Comparative analysis of the phytoplankton of fifteen lowland fluvial systems of the River Plate Basin (Argentina)

  • Inés O’Farrell
Part of the Developments in Hydrobiology book series (DIHY, volume 100)


The phytoplankton of fifteen lowland courses of the River Plate Basin is compared and characterized by means of multivariate analyses.

The cluster analysis performed with the more abundant species of each fluvial system reveals three main groups. Rivers with a high discharge and a large floodplain are grouped on the basis of the dominance of several Aulacoseira species. An eutrophic flora typified by Cyclotella meneghiniana, Synedra ulna and several green algae occurs in the smaller rivers with high conductivity, low transparency and important discharge variations. A third group comprises the Uruguay River and its tributaries, characterized by the presence of several pennatae diatoms and flagellates: Arnphipleura pellucida, Surirella tenera, Terpsinoe musica,Navicula cuspidata, Eudorina elegans, Pandorina morum and Peridinium gatunense.

The Principal Component Analysis based on a data matrix of physical, chemical and hydrological parameters revealed similar results. The ordination according to the first two components reflects the geographic location of these systems in the River Plate Basin, responding to a decreasing gradient of conductivity, pH and solids and an increasing minimum temperature. The rivers were ordinated by means of a Correspondence Analysis based on the main algal groups.

Key words

River phytoplankton South America multivariate analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Antoine, S. E., 1983a. Algal flora of the River Tigris, Iraq. Nova Hedwigia 37: 535–542.Google Scholar
  2. Antoine, S. E., 19836. Limnological investigation in the polluted Rabat Canal and the Shatt al-Arab River, Basrah, Iraq. Nova Hedwigia 37: 497–518.Google Scholar
  3. Antoine, S. E., 1987. Phytoplankton population dynamics and chemical characteristics of the sediments of the Salihiyah River, Bas-rah, Iraq. Limnologica 18: 69–82.Google Scholar
  4. Bonetto, C. A., A. A. Bonetto and Y. Zalocar, 1981. Contribución al conocimiento limnologico del Rio Paraguay en su tramo interior. Ecosur 8: 55–58.Google Scholar
  5. Bonetto, C. A., Y. Zalocar, P. M. Caro and E. R. Vallejos, 1979. Producción primaria del fitoplancton del rio Parana en el area de su confluencia con el rio Paraguay. Ecosur 6: 207–227.Google Scholar
  6. Bonetto, C. A., Y. Zalocar De Domitrovic and E. R. Vallejos, 1982. Contribución al conocimiento del fitoplancton del Parana Medio. I. Ecosur 9: 189–212.Google Scholar
  7. Bonetto, C. A., Y. Zalocar De Domitrovic and E. R. Vallejos, 1983. Fitoplancton y producción primaria del rio Alto Parana ( Argentina ). Physis (Buenos Aires) B, 41: 81–93.Google Scholar
  8. Brook, A. J., 1981. The Biology of Desmids. Botanical Monographs, 16, Blackwell Scientific Publications, London, 276 pp.Google Scholar
  9. del Giorgio, P. A., A. L. Vinocur, R. J. Lombardo and G. Tell, 1991. Progressive changes in the structure and dynamics of the phytoplankton community along a pollution gradient a lowland river. A multivariate approach. Hydrobiologia 224: 129–154.Google Scholar
  10. de Wolff, H., 1982. Method of coding of ecological data from Diatoms for computer utilization. Mededel. Rijks Geol. Dienst 36: 95–100.Google Scholar
  11. Dixon W. J. (ed.), 1982. BMDP Statistical Software. University of California Press, Berkley.Google Scholar
  12. Friederich, A. and D. Müller, 1984. Rhine, In B. A. Whitton (ed.), Ecology of European rivers. Blackwell Scientific Publications, Oxford, London, 644 pp.Google Scholar
  13. Garcia de Emiliani, M. O., 1981. Fitoplancton de los principales cauces y tributarios del valle aluvial del rio Parana: tramo Goya-Diamante. Rev. Asoc. Cienc. Nat. Litoral 12: 112–125.Google Scholar
  14. Garcia de Emiliani, M. 0., 1988. Fitoplancton y variables ambientales en causes del Parana Medio, Argentina: andlisis de correlación canonica. Revue Hydrobiol. trop. 21: 183–196.Google Scholar
  15. Garcia de Emiliani, M. 0., 1990. Phytoplankton ecology of the Middle Parana River. Acta Limnol. Brasil. 3: 391–417.Google Scholar
  16. Huq, M. F., H. A. Al-Saadi and H. A. Hameed, 1978. Phytoplankton ecology of Shatt al-Arab River at Basrah, Iraq. Verh. int. Ver. Limnol. 20: 1552–1556.Google Scholar
  17. Kiss, K. T., 1992. Trophic level and eutrophication of the River Danube, Hungary. XXV International Congress SIL, Barcelona 1992.Google Scholar
  18. Lakshminarayana, J. S. S., 1965. Studies on the phytoplankton of the River Ganges, Varanasi, India. Hydrobiologia 25: 119–165.Google Scholar
  19. Lewis, W. M. and F. H. Weibezahn, 1976. Chemistry, energy flow, and community structure in some Venezuelan fresh waters. Arch. Hydrobiol. Suppl. 50: 145–207.Google Scholar
  20. Loez, C. and A. Salibian, 1990. Premières données sur le phytoplancton et les caractéristiques physico-chimiques du Rio Reconquista (Buenos Aires, Argentine): une rivière urbaine polluée. Revue Hydrobiol. trop. 23: 283–296.Google Scholar
  21. Margalef, R., 1983. Limnologia. Omega, Barcelona, 1010 pp. Meichtry de Zaburlin, N. and E. Permingeat, 1991. Fitoplancton delGoogle Scholar
  22. rio Uruguay y algunos tributarios en el area de influencia delGoogle Scholar
  23. proyecto Garabi. Biologia Acuatica 15: 92–93.Google Scholar
  24. Neiff, J. J., 1981. Panorama ecológico de los cuerpos de agua del nordeste argentino. Symposia, VI Jornadas Argentinas de Zólogia: 115–151.Google Scholar
  25. O’Farrell, I., 1993. Phytoplankton ecology and limnology of the River Salado ( Buenos Aires ). Hydrobiologia 271: 169–178.Google Scholar
  26. O’Farrell, 1. and I. Izaguirre, 1994. Phytoplankton ecology and limnology of the River Uruguay Lower Basin (Argentina). Arch. Hydrobiol. Suppl. 99: 1. 55–179.Google Scholar
  27. Pieterse, A. J. and J. C. Roos, 1987. Preliminary observations on spatial patterns of niche related parameters in Vaal River phytoplankton. S.-Afr. Tydskr. Plankt. 53: 300–306.Google Scholar
  28. Pieterse, A. J. H., J. C. Roos, K. I. Roos and C. Pienaar, 1986. Preliminary observations on cross-channel and vertical heterogeneity in environmental and algological parameters in the Vaal River at Balkfontein, South Africa. Water Sa 12: 173–184.Google Scholar
  29. Reynolds, C. S., 1988. Potamoplankton: paradigms, paradoxes and prognoses. In F. E. Round (ed.), Algae in the aquatic environment. Biopress Ltd., Bristol: 285–311.Google Scholar
  30. Rai, H., 1974. Limnological studies of the River Yamuna at Delhi, India. Part II. Arch. Hydrobiol. 73: 492–517.Google Scholar
  31. Rohlf, F. J., Kispangh, J. and D. Kirk, 1982. NT-SYS Numerical taxonomy system of multivariate statistical programs. State University of New York, Stony Brook.Google Scholar
  32. Rzóska, J., A. J. Brook and G. A. Prowse, 1955. Seasonal plankton development in the White Nile and Blue Nile near Khartoum. Verh. int. Ver. Limnol. 12: 327–334.Google Scholar
  33. Saad, M. A. H. and S. E. Antoine, 1978. Limnological studies of the River Tigris, Iraq, I. Environmental characteristics. Int. Revue ges. Hydrobiol. 63: 685–704.Google Scholar
  34. Schmidt, G. W., 1976. Primary production of phytoplankton in the three types of Amazonian waters. IV. On the primary productivity of Phytoplankton in a Bay of the Lower Rio Negro ( Amazonas, Brazil). Amazoniana 5: 517–528.Google Scholar
  35. Schmidt, G. W., 1982. Primary production of phytoplankton in the three types of Amazonian waters. V. Some investigations on the phytoplankton and its primary productivity in the clear water of the Lower Río Tapajóz ( Amazonas, Brazil). Amazoniana 7: 335–348.Google Scholar
  36. Shiel, R. J. and W. D. Williams, 1982. Plankton of the Lower River Murray, South Australia. Aust. J. Mar. Freshwat. Res. 33: 301327.Google Scholar
  37. Solari, L. C., 1991. Fitoplancton del Rio Samborombón ( Provincia de Buenos Aires ). Biologia Acuatica 15: 86–87.Google Scholar
  38. Soldano, F. A., 1947. Regimen y aprovechamiento de la red fluvial argentina. I. El rio Parana y sus tributarios. Cimera, Buenos Aires, 277 pp.Google Scholar
  39. Tailing, J. F., 1976. Phytoplankton: composition, development and productivity. In J. Rzóska (ed.), The Nile: Biology of an Ancient River. W. Junk, Den Haag: 385–406.Google Scholar
  40. Tailing, J. F. and J. Rzóska, 1967. The development of plankton in relation to hydrological regime in the Blue Nile. J. Ecol. 55: 637–662.CrossRefGoogle Scholar
  41. Troll, C., 1965. Jahrezeitenklimate der Erde. World Maps of Climatology, New-York, Springer-Verlag.Google Scholar
  42. Uherkovich, G., 1976. Algen aus dem Flüssen Rio Negro und Rio Tapajós. Amazoniana 5: 465–515.Google Scholar
  43. Uherkovich, G., 1981. Algen aus einigen Gewassern Amazoniens. Amazoniana 7: 191–219.Google Scholar
  44. Uherkovich, G. and H. Rai, 1979. Algen aus dem Rio Negro und seinen Nebenflüssen. Amazoniana 6: 611–638.Google Scholar
  45. Walker K. F. and T. J. Hillman, 1982. Phosphorus and nitrogen loads in waters associated with the River Murray near Albury-Wodonga, and their effects on phytoplankton populations. Aust. J. Mar. Freshwat. Res. 33: 223–243.Google Scholar
  46. Zalocar de Domitrovic, Y. and E. R. Vallejos, 1982. Fitoplancton del rio Alto Parana. Variación estacional y distribución en relación a factores ambientales Ecosur 9: 1–28.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1994

Authors and Affiliations

  • Inés O’Farrell
    • 1
  1. 1.Laboratorio de Limnologia y Ficología. Departamento de Biologia. Facultad de Ciencias Exactas y NaturalesPab. II. Ciudad Universitaria. NuñezBuenos AiresArgentina

Personalised recommendations