Advertisement

Are there steady-state phytoplankton assemblages in the field?

  • Carmen Rojo
  • Miguel Álvarez-Cobelas
Conference paper
Part of the Developments in Hydrobiology book series (DIHY, volume 172)

Abstract

The difficulty in advancing in Ecology is due, in part, to the fact that this science uses a mainly qualitative language instead of a more formal or mathematical one. Therefore, many ecologists’ efforts are expended in controversies resulting from the vagueness of ecological concepts, for example: stability, equilibrium, ecosystem, community, and so on. When approaching the study of steady-state phytoplankton assemblage, the different interpretations of these concepts can paralyse fruitful discussion. In the following pages, there is an endeavour to both restrict and precise the meaning of some of the concepts related to this topic and to broaden the range of possibilities of steady-state in the field. It is argued here that, in order to test whether or not there is a steady-state assemblage, first of all a variable or descriptor of such assemblage should be chosen. It is also argued that a steady-state does not necessarily occur as the result of a competition process with a stable equilibrium end. Moreover, we suggest that some other processes and mechanisms could control the assemblage as a steady-state. Examples of steady-state phytoplankton assemblage observed in the field (perturbed and unperturbed situations), but probably not related to a competition system equilibrium, are shown: the alternate dominance of two species (Cryptomonas erosa and Limnothrix redekei) during seven unperturbed consecutive weeks in El Porcal Lake (a gravel pit in Central Spain); the co-dominance of five species (Planktothrix agardhii,Limnothrix redekei, Dictytosphaerium sp., Cyclotella meneghiniana and Cryptomonas erosa) over nine unperturbed weeks in the same lake; the dominance of different species in thirty one fluctuating sites of a wetland (La Safor, Mediterranean Spanish coast) and the persistence of some non-dominant species (Peridinium willei and Planktonema lauterbornii) over more than three weeks in the water column mixing period in Las Madres Lake (Central Spain).

Key words

dynamic equilibrium phytoplankton competition assembly mechanisms controlling stability factors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Álvarez-Cobelas, M. 1991. Optical limnology of a hypertrophic, gravel-pit lake. Int. Rev. ges. Hydrobiol. 76: 213–223.Google Scholar
  2. Álvarez-Cobelas, M., A. Baltanás, J. L. Velasco, M. Valladolid, M. Izquierdo and E. Martín. 1993. Slow overturn in a gravel-pit lake. Int. Ver. theor. angewan. Limnol.: Verh. 25: 83–87.Google Scholar
  3. Connell, J., 1978. Diversity in tropical rain forest and coral reefs. Science 199: 1304–1310.CrossRefGoogle Scholar
  4. Dodson, S. I., S. E. Arnott K. L. Cottingham 2000. The relationship in lake communities between primary productivity and species richness. Ecology 81: 2662–2679.CrossRefGoogle Scholar
  5. Drake, J., 1990. Communities as assembled structures: Do rules govern pattern? Trends in Ecol. Evol. 5: 159–164.Google Scholar
  6. Harris, G. P., 1986. Phytoplankton Ecology. Chapman Hall, London. 384 pp.CrossRefGoogle Scholar
  7. Imboden, D. M. A. Lerman, 1978. Chemical models of Lakes. In Lerman, A. (eds.), Lakes: Chemestry, Geology, Physics. Springer, New York: 341–356.Google Scholar
  8. Jeffries, M. D. Mills, 1990. Freshwater ecology. Belhaven Press, London. 285.Google Scholar
  9. Keddy, P. A., 1989. Competition. Chapman Hall, London. 202 pp.CrossRefGoogle Scholar
  10. Keddy, P. A., 2000. Wetland Ecology. Cambridge University Press, Cambridge. 614 pp.Google Scholar
  11. Keddy, P. E. Weiher, 1999. The scope and goals of research on assembly rules. In: Weiher, E. P. Keddy (eds), Ecological Assembly rules. Cambridge University Press, Cambridge. 418 pp.Google Scholar
  12. Lampert W. U. Sommer, 1997. Limnoecology: the ecology of lakes and streams. Oxford University Press, New York.Google Scholar
  13. Levins, R., 1979. Coexistence in a variable environment. Am. Nat. 114: 765–783.Google Scholar
  14. Lund, J. W. G., C. Kipling E. D. Le Cren, 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11: 143–170.CrossRefGoogle Scholar
  15. Morabito, G., A. Oggioni P. Panzani, 2003. Phytoplankton assemblage at equilibrium in large and deep subalpine lakes: a case study from Lago Maggiore (N. Italy). Hydrobiologia 502 ( Dev. Hydrobiol. 172 ): 37–48.Google Scholar
  16. MacArthur, R. H. E. O. Wilson, 1967. The theory of island biogeography. Princeton University Press, Pricenton.Google Scholar
  17. Mayr, E., 1982. The growth of biological thought. Harvard University Press, Cambridge. 382 pp.Google Scholar
  18. Naselli-Flores, L., J. Padisák, M. T. Dokulil I. Chorus, 2003. Equilibrium/steady-state concept in phytoplankton ecology. Hydrobiologia 502 ( Dev. Hydrobiol. 172 ): 395–403.Google Scholar
  19. Pahl-Wostl, C., 1995. The dynamic nature of ecosystems. John Wiley Sons, Chichester. 267 pp.Google Scholar
  20. Patten, B. C. S. E. Jørgensen, 1995. Complex Ecology. Prentice Hall PTR, New Jersey. 705 pp.Google Scholar
  21. Pollingher, U., 1988. Freshwater armored dinoflagellates: growth, reproduction strategies, and population dynamics. In Sandgren C. D. (ed.), Growth and Reproductive Strategies of Freshwater Phytoplankton. Cambridge Uni. Press, Cambridge: 134–174.Google Scholar
  22. Putman, R. J. Community Ecology. Chapman Hall, London. 178 pp.Google Scholar
  23. Reynolds, C., 1980. Phytoplankton assemblages and their periodicity in stratifying lake system. Hol. Ecol. 3: 141–159Google Scholar
  24. Reynolds, C., 1984. The ecology of freshwater phytoplankton. Cambridge University Press, Cambridge. 384 pp.Google Scholar
  25. Reynolds, C., 1998. The state of freshwater ecology. Freshwat. Biol. 39: 741–753.Google Scholar
  26. Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. J. Plankton Res. 24: 417–428.CrossRefGoogle Scholar
  27. Rodrigo, M. A., C. Rojo X. Armengol, 2003. Plankton biodiversity in a landscape of shallow water bodies (Mediterranean coast, Spain). Hydrobiologia 506–509 (in press).Google Scholar
  28. Rojo, C. M. Alvarez, 1992. Taxonomy and ecology of phytoplankton in a hypertrophic, gravel-pit lake. I. Cyanophyceae. Archiv für Protistenkunde 142: 77–90.Google Scholar
  29. Rojo, C. M. Alvarez, 1993a. Taxonomy and ecology of phytoplankton in a hypertrophic, gravel-pit lake. II. Cryptophyceae, Euglenophyceae. Nova Hedwigia 57: 47–63.Google Scholar
  30. Rojo, C. M. Alvarez, 1993b. Population dynamics of Planktothrix agardhii, Limnothrix redekei, Oscillatoria lanceaeformis and Pseudoanabaena limnetica (Cyanophyceae) in a hypertrophic shallow lake. Hydrobiologia 275 /276: 165–171.Google Scholar
  31. Rojo, C. M. Alvarez, 1993c. Hypertrophic phytoplankton and the intermediate disturbance hypothesis. Hydrobiologia 249: 43–57CrossRefGoogle Scholar
  32. Rojo, C. M. Alvarez, 1994. Taxonomy and ecology of phytoplankton in a shallow, hypertrophic lake. III. Diatomophyceae. Archiv für Hydrobiol. Algol. Stud. 72: 53–70.Google Scholar
  33. Rojo, C. M. Alvarez, 1995a. Taxonomy and ecology of phytoplankton in a shallow, hypertrophic lake. IV. Chlorophyceae, Chlorococcales. Archiv für Hydrobiol. Algol. Stud. 77: 7–35.Google Scholar
  34. Rojo, C. M. Alvarez, 1995b. Taxonomy and ecology of phytoplankton in a shallow, hypertrophic lake. V. Chlorophyceae, Volvocales. Archiv für Hydrobiol. Algol. Stud. 79: 19–37.Google Scholar
  35. Rojo, C., K. Kiss, M. Álvarez-Cobelas M. A. Rodrigo, 1999. Population dynamics of Cyclotella ocellata (Bacillariophyceae): endogenous and exogenous factors. Archiv für Hydrobiol. 145: 479–495.Google Scholar
  36. Rojo, C. M. Álvarez-Cobelas, 2001. Phytoplankton structure and dynamics at a daily temporal scale: response to the thermal overturn. Archiv für Hydrobiol. 151: 549–569.Google Scholar
  37. Rott, E., 1981. Some results from phytoplankton counting intercal- ibrations. Schweizerische Zeitschrift für Hydrol. 43: 34–62.Google Scholar
  38. Salmaso, N., 2003. Life strategies, dominance patterns and mechanisms promoting species coexistence in phytoplankton communities along complex environmental gradients. Hydrobiologia 502 ( Dev. Hydrobiol. 172 ): 13–36.Google Scholar
  39. Scheffer, M., S. Reinaldi, J. Huisman F. J. Weissing, 2003. Why plankton communities have no equilibrium: solutions to the paradox. Hydrobiologia 491: 9–18.CrossRefGoogle Scholar
  40. Sommer, U., 1985. Comparison between steady-state and non-steady state competition: experiments with natural phytoplankton Limnol. Oceanogr. 30: 335–346Google Scholar
  41. Sommer, U., J. Padisák, C. S. Reynolds P. Juhász-Nagy, 1993. Hutchinson’s heritage: The diversity-disturbance relationship in phytoplankton. Hydrobiologia 249: 1–7.Google Scholar
  42. Stoyneva, M. P., 2003. Steady-state phytoplankton assemblages in shallow Bulgarian wetlands. Hydrobiologia 502 ( Dev. Hydrobiol. 172 ): 169–176.Google Scholar
  43. Tilman, D., 1982. Resource competition and community structure. Princeton University Press, Princeton. 296 pp.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • Carmen Rojo
    • 1
  • Miguel Álvarez-Cobelas
    • 2
  1. 1.Institute of Biodiversity and Evolutionary BiologyUniversity of ValenciaValenciaSpain
  2. 2.Centro de Ciencias MedioambientalesCSICMadridSpain

Personalised recommendations