, Int. Arch. Allergy Immunol., 109, 21–26.PubMedCrossRefGoogle Scholar
  94. Lu, C.Y., Calamai, E.G. and Unanue, E.R. (1979) A defect in the antigen-presenting function of macrophages from neonatal mice, Nature, 282, 327–329.PubMedCrossRefGoogle Scholar
  95. Luckey, T.D. and Fioch, M.H. (1972) Introduction to intestinal microecology, Am. J. Clin. Nutr., 25, 1291–1295.Google Scholar
  96. Lundin, B.S., Dahlgren, U.I.H., Hanson, L.A. and Telemo, E. (1996) Oral tolerization leads to active suppression and bystander tolerance in adult rats while anergy dominates in young rats, Scand. J. Immunol., 43, 56–63.PubMedCrossRefGoogle Scholar
  97. Lycke, N., Bromander, A., Ekman, L., Grdic, D., Hornquist, E., Kjerrulf, E., Kopf, M., Kosco-Vilbois, M., Schon, K. and Vajdy, M. (1995) The use of knock-out mice in studies of induction and regulation of gut mucosal immunity, Mucosal Immunol. Update, 3, 1–8.Google Scholar
  98. MacCartney, A.L., Wenzhi, W. and Tannock, G.W. (1996) Molecular analysis of the composition of the bifidobacterial and lactobacillus microflora of humans, Appl. Environ. Microbiol., 62, 4608–4613.Google Scholar
  99. MacDonald, T.T., Weinel, A. and Spencer, J. (1988) HLA-DR expression in human fetal intestinal epithelium, Gut, 29, 1342–1348.PubMedCrossRefGoogle Scholar
  100. MacDonald, T.T. (1994) Development of mucosal immune function in man: potential for GI disease states, Acta Pediatr. Japonica, 36, 532–536.CrossRefGoogle Scholar
  101. MacMenamin, C., McKersey, M., Kühnlein, P., Hünig, T. and Holt, P.G. (1995) γδ T cells down-regulate primary IgE responses in rats to inhaled soluble protein antigens, J. Immunol., 154, 4390–4394.Google Scholar
  102. MacPherson, G.G., Jenkins, C.D., Stein, M.J. and Edwards, C. (1995) Endotoxin-mediated dendritic cell release from the intestine. Characterization of released dendritic cells and TNF dependence, J. Immunol., 154, 1317–1322.PubMedGoogle Scholar
  103. MacWilliam, AS. and Holt, P.G. (1997) Mucosal dendritic cells in the respiratory tract, Mucosa! Immunol. Update, 5, 21–25.Google Scholar
  104. Mc Ghee, J.R., Michalek, S.M., Kiyono, H., Eldrigde, J.H., Colwell, D.E., Williamson, S.I., Wannemuehler, M.J., Jirillo, E., Mosteller, L.M., Spalding, D.M., Hamada, S., Gollahon, K.A., Morisaki, I., Gregory, R.L. and Koopman, W.J. (1984) Mucosal immunoregulation: environmental lipopolysaccharide and GALT T lymphocytes regulate the IgA response, Microbial. Immunol., 28, 261–280.Google Scholar
  105. Marcotte, H. and Lavoie, M.C. (1996) No apparent influence of immunoglobulins on indigenous oral and intestinal microbiota in mice, Infect. Immun., 64, 4694–4699.PubMedGoogle Scholar
  106. Matsumoto, S., Setoyama, H. and Umesaki, Y. (1992) Differential induction of major histocompatibility complex molecules on mouse intestine by bacterial colonization, Gastroenterology, 103, 1777–1782.PubMedGoogle Scholar
  107. Medzitov, R. and Janeway, C.A. (1997) Innate immunity: impact on the adaptative immune response, Curr.Opin. Immunol., 9, 4–7.CrossRefGoogle Scholar
  108. Mengel, J., Cardillo, F., Aroeira, L.S., Williams, O. and Russo, M. (1995) Anti-y8 T cell antibody blocks the induction and maintenance of oral tolerance to ovalbumin in mice, Immunology Letters, 48, 97–102.PubMedCrossRefGoogle Scholar
  109. Miller, A., Lider, O., Abramsky, O. and Weiner, H.L. (1994) Orally administered myelin basic protein in neonates primes for immune responses and enhances experimental autoimmune encephalomyelitis in adult animals, Eur. J. Immunol., 24, 1026–1032.PubMedCrossRefGoogle Scholar
  110. Milon, G, Moreau, M.C., Lebastard, M. and Marshall, G. (1992) Hematopoiesis during infection in mice: an inducible, genetically controlled response mediated by CD4+ T cells homing in their bone marrow, in R. van Furth (ed), Mononuclear phagocytes, Kluwer Academic Publishers, The Netherlands, pp 50–54.CrossRefGoogle Scholar
  111. Monneret-Vautrin, D.A. and Kanny, G. (1996) Allergies alimentaires, Rev. Prat. (Paris), 46, 961–967.Google Scholar
  112. Moore, W.E.C. and Holdeman, L.V. (1974) Human fecal flora: the normal flora of 20 Japanese-Hawaiians, Applied Microbiol., 27, 961–979.Google Scholar
  113. Moreau, M.C., Ducluzeau, R., Guy-Grand, D. and Muller M.C. (1978) Increase in the population of duodenal IgA plasmocytes in axenic mice monoassociated with different living or dead bacterial strains of intestinal origin, Infect. Immun., 21, 532–539.PubMedGoogle Scholar
  114. Moreau, M.C., Raibaud, P. and Muller, M.C. (1982) Relation entre le développement du système immunitaire intestinal à IgA et l’établissement de la flore microbienne dans le tube digestif du souriceau holoxénique, Ann. Immunol. (Inst. Pasteur), 133D, 29–39.Google Scholar
  115. Moreau, M.C., Ducluzeau, R., Muller, M.C., and Raibaud, P. (1984) Effect of Escherichia coli strain on intestinal IgA plasmocyte stimulation and serum antibody response in gnotobiotic mice, Progress Clin. Biol. Res., 131, 391–395.Google Scholar
  116. Moreau, M.C., Corthier, G., Muller, M.C., Dubos, F. and Raibaud, P. (1986) Relationships between rotavirus diarrhea and intestinal microflora establishment in conventional and gnotobiotic mice, J. Clin. Microbiol., 23, 863–868.PubMedGoogle Scholar
  117. Moreau, M.C., and Corthier, G. (1988) Effect of the gastrointestinal microflora on induction and maintenance of oral tolerance to ovalbumin in C3H/HeJ mice, Infect. Immun., 56, 2766–2768.PubMedGoogle Scholar
  118. Moreau, M.C. and Gaboriau-Routhiau, V. (1996) The absence of gut flora, the doses of antigen ingested and aging affect the long-term peripheral tolerance induced by ovalbumin feeding in mice, Res. Immunol., 147, 49–59.PubMedCrossRefGoogle Scholar
  119. Moreau, M.C., Bisetti, N. and Dubuquoy, C. (1998a) Immunomodulating properties of a strain of Bifidobacterium used as probiotic on the fecal and cellular intestinal IgA antirotavirus responses in mice, in M Sadler and M Saltmarsh (ed), Functional Foods, The Royal Society of Chemistry, pp 47–54.Google Scholar
  120. Moreau, M.C., Gaboriau-Routhiau, V., Dubuquoy, C., Bisetti, N., Bouley, C. and Prevoteau, H. (1998b) Modulating properties of intestinal bacterial strains, Escherichia coli and Bifidobacterium, on two specific immune responses generated by the gut, i.e. oral tolerance to ovalbumin and intestinal IgA anti-rotavirus response, in gnotobiotic mice, in Talwar G.P., Nath I., Ganguly N.K. and Rao K.V.S. (eds), The l0th International Congress of Immunology, Monduzzi Editore, Bologna, pp 407–411.Google Scholar
  121. Mowat, A..M. (1987) The regulation of immune responses to dietary protein antigens, Immunol. Today, 8, 93–98.CrossRefGoogle Scholar
  122. Mowat, A.M., Maloy, K.J. and Donachie, A.M. (1993) Immune-stimulating complexes as adjuvants for inducing local and systemic immunity after oral immunization with protein antigens, Immunology, 80, 527–534.PubMedGoogle Scholar
  123. Mowat, A.M. and Viney, J.L. (1997) The anatomical basis of intestinal immunity, Immunological Reviews, 156, 145–166.PubMedCrossRefGoogle Scholar
  124. Murakami, M and Honjo, T. (1995) Involvement of B-1 cells in mucosal immunity and autoimmunity, Immunol. Today, 16, 534–538.PubMedCrossRefGoogle Scholar
  125. Nicaise, P., Gleizes, A., Forestier, F., Sandre, C., Quero, A.M. and Labarre, C. (1995) The influence of E.coli implantation in axenic mice on cytokine production by peritoneal and bone marrow-derived macrophages, Cytokine, 7, 713–719.PubMedCrossRefGoogle Scholar
  126. Nicaise, P., Gleizes, A., Sandre, C., Kergot, R., Lebrec, H., Forestier, F., and Labane, C. (1999) The intestinal microflora regulates cytokine production positively in spleen-derived macrophages but negatively in bone marrow-derived macrophages, Eur. Cytokine. Net., 10 in press.Google Scholar
  127. Ouwehand, A.C., Isolauri, E., Kirjavainen, P.V. and Salminen, S.J. (1999) Adhesion of four Bifidobacterium strains to human intestinal mucus from subjects in different age groups, FEMSMicrobiol. Letters, 172, 61–64.CrossRefGoogle Scholar
  128. Parrott, D.M.W. (1976) The gut-associated lymphoid tissue and gastrointestinal immunity, in Fergusson A, MacSween NRM (eds), Immunological aspects of the liver and gastrointestinal tract, Lancaster: MTP Press, pp 1–32.CrossRefGoogle Scholar
  129. Pecquet, S., Ehrat, C. and Ernst, P. (1992) Enhancement of mucosal antibody responses to Salmonella typhimurium and the microbial hapten phosphorylcholine in mice with X-linked immunodeficiency by B-cell precursors from the peritoneal cavity, Infect. Immun., 60, 503–509.PubMedGoogle Scholar
  130. Peng, H.J., Turner, M.W. and Strobel, S. (1989a) The kinetics of oral hyposensitization to a protein antigen are determined by immune status and the timing, dose and frequency of antigen administration, Immunology, 67, 425–430.PubMedGoogle Scholar
  131. Peng, H.J., Turner, M.W. and Strobel, S. (1989b) Failure to induce oral tolerance to protein antigen in neonatal mice can be corrected by transfer of adult spleen cells, Pediatr. Res., 24, 486–490.CrossRefGoogle Scholar
  132. Peng, H.J., Turner, M.W. and Strobel, S. (1990) The generation of a “tolerogen” after ingestion of ovalbumin is time-dependant and unrelated to serum levels of immunoreactive antigen, Clin. Exp. Immunol., 81, 510–515.PubMedCrossRefGoogle Scholar
  133. Peng, H.J., Chang, Z.N., Han, S.H., Won, M.H. and Huang, B.T. (1995) Chemical denaturation of ovalbumin abrogates the induction of oral tolerance of specific IgG antibody and DTH responses in mice, Scand. J. Immunol., 42, 297–304.PubMedCrossRefGoogle Scholar
  134. Peng, H.J., Chang, Z.N., Lin, S.Y., Han, S.H. and Chang, C.H. (1998) Chemical denaturation of ovalbumin abrogates the induction of oral tolerance of mouse reaginic antibody responses, Scand. J. Immunol., 47, 475–480.PubMedCrossRefGoogle Scholar
  135. Perdigon, G., Alvarez, S., Gobbato, N., De Budeguer, M.V., and De Ruiz Holgado, A.A.P. (1995) Comparative effect of the adjuvant capacity of Lactobacillus casei and lipopolysaccharide on the intestinal secretory antibody response and resistance to Salmonella infection in mice, Food Agricultural Immunol, 7, 283–294.CrossRefGoogle Scholar
  136. Pierre, P., Denis, O., Bazin, H., Mbella, E.M. and Vaerman, J.P. (1992) Modulation of oral tolerance to ovalbumin by cholera toxin and its B subunit, Eur. J. Immunol., 22, 3179–3182.PubMedCrossRefGoogle Scholar
  137. Powrie, F., Carlino, J., Leach, M.W., Mauze, S. and Coffman, R.L. (1996) A critical role for transforming growth factor-0 but not interleukin 4 in the suppression of T helper type 1-mediated colitis by CD45RBIOW CD4+ T cells, J. Exp. Med., 183, 2669–2674.PubMedCrossRefGoogle Scholar
  138. Raibaud, P. (1988) Factors controlling the bacterial colonization of the neonatal intestine, in Hanson L.A.(ED), Biology of Human Milk, Raven press, New York, pp 205–219.Google Scholar
  139. Regnault, A., Cumano, A., Vassali, P., Guy-Grand, D. and Kourilsky, P. (1994) Oligoclonal receptor of the CD8aa and the CD8αα TCR-αβ murine intestinal intraepithelial T lymphocytes: evidence for the random emergence of T cells, J. Exp. Med., 180, 1345–1349.PubMedCrossRefGoogle Scholar
  140. Regnault, A., Levraud, J.P., Lim, A., Six, A., Moreau, M.C., Cumano, A. and Kourilsky, P. (1996) The expansion and selection of T cell receptor α/β intestinal intraepithelial T cell clones, Eur. J. Immunol., 26, 914–921.PubMedCrossRefGoogle Scholar
  141. Ridge, J.P., Fuchs, E.J. and Matzinger, P. (1996) Neonatal tolerance revisited: turning on newborn T cells with dendritic cells, Science, 271, 1723–1726.PubMedCrossRefGoogle Scholar
  142. Rizzo, L.V., Morawetz, R.A., Miller-Rivero, N.E., Choi, R., Wiggert, B., Chan, C.C., Morse III, H.C., Nussenblatt, R.B. and Caspi, R.R. (1999) I1–4 and I1–10 are both required for the induction of oral tolerance, J. Immunol., 162, 2613–2622.PubMedGoogle Scholar
  143. Rognum, T.O., Stoltenberg; L., Vege, A. and Brandzaeg, P. (1992) development of intestinal mucosal immunity in fetal life and in first postnatal months, Pediatr. Res., 32, 145–149.PubMedCrossRefGoogle Scholar
  144. Rothkotter, H.J., Ulbrich, H and Pabst, R. (1991) The postnatal development of gut lamina propria lymphocytes: number, proliferation and T and B cell subsets in conventional and germ-free pigs, Pediatr. Res., 29, 237–242.PubMedCrossRefGoogle Scholar
  145. Ruuska, T. (1992) Occurrence of acute diarrhea in atopic and nonatopic infants: the role of prolonged breast-feeding, J. Pediatr. Gastroenterol. Nutr., 14, 27–33.PubMedCrossRefGoogle Scholar
  146. Saidi, D., Heyman, M., Kheroua, O., Boudraa, G., Bylsma, P., Kerroucha, R., Chekroun, A., Maragi, J.A., Touhami, M. and Desjeux, J.F. (1995) Jejunal response to ßlactoglobulin in infants with cow’s milk allergy, C. R Acad. Sci. Paris, 318 683–689.Google Scholar
  147. Saklayen, M.G., Pesce, A.J., Pollak, V.E. and Michael, J.G. (1984) Kinetics of oral tolerance: Study of variables affecting tolerance induced by oral administration of antigen, Int. Archs. Allergy Appl. Immunol., 73, 5–9.CrossRefGoogle Scholar
  148. Salminen, S., Bouley, C., Boutron-Ruault, M.C., Cummings, J.H., Franck, A., Gibson, G.R., Isolauri, E., Moreau, M.C., Roberfroid, M. and Rowland, I. (1998) Functional food science and gastrointestinal physiology and function, British J. Nutr., 80 (suppl. 1), S147–S171.CrossRefGoogle Scholar
  149. Samoilova, E.B., Horton, J.L., Zhang, H., Khoury, Si., Weiner, H.L. and Chen, Y. (1998) CTLA-4 is required for the induction of high dose oral tolerance, Int. Immunol., 10, 491–498.PubMedCrossRefGoogle Scholar
  150. Sampson, H.A. and Burks, A.W. (1996) Mechanisms of food allergy, Annu. Rev. Nutr., 16, 161–177.PubMedCrossRefGoogle Scholar
  151. Sarandakou, A., Giannaki, G., Malamitsi-Putchner, A., Rizos, D., Hourdaki; E., Protonotariou, E. and Phocas, I. (1998) Inflammatory cytokines in newborn infants, Mediators Inflamm., 7, 309–312.CrossRefGoogle Scholar
  152. Savage, D.C. (1977) Microbial ecology of the gastrointestinal tract, Annu. Rev. Microbiol., 31, 107–133.PubMedCrossRefGoogle Scholar
  153. Schaedler, R.W., Dubos, R. and Costello, R. (1965) The development of the bacterial flora in the gastrointestinal tract of mice, J. Exp. Med., 122, 59–66.PubMedCrossRefGoogle Scholar
  154. Siavoshian, S., Blottiere, H.M., Bentouimou, N., Cherbut, C., and Galmiche, J.P. (1996) Butyrate enhances major histocompatibility complex class I, HLA-DR and ICAM-1 antigen expression on differentiated human intestinal epithelial cells, Eur. J. Clin. Invest., 26, 803–810.PubMedCrossRefGoogle Scholar
  155. Singh, B. and Rabinovitch, A. (1993) Influence of microbial agents on the development and prevention of autoimmune diabetes, Autoimmunity, 15, 209–213.PubMedCrossRefGoogle Scholar
  156. Smith, M.W., James, P.S. and Tivey, D.R. (1987) M cell numbers increase after transfer of SPF mice to a normal animal house. Am. J. Path., 128, 385–389.PubMedGoogle Scholar
  157. Smith, P.D. and Meng, G. (1997) Mucosal macrophages in infection and immunity, Mucosa! Immunol. Update, 5, 32–34.Google Scholar
  158. Snider, D.P., Marshall, J.S., Perdue, M.H. and Liang, H. (1994) Production of IgE antibody and allergic sensitization of intestinal and peripheral tissues after oral immunization with protein Ag and cholera toxin, J. Immunol., 153, 647–657.PubMedGoogle Scholar
  159. Stepankova, R., Sinkora, J., Hudcovic, T., Kozakova, H. and Tlaskalova-hogenova, H. (1998) Differences in development of lymphocyte subpopulations from GALT of germ-free and conventional rats: effect of aging, Folia Microbiol., 43, 531–534.CrossRefGoogle Scholar
  160. Stokes, C.R., Swarbrick, E.T. and Soothill, J.F. (1983) Genetic differences in immune exclusion and partial tolerance to ingested antigens, Clin. Exp. Immunol., 52, 678–684.PubMedGoogle Scholar
  161. Strachan, D. (1898) Hay, fever, hygiene and household size, Brit. J. Med., 289, 1259–1260.Google Scholar
  162. Strobel, S. and Ferguson, A. (1984) Immune responses to fed protein antigen in mice. III. Systemic tolerance or priming is related to age at which antigen is first encountered, Pediatr. Res., 18, 588–594.PubMedCrossRefGoogle Scholar
  163. Strobel, S., Mowat, A.M. and Ferguson, A. (1985) Prevention of oral tolerance induction to ovalbumin and enhanced antigen presentation during graft-versus-host reaction in mice, Immunology, 56, 57–64.PubMedGoogle Scholar
  164. Strobel, S. and Ferguson, A. (1987) Persistence of oral tolerance in mice fed ovalbumin is different for humoral and cell-mediated immune responses, Immunology, 60, 317–318.PubMedGoogle Scholar
  165. Strobel, S. and Mowat, A.M. (1998) Immune responses to dietary antigens: oral tolerance, Immunol. Today, 19, 173–181.PubMedCrossRefGoogle Scholar
  166. Sudo, N., Sawamura, S.A., Tanaka, K., Aiba, Y., Kubo, C. and Koga, Y. (1997) The requirement of intestinal bacterial flora for the development of an IgE production system fully susceptible to oral tolerance induction, J. Immunol., 159, 1739–1745.PubMedGoogle Scholar
  167. Telemo, E., Jacobsson, I., Weström, B. and Folkesson, H. (1987) Maternal dietary antigens and the immune response of the offspring in the guinea pig, Immunology, 62, 35–38.PubMedGoogle Scholar
  168. Thomas, M.J. and Kemeny, D.M. (1998) Novel CD4 and CD8 T-cell subsets, Allergy, 53, 1122–1132.PubMedCrossRefGoogle Scholar
  169. Trinchieri, G. (1993) Interleukin-12 and its role in the generation of Thl cells, Immunol. Today, 14, 335–338.PubMedCrossRefGoogle Scholar
  170. Troncone, R., Caputo, N., Zibella, A., Russo, R., Rossi, M., Gianfrani, C., Stern, M., Wieser, H. and Auricchio, S. (1996) Defective “gut processing” of gliadin in mice with graft-versus-host enteropathy, Int. Arch. Allergy Immunol., 109, 44–49.PubMedCrossRefGoogle Scholar
  171. Umesaki, Y., Setoyama, H., Matsumoto, S. and Okada, Y. (1993) Expansion of α/β T-cell receptor-bearing intestinal intraepithelial lymphocytes after microbial colnization in germ-free mice and its independence from thymus, Immunology, 79, 32–37.PubMedGoogle Scholar
  172. Underdown, B. and Mestecky, J. (1994) Mucosal immunoglobulins, in Ogra et al.,(eds), Handbook of Mucosal Immunology, Academic Press, Orlando, Florida, pp 79–97.Google Scholar
  173. Vaarala, O., Saukkonen, T., Savilahti, E., Klemola, T. and Akerblom, H.K. (1995) Development of immune response to cow’s milk proteins in infants receiving cow’s milk or hydrolyzed formula, J Allergy Clin. Immunol., 96, 917–923.PubMedCrossRefGoogle Scholar
  174. Vanderplas, Y. (1998) Myths and facts about breastfeeding: Does it prevent later atopic allergy? Nut. Res., 18, 1373–1387.CrossRefGoogle Scholar
  175. Van Den Broek, M.F, Van Bruggen, M.C.J., Koopman, J.P., Hazenberg, M.P. and Van Der Berg, W.B. (1992) Gut flora induces and maintains resistance against streptococcal cell wall-induced arthritis in F344 rats, Clin. Exp. Immunol., 88, 313–317.PubMedCrossRefGoogle Scholar
  176. Van Der Heijden, P.J., Bianchi, A.T.J., Heidt, P.J., Stok; W. and Bokhout, B.A. (1989) Background (spontaneous) immunoglobulin production in the murine small intestine before and after weaning. JReprod. Immunol., 15, 217–227.Google Scholar
  177. Van Der Waaij, D. (1993) Mechanisms involved in the development of the intestinal microflora in relation to the host organism: Consequences for colonization resistance, in C.E. Hormaeche, C.W. Penn and C.J. Smyth (eds.), Molecular biology of bacterial infection: Current status and future perspectives, University Press, Cambridge, pp 112.Google Scholar
  178. Verma, M., Majumdar, S., Ganguly, N.K. and Walia, B.N.S. (1994) Effect of Escherichia coli enterotoxins on macromolecular absorption, Gut, 35, 1613–1616.PubMedCrossRefGoogle Scholar
  179. Vidal, K., Samarut, C., Magnaud, J.P., Revillard, J.P. and Kaiserlian, D. (1993) Unexpected lack of reactivity of allogeneic anti-Ia monoclonal antibodies with MHC class II molecules expressed by mouse intestinal epithelial cells, J. Immunol., 151, 4642–4650.PubMedGoogle Scholar
  180. Viney, J.L., Mowat, A.M., O’Malley, J., Williamson, E. and Fanger, N.A. (1998) Expanding dendritic cells in vivo enhances the induction of oral tolerance, J. Immunol., 160, 5815–5825.PubMedGoogle Scholar
  181. Wannemuehler, M.J., Kiyono, H., Babb, J.L., Michalek, S.M. and McGhee, J.R. (1982) Lipopolysaccharide (LPS) regulation of the immune response: LPS converts germfree mice to sensitivity to oral tolerance induction, J. Immunol., 129, 959–965.PubMedGoogle Scholar
  182. Warner, J.A., Jones, A.C., Miles, E.A., Colwell, B.M. and Warner, J.O. (1996) Maternofetal interaction and allergy, Allergy, 51, 447–451.PubMedGoogle Scholar
  183. Weiner, H.L., Friedman, A., Miller, A., Khoury, S.J., Al-Sabbagh, A., Santos, L., Sayegh, M., Nussenblatt, R.B., Trentham, D.E. and Hafler, D.A. (1994) Oral tolerance: Immunologic mechanisms and treatment of animal and human organ-specific autoimmune diseases by oral administration of autoantigens, Annu. Rev. Immunol., 12, 809–837.PubMedCrossRefGoogle Scholar
  184. Weiner, H.L. (1997) Oral tolerance: Immune mechanisms and treatment of autoimmune diseases, Immunol. Today, 18, 335–343.PubMedCrossRefGoogle Scholar
  185. Weinstein, P. D. and Cebra, J.J. (1991) The preference for switching to IgA expression by Peyer’s patch germinal center B cells is likely due to the intrinsic influence of their environment, J. Immunol., 147, 4126–4135.PubMedGoogle Scholar
  186. Williams, N. A., Harper, H.H. and Cochrane, L. (1997) Antigen presenting cells of the small intestinal lamina propria, Mucosal Immunol. Update, 5, 29–32.Google Scholar
  187. Wold, A.E. (1998) The hygiene hypothesis revised: is the rising frequency of allergy due to changes in the intestinal flora?, Allergy, 53, 20–25.PubMedCrossRefGoogle Scholar
  188. Wostmann, B.S. and Pleasants, J.R. (1991) The germ-free animal fed chemically defined diet: a unique tool, Proc. Soc. Exp. Biol. Med., 198, 539–546.PubMedGoogle Scholar
  189. Zoetendal, E.G., Akkermans, A.D.L. and De Vos, W.M. (1998) Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria, Appl. Environ. Microbiol., 64, 3854–3859.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • M. C. Moreau
  • V. Gaboriau-Routhiau

There are no affiliations available

Personalised recommendations