Phytoplankton assemblages and steady state in deep and shallow eutrophic lakes — an approach to differentiate the habitat properties of Oscillatoriales

  • Brigitte Nixdorf
  • Ute Mischke
  • Jacqueline Rücker
Part of the Developments in Hydrobiology book series (DIHY, volume 172)


Ecological conditions and phytoplankton succession in two shallow hypertrophic lakes (Langer See and Melangsee) and a dimictic, eutrophic lake (Scharmützelsee) in a lake chain in Eastern Germany were analyzed from 1999 to 2001 in order to find situations of phytoplankton steady state assemblages and variables controlling the phytoplankton composition according to Reynolds et al. (2002). Long term background data from 1993 to 2001 suggest steady state conditions in shallow lakes, whereas the deep lake exhibited irregular fluctuations between various phytoplankton stages. Since the phytoplankton composition in the shallow lakes was similar in all the 3 years, it was highly predictable. Steady state conditions dominated by different species of Oscillatoriales were detected during the summer period 1999 and 2000 in Langer See and in Melangsee (see Mischke & Nixdorf, this volume). This dominant assemblage found in both lakes (group S 1 acc. to Reynolds et al., 2002): Planktothrix agardhii (Gom.) Anagn. et Kom.,Limnothrix redekei (Van Goor) Meffert, Pseudanabaena (Lauterb.) is typical in turbid mixed layers with highly light deficient conditions, but it is also regularly dominant in the dimictic lake Scharmützelsee as observed in 1999 and 2001 (Pseudanabaena limnetica (Lemm.) Kom. The Nostocales Cylindrospermopsis raciborskii (Wolz.) Seenayya et Subba Raju and Aphanizomenon gracile (Lemmerm.) Lemmerm. were important in the shallow lakes as well as in lake Scharmützelsee. Nevertheless, the occurrence of filamentous cyanobacteria in the dimictic lake was not regular and an unpredictable change in phytoplankton development was observed in 2000. It is discussed, whether this phenomenon of regular succession in shallow hypertrophic lakes is caused by adaptation to a resilient and an extreme environment or by the pool of species that can live or survive in that environment. This was checked through comparison of the depth of the mixed layer, the mean daily irradiance within this layer and the nutrient resources. Although the nutrient resources in both types of lake are near threshold levels, indicating growth inhibition by dissolved nutrients (DIP, DIN, TIC, DSi), the under water light supply seems to be the key factor favoring the dominance of filamentous cyanobacteria belonging to the functional group S 1.

Key words

steady state assemblages cyanobacteria Oscillatoriales Planktothrix agardhii dimictic lakes polymictic lakes under water irradiance nutrients 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Behrendt, H. & B. Nixdorf, 1993. The carbon balance of phytoplankton production and loss processes based on in situ measurements in a shallow lake. Int. Rev. ges. Hydrobiol. 78: 439–458.Google Scholar
  2. Berger, C. & H. E. Sweers, 1988. The Ijsselmeer and its phytoplankton –- with special attention to the suitability of the lake as a habitat for Ocillatoria agardhii GOM. J. Plankton Res. 10: 579–599.CrossRefGoogle Scholar
  3. Connell, J., 1978. Diversity in tropical rain forests and coral reefs. Science 199: 1304–1310.CrossRefGoogle Scholar
  4. Czensny, R., 1938. Die Oscillatorienerkrankung unserer Seen, Biologie und Chemismus einiger märkischer Seen. Vom Wasser 8: 36–57.Google Scholar
  5. DEV (Deutsche Einheitsverfahren zur Wasser-, Abwasser-und Schlammuntersuchung), 1976–1998. Schlammuntersuchung. Verlag Chemie, Weinheim, D11, E5, D9, C9, E1, H7.Google Scholar
  6. Foy, R. H., 1983. Interaction of temperature and light on the growth rates of two planktonic Oscillatoria species under a short photoperiod regime. British Phycol. J. 18: 267–273.CrossRefGoogle Scholar
  7. Gibson, C. E. and R. H. Foy, 1983. The photosynthesis and growth efficiency of a planktonic blue-green algae, Oscillatoria redekei. British Phycol. J. 18: 631–638.Google Scholar
  8. Hardin, G., 1960. The competitive exclusion theory. Science 131: 1292–1297.PubMedCrossRefGoogle Scholar
  9. Mischke, U. & J. Rücker, 2001. Veränderungen der Zusammensetzung der Algenzönose in Standgewässern des Scharmützelseegebietes. In Krumbeck, H. & U. Mischke (Hrsg.) AR 6/2001: 19–38.Google Scholar
  10. Mischke, U., 2003. Cyanobacteria associations in shallow polytrophic lakes: influence of environmental factors. Acta Oecologica, 24 (Supplement 1): 11–24.CrossRefGoogle Scholar
  11. Mischke, U. & B. Nixdorf, 2003. Equilibrium phase conditions in shallow German lakes: how Cyanoprokaryota species establish a steady state phase in late summer. Hydrobiologia 502 ( Dev. Hydrobiol. 172 ): 123–132.Google Scholar
  12. Naselli-Flores, L., J. Padisák, M. T. Dokulil & I. Chorus, 2003. Equilibrium/steady-state concept in phytoplankton ecology. Hydrobiologia 502 ( Dev. Hydrobiol. 172 ): 395–403.Google Scholar
  13. Nixdorf, B. & R. Deneke, 1997. Why ‘very shallow’ lakes are more successful opposing reduced nutrient loads? Hydrobiologia 342 /343: 269–284.CrossRefGoogle Scholar
  14. OECD, 1982. Eutrophication of Waters, Monitoring, assessment and control. OECD, Paris. 154 pp.Google Scholar
  15. Post, A. F., R. de Witt & L. Mur, 1985. Interaction between temperature and light intensity on growth and photosynthesis of the Cyanobacterium Oscillatoria agardhii. J. Plankton Res. 7: 487–495.CrossRefGoogle Scholar
  16. Padisák, J. & C. S. Reynolds, 2003. Shallow lakes: the absolute, the relative, the functional and the pragmatic. Hydrobiologia 506– 509 (in press).Google Scholar
  17. Reynolds, C., V. L. M. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. J. Plankton Res. 24: 417–428.CrossRefGoogle Scholar
  18. Reynolds, C. S. & J. W. G. Lund, 1988. The phytoplankton of an enriched, soft-water lake subject to intermittent hydraulic flushing ( Grasmere, English Lake District). Freshwat. Biol. 19: 379–404.Google Scholar
  19. Reynolds, C. S., 1984. Phytoplankton periodicity: the interactions of form, function and environmental variability. Freshwat. Biol. 14: 111–142.Google Scholar
  20. Reynolds, C. S., 1997. Vegetation processes in the pelagic: a model for ecosystem theory, Ecology Institute, D-21385 Oldendorf/Luhe, Germany.Google Scholar
  21. Riley, G. A., 1957. Phytoplankton in the north central Sargasso Sea 1950–1952. Limnol. Oceanogr. 2: 252–272.Google Scholar
  22. Rott, E., 1981. Some results from phytoplankton counting intercal- ibrations. Schweizerische Zeitschrift für Hydrol. 43: 34–62.Google Scholar
  23. Rücker, J., C. Wiedner & P. Zippel, 1997. Factors controlling the dominance of Planktothrix agardhii and Limnothrix redekei in eutrophic shallow lakes. Hydrobiologia 342 /343: 107–115.CrossRefGoogle Scholar
  24. Rücker, J., B. Nixdorf, R. Deneke, A. Kleeberg & U. Mischke, 2003. Unterschiedliche Reaktionen von Seen im Scharmützelseegebiet (Brandenburg) auf die Reduzierung der externen Belastung. Wasser & Boden 55 /4: 4–10.Google Scholar
  25. Scheffer, M., 1998. Ecology of shallow lakes. Chapman & Hall, London.Google Scholar
  26. Scheffer, M., S. Reinaldi, J. Huisman & F. J. Weissing, 2003. Why plankton communities have no equilibrium: solutions to the paradox. Hydrobiologia 491: 9–18.CrossRefGoogle Scholar
  27. Schmitt, M. & B. Nixdorf, 1999. Spring phytoplankton dynamics in a shallow eutro-phic lake. Hydrobiologia 408 /409: 269–276.CrossRefGoogle Scholar
  28. Sommer, U., J. Padisák, C. S. Reynolds & P. Juhász-Nagy, 1993. Hutchinsons heritage: the diversity-disturbance relationship in phytoplankton. Hydrobiologia 249: 1–7.CrossRefGoogle Scholar
  29. Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitt. int. Ver. theor. angewan. Limnol. 9: 1–38.Google Scholar
  30. Wiedner, C., 1999. Toxische und nicht-toxische Cyanobakterien in Gewässern der Scharmützelseeregion: Ihr Vorkommen in Gewässern unterschiedlicher Trophie und Morphometrie und Steuermechanismen ihrer Dynamik in polymiktischen Flachseen. Dissertation BTU Cottbus.Google Scholar
  31. Wiedner, C., B. Nixdorf, R. Hinze, B. Wirsing, U. Neumann & J. Weckesser, 2002. Regulation of cyanobacteria and microcystin dynamics in polymictic shallow lakes. Archiv für Hydrobiol. 155: 383–400.Google Scholar
  32. Wiedner, C., J. Rücker & P. Zippel, 1996. Besonderheiten des Blaualgenregimes in ausgewählten Gewässern des Scharmützelseegebietes. In Nixdorf, B. & A. Kleeberg (Hrsg.), Gewässerreport Scharmützelseegebiet, Teil II. BTUC-AR 2/96: 50–60.Google Scholar
  33. Willén, E., 1976. A simplified method of phytoplankton counting. British Phycol. J. 11: 265–278.Google Scholar
  34. Wundsch, H. H., 1940. Beiträge zur Fischereibiologie märkischer Seen, VI. die Entwicklung eines besonderen Seentypus (H2SOscillatorien-Seen) im Flußgebiet der Spree und Havel, und seine Bedeutung für die Fischereibiologischen Bedingungen in dieser Region.–Z. Fischerei XXXVIII: 443–648.Google Scholar
  35. Zippel, P. & B. Nixdorf, 1997. Die Entwicklung des Phytoplanktons im Scharmützelsee (1993–1996) und Storkower See. In Deneke, R. & B. Nixdorf (Hrsg.), Gewässerreport (Teil III). BTUC-AR 5/97: 60–71.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • Brigitte Nixdorf
    • 1
  • Ute Mischke
    • 2
  • Jacqueline Rücker
    • 1
  1. 1.Brandenburg Technical University of CottbusBad SaarowGermany
  2. 2.Dept. of Shallow Lakes and Lowland RiversIGB, Institute of Freshwater ecology and Inland FisheriesBerlinGermany

Personalised recommendations