Physiological Role and Molecular Aspects of Grapevine Stilbenic Compounds

  • L. Bavaresco
  • C. Fregoni


Stilbenes are natural compounds occurring in a number of plant families, such as Pinaceae, Myrtaceae, Fagaceae, Liliaceae, Myraceae, Papilionaceae and Vitaceae. Within this last family, they are synthesized in several species, including V. vinifera L., which is the most important species grown worldwide for table grapes, raisins and wine production. Stilbenes are low molecular weight phenolics acting like antifungal compounds, enabling the plant to overcome pathogen attack. Grapevine stilbenes include many compounds such as trans- and cis-resveratrol, their glycosides (piceid or polydatin), viniferins, pterostilbene, astringin, piceatannol (astringinin), and other resveratrol trimers and tetramers. These substances are present in soft tissues, as induced compounds (phytoalexins), and in woody tissues, as constitutive ones.


Downy Mildew Grape Berry Botrytis Cinerea Berry Skin Resveratrol Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adrian, M., Jeandet, P., Bessis, R., and J.M. Joubert (1996) Induction of phytoalexin (resveratrol) synthesis in grapevine leaves treated with aluminum chloride (AICI,). J. Agric. Food Chem. 44: 979–1981.Google Scholar
  2. Adrian, M., Rajaei, H., Jeandet, P., Veneau, J., and R. Bessis (1998) Resveratrol oxidation in Botrytis cinerea conidia. Phytopathology 88 (5): 472–476.PubMedCrossRefGoogle Scholar
  3. Alleweldt, G. and J.V. Possingham (1988) Progress in grapevine breeding. Theor. Appl. Genet. 75: 669–673.Google Scholar
  4. Bar Nun, N., Tal Lev, A., Hard E., and A.M. Mayer (1988) Repression of lactase formation in Botrytis eine-rea and its possible relation to phytopathogenicity. Phytochemistry 27 (8): 2505–2509.CrossRefGoogle Scholar
  5. Barlass, M., Miller, R.M., and T.J. Douglas (1987) Development of methods for screening grapevines for resistance to infection by downy mildew.1I. Resveratrol production. Am. J. Eno!. Vitic. 38: 65–68.Google Scholar
  6. Bavaresco, L. (1990) Excursus mondiale sugli ibridi produttori di vite di terza generazione resistenti alle malattie. Vignevini XVII (6): 29–38.Google Scholar
  7. Bavaresco, L. (1993) Effect of potassium fertilizer on induced stilbene synthesis in different grapevine varieties. Bulletin de l’OIV 751–752: 674–689.Google Scholar
  8. Bavaresco, L., Cantù, E., Fregoni, M., and M. Trevisan (1997b) Constitutive stilbene contents of grapevine cluster stems as potential source of resveratrol in wine. Vitis 36 (3): 115–118.Google Scholar
  9. Bavaresco, L., Cantù, E., and M. Trevisan (2000a) Chlorosis occurrence, natural VA-mycorrhizal infection and stilbene root concentration of ungrafted grapevine rootstocks growing on calcareous soil. J. Plant Nutr. 23 (11): in press.Google Scholar
  10. Bavaresco, L. and R. Eibach (1987) Investigations on the influence of N fertilizer on resistance to powdery mildew (Oidium tuckeri), downy mildew (Plasmopara viticola) and on phytoalexin synthesis in different grapevine varieties. Vitis 26: 192–200.Google Scholar
  11. Bavaresco, L., Fregoni, C., Cantù, E., and M. Trevisan (1999) Stilbene compounds: from grapevine to wine. Drugs Exptl. Clin. Res. XXV (2/3): 57–63.Google Scholar
  12. Bavaresco, L., Fregoni, C., Trevisan, M., and P. Fortunati (2000h) Effect of cluster stems on resveratrol content in wine. It. J. Food Sci. 12 (1): 103–108.Google Scholar
  13. Bavaresco, L., Fregoni, M., and D. Petegolli (1994) Effect of nitrogen and potassium fertilizer on induced resveratrol synthesis in two grapevine genotypes. Vitis 33: 175–176.Google Scholar
  14. Bavaresco, L., Giachino, E., Perruttio, S., Fregoni, C., and C. Fogher (2000e) PCR specific analysis of Barbera clones. Bulletin de l’OIV 831–832: 296–311.Google Scholar
  15. Bavaresco, L., Petegolli, D., Cantu, E., Fregoni, M., Chiusa, G., and M. Trevisan (1997a) Elicitation and accumulation of stilbene phytoalexins in grapevine berries infected by Botrytis cinerea. Vitis 36 (2): 7783.Google Scholar
  16. Bavaresco, L. and M. Zamboni (1990) Influence of the rootstock and potassium fertilizer on phytoalexin synthesis in Pinot blanc grown on a calcareous soil, Proc. 5th Int. Symp. Grape Breed., Vitis, Special Issue: 295–299.Google Scholar
  17. Bertelli, A.A.E., Giovannini, L., Giannessi, D., Migliori, M., Bernini, W., Fregoni, M., and A. Bertelli (1995) Antiplatelet activity of synthetic and natural resveratrol in red wine. Int. J. Tiss. Reac. XVII (1): 1–3.Google Scholar
  18. Bertelli, A.A.E., Giovannini, L., De Caterina, R., Bernini, W., Migliori, M., Fregoni, M, Bavaresco, L., and A. Bertelli (1996) Antiplatelet activity of cis-resveratrol. Int. J. Tiss. Reac. XXII (2): 61–63.Google Scholar
  19. Bessis, R. (1972) Étude en microscopie électronique à balayage des rapports entre l’höte et le parasite dans le cas de la pourriture grise. C.R. Acad. Sci. Paris. 274: 2991–2994.Google Scholar
  20. Blaich, R. and O. Bachmann (1980) Die Resveratrolsynthese bei Vitaceen Induktion und zytologische Beobachtungen. Vitis 19: 230–240.Google Scholar
  21. Blaich, R., Bachmann, 0., and U. Stein (1982) Causes biochimiques de la résistance de la vigne à Botrytis cinerea. Bull. OEPP 12 (2): 167–170.CrossRefGoogle Scholar
  22. Boukharta, M., Girardin, M., and M. Metche (1996) Isolement et caractérisation du trans-resvératrol et de l’Eviniférine à partir du sarment de vigne (V. vinifera), XVIII’ Journée Int. Groupe Polyphénol, Bordeaux, 15–18 July. Polyphenols Commun. 1: 39–40.Google Scholar
  23. Bourhis, M., Théodore, N., Weber, J.F., and J. Vercauteren (1996) Isolation and identification of (Z)- and (E)E-viniferins from stalks of V. vinifera., XVIII’ Journéè Int. Groupe Polyphénols, Bordeaux, 15–18 July. Polyphenols Commun. 1: 43–44.Google Scholar
  24. Breuil, A.C., Jeandet, P., Adrian, M., Chopin, F., Pirio, N., Meunier, P., and R. Bessis (1999) Characterization of a pterostilbene dehydrodimer produced by laccase of Botrytis cinerea. Phytopathology 89: 298–302.PubMedCrossRefGoogle Scholar
  25. Busam, G., Junghanns, K.T., Kneusel, R.E., Kassemeyer, H.H., and U. Matern (1997) Characterization and expression of caffeoyl-coenzyme A 3-O-methyltransferase proposed for the induced resistance response of V. vinifera L. Plant Physiol. 115: 1039–1048.PubMedCrossRefGoogle Scholar
  26. Calabrese, G. (1999) Nonalcoholic compounds of wine: the phytoestrogen resveratrol and moderate red wine consumption during menopause. Drugs Explt. Clin. Res. XXV (2/3): 111–114.Google Scholar
  27. Carando, S., Teissedre, P.L:, Waffo-Teguo, P., Cabanis, J.C., Deffieux, G., and J.M. Mérillon (1999) High-performance liquid chromatography coupled with fluorescence detection for the determination of transastringin in wine. J. Chromatogr. A. 849: 617–620.Google Scholar
  28. Celotti, E., Ferrarini, R., Conte, L.S., Giulivo, C., and R. Zironi (1998) Modifiche del contenuto di resveratrolo in uve di vitigni della Valpolicella nel corso della matrurazione e dell’appassimento. Vignevini XXV (5): 83–92.Google Scholar
  29. Chappel, J. and K. Hahlbrok (1984) Transcription of plant defence genes in response to UV light or fungal elicitor. Nature 311: 16–18.CrossRefGoogle Scholar
  30. Clarke, D.D. (1973) The accumulation of scopolin in potato tuber tissue in response to infection. Physiol. Plant Pathol. 3: 347–358.Google Scholar
  31. Coulomb, C., Lizzi, Y, Coulomb, P.J., Roggero, J.P., Coulomb, P.O., and O. Agulhon (1999) Le cuivre a-t-il un effet éliciteur? Phytoma 512: 41–46.Google Scholar
  32. Creasy, L.L. and M. Coffee (1988) Phytoalexin production potential of grape berries. J. Amer. Soc. Hort. Sci. 113: 230–234.Google Scholar
  33. Creasy, L.L. and R.M. Pool (1999) Health benefits of raisin, table and juice grapes, Report presented to March OIV Meeting, Paris.Google Scholar
  34. Darvill, A.G. and P. Albersheim (1984) Phytoalexins and their elicitors. A defence against microbial infection in plants. Annu. Rev. Plant Physiol. 35: 243–275.Google Scholar
  35. Dereks, W. and L.L. Creasy (1989a) The significance of stilbene phytoalexins in the Plasmopara viticola - grapevine interaction. Physiol. Mol. Plant Pathol. 34: 189–202.Google Scholar
  36. Dereks, W. and L.L. Creasy (1989b) Influence of fosetyl-Al on phytoalexin accumulation in the Plasmopara viticola grapevine interaction. Physiol. Mol. Plant Pathol. 34: 203–213Google Scholar
  37. Dercks, W., Creasy, L.L., and C.J. Luczka-Bayles (1995) Stilbene phytoalexins and disease resistance in Ellis, in M. Daniel and R.P. Purkayasta (Eds). Handbook of Phytoalexin Metabolism and Action, Marcel Dekker Inc., New York, pp. 287–315.Google Scholar
  38. Douillet-Breuil, A.C., Jeandet, P., Adrian, M., and R. Bessis (1999) Changes in the phytoalexin content of various Vitis spp. in response to ultraviolet C elicitation. J. Agric. Food Chem. 47: 4456–4461.Google Scholar
  39. Ebel, J. (1986) Phytoalexin synthesis: the biochemical analysis of the induction process. Annu. Rev. Phytopathol. 24: 235–164.Google Scholar
  40. Ector, B.J., Magee, J.B., Hegwood, C.P., and M.J. Coign (1996) Resveratrol concentration in muscadine berries, juice, pomace, purees, seeds, and wine. Am. J. Enol. Vitic. 47: 57–62.Google Scholar
  41. Ersek, T. and Z. Kiraly, (1986) Phytoalexins: Warding-off compounds in plants ? Physiol. Plant. 68: 343–346.Google Scholar
  42. Fauconneau, B., Waffo-Teguo, P., Huguet, F., Barrier, L., Decendit, A., and J.-M. Mérillon (1997) Comparative study of radical scavenger and antioxidant properties of phenolic compounds from V. vinifera cell cultures using in vitro tests. Life Sciences 61 (21): 2103–2110.PubMedCrossRefGoogle Scholar
  43. Ferrero, M.E., Bertelli, A.A.E., Fulgenzi, A., Pellegatta, F., Corsi, M.M., Bonfrate, M., Ferrera, F., De Caterina, R., Giovannini, L., and A. Bertelli (1998) Activity in vitro of resveratrol on granulocyte and monocyte adhesion to endothelium. Am. J. Clin. Nutr. 68: 1208–1214.Google Scholar
  44. Fischer, R. (1994) Optimierung der heterologen Expression von Stilbensynthasegenen für den Pflanzenschutz.Google Scholar
  45. Fregoni, M. (1983) Fattori genetici ed agronomici predisponenti alla Botrytis. Vignevini X (5): 35–42.Google Scholar
  46. Fregoni, M. (1991) Protocollo O.I.V. di selezione donate della vite. Vignevini XVIII (4): 21–25.Google Scholar
  47. Fregoni, M. (1993) T doni di vite nel mondo. Vignevini XX (12): 20–22.Google Scholar
  48. Fregoni, M., Bavaresco, L., Cantù, E., Petegolli, D., Vizzon, D., Chiusa, G., and M. Trevisan (2000) Advances in understanding stilbene (resveratrol, c-viniferin)-grapevine relationships. Acta Hortic. 526: 467–477.Google Scholar
  49. Fregoni, M., Bavaresco, L., Petegolli, D., Trevisan, M., and C. Ghebbioni (1994) Indagine sul contenuto di resveratrolo in alcuni vini della Valle d’Aosta e dei Colli piacentini. Vignevini 21 (6): 33–36.Google Scholar
  50. Fritzmeier, K.H. and H. Kindl (1981) Coordinate induction by UV light of silbene synthase, phenylalanine ammonia-lyase and cinnamate 4-hydroxylase in leaves of Vitaceae. Planta 151: 48–52.CrossRefGoogle Scholar
  51. Geuna, F., Hartings, H., and A. Scienza (1997) Discrimination between cultivars of V. vinifera based on molecular variability concerning 5’ untranslated regions of the StSy-CHS genes. Theor. Appt. Genet. 95: 375–383.Google Scholar
  52. Geuna, F., Hartings, H., and A. Scienza (2000) Discrimination of clones of V. vinifera based on the polymorphism of stilbene synthase-chalcone synthase 5’ untranslated genomic regions. Acta Hortic. 528: 257261.Google Scholar
  53. Graham, R.D. (1983) Effects of nutrient stress on susceptibility of plants to disease with particular reference to the trace elements. Adv. Bot. Res. 10: 221–276.Google Scholar
  54. Hain, R., Bieseler, B., Kindl, H., Schroder G., and R. Stocker (1990) Expression of a stilbene synthase in Nicotiana tabacum results in synthesis of the phytoalexin resvcratrol. Plant Mol. Biol. 15: 325–335.Google Scholar
  55. Main, R., Reif, H.J., Krause, E., Langerbartels, R., Kindl, H., Vornam, B., Wiese, W., Schmelzer, E., Schreier, P.H., Stocker, R., and K. Stenzel (1993) Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 361: 153–156.CrossRefGoogle Scholar
  56. Hart, J.H. (1981) Role of phytostilbenes in decay and disease resistance. Annu. Rev. Phytopathol. 19: 437–458. Hart, J.H. and D..M. Shrimpton (1979) Role of stilbenes in resistance of wood to decay. Phytopathol. 69: 11381143.Google Scholar
  57. Hoos, G. and R. Blaich (1988) Metabolism of stilbene phytoalexins in grapevines; oxidation of resveratrol in single-cell cultures. Vitis 27: 1–12.Google Scholar
  58. Hoos, G. and R. Blaich (1990) Influence of resveratrol on germination of conidia and mycelia) growth of Botrytis cinerea and Phomopsis viticola. J. Phytopathol. 129: 102–110.CrossRefGoogle Scholar
  59. Hopwood, D.A. and D.H. Sherman (1990) Molecular genetics of polyketides and its comparison to fatty acid biosynthesis. Annu. Rev. Genet. 24: 37–66.Google Scholar
  60. Ingham, J.L. (1976) 3,5,4’-Trihydroxystilbene as a phytoalexin from groundnuts (Arachis hypogaea). Phytochemistry 15: 1791–1793.Google Scholar
  61. Jang, M., Cai, L., Udeani, G.O., Slowing, K.V., Thomas, C.F., Beecher, C.W.W., Fong, H.H.S., Farnsworth, N.R., Kinghorn, A.D., Mehta, R.G., Moon, R.C., and J.M. Pezzuto (1997) Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275: 218–220.PubMedCrossRefGoogle Scholar
  62. Jeandet, P., Bessis, R., and B. Gautheron (1991) The production of resveratrol (3,5,4’ - trihydroxystilbene) by grape berries in different developmental stages. Am. J. Enol. Vitic. 42: 41–46.Google Scholar
  63. Jeandet, P., Bessis, R., Sbaghi, M., and P. Meunier (1995a) Production of the phytoalexin resveratrol by grapes as a response to Botrytis attack under natural conditions. J. Phytopathol. 143: 135–139.CrossRefGoogle Scholar
  64. Jeandet, P., Bessis, R., Sbaghi, M., and P. Meunier (1995b) The potential relationship of stilbene (resveratrol) synthesis to antocyanin content in grape berry skin. Vitis 34: 91–94.Google Scholar
  65. Jeandet, P., Bessis, R., Sbaghi, M., Meunier, P., and P. Trollat (1995e) Resveratrol content of wines of differ- ent ages: relationships with fungal disease pressur in the vineyard. Am. J. Enol. Vitic. 46 (1): 1–3.Google Scholar
  66. Jeandet, P., Sbaghi, M., and R. Bessis (1992) The use of phytoalexin induction and of in vitro methods as a tool for screening grapevines for resistance to Botrytis cinerea. In: Recent Adavances in Botrytis Research, K. Verhoeff, N.E. Malathrakis and B Williamson (Eds). Pudoc. Scientific Publishers, Wageningen, pp. 109–112.Google Scholar
  67. Jeandet, P., Sbaghi, M., and R. Bessis (1993) The significance of stilbene-type phytoalexin degradation by culture filtrates of Botrytis cinerea in the vine-Botrytis interaction. In: Mechanisms of Plant Defence Responses, B. Fritig and M. Legrand (Eds). Kluwer Academic Publishers, Dordrecht, p. 84.CrossRefGoogle Scholar
  68. Korhammer, S., Reniero, F., and F. Mattivi (1995) An oligostilbene from Vitis roots. Phytochemistry 38: 15011504.Google Scholar
  69. Krastanova, S., Perrin, M., Barbier, P., Demangeat, G., Cornuet, P., Bardonnet, N., Otten L., Pinck, L., and B. Walter (1995) Transformation of grapevine rootstocks with the coat protein gene of grapevine fanleaf nepovirus. Plant Cell Repts 14: 550–554.Google Scholar
  70. Kuc, J. (1995) Phytoalexins, stress metabolism and disease resistance in plants. Annu. Rev. Phytopathol. 33: 275–297.Google Scholar
  71. Lamikanra, O., Grimm, C.C., Rodin, J.B., and I.D. Inyang (1996) Hydroxylated stilbenes in selected American wines. J. Agric. Food Chem. 44: 1111–1115.Google Scholar
  72. Langcake, P. (1981) Disease resistance of Vitis spp. and the production of the stress metabolites resveratrol, eviniferin, a-viniferin and pterostilbene. Physiol. Plant Pathol. 18: 213–226.Google Scholar
  73. Langcake, P., Comford, C.A., and R.J. Pryce (1979) Identification of pterostilbene as a phytoalexin from V. vinifera leaves. Phytochemistry 18: 1025–1027.CrossRefGoogle Scholar
  74. Langcake, P. and W.V. McCarthy (1979) The relationship of resveratrol production to infection of grapevine leaves by Botrytis cinerea. Vitis 18: 244–253.Google Scholar
  75. Langcake, P. and R.J. Pryce (1976) The production of resveratrol by V vinifera and other members of the Vitaceae as a response to infection or injury. Physiol. Plant Pathol. 9: 77–86.Google Scholar
  76. Langcake, P. and R.J. Pryce (1977a) A new class of phytoalexins from grapevines. Experientia 33: (2): 151152.Google Scholar
  77. Langcake, P. and R.J. Pryce (1977b) The production of resveratrol and the viniferins by grapevines in response to ultraviolet irradiation. Phytochemistry 16: 1193–1196.CrossRefGoogle Scholar
  78. Larronde, F., Krisa, S., Decendit, A., Chèze, C., Deffieux, G., and J.M. Mérillon (1998) Regulation of polyphenol production in V. vinifera cell suspension cultures by sugars. Plant Cell Repts 17: 946–950.CrossRefGoogle Scholar
  79. Leckband, G. and H. Lörz (1998) Transformation and expression of a stilbene synthase gene of V. vinifera L. in barley and wheat for increased fungal resistance. Theor. Appl. Genet. 96: 1004–1012.Google Scholar
  80. Liswidowati, Melchior, F., Hohmann, F., Schwer, B., and H. Kindl (1991) Induction of stilbene synhase by Botrytis cinerea in cultured grapevine cells. Planta 183: 307–314.Google Scholar
  81. López Serrano, M., Ferrer, M.A., Calderón, A.A., Munoz, R., Ros Barceló, A., and M.A. Pedreno (1994) Aluminum-mediated fosetyl-Al effects on peroxidase secreted from grapevine cells. Environ. Experim. Botany 34: 329–336.Google Scholar
  82. Luczka, C.J (1982) Stilbene phytoalexins and susceptibility to Botrytis cinerea in Vitis. M.S. Thesis, Cornell University, Ithaca, NY.Google Scholar
  83. Mansfield, J.W. and B.J. Deverall (1974) Changes in wyerone acid concentrations in leaves of Vicia faba after infection by Botrytis cinerea or B. fabae. Annals Appl. Biol. 77: 227–235.Google Scholar
  84. Mattivi, F. and F. Reniero (1992) Oligostilbenes from the roots of genus Vitis. Bull. Liaison Groupe Polyphenols. 16: 116–119.Google Scholar
  85. Mattivi, F. and Reniero, F., and S. Korhammer (1995) Isolation, characterization, and evolution in red wine vinification of resveratrol monomers. J. Agric. Food Chem. 43: 1820–1823.Google Scholar
  86. Mattivi, F., Reniero, F., Scienza, A., and S. Farago (1996) HPLC-DAD analysis of stilbenoids from Vats roots, XVIII` Journée Int. Groupe Polyphénols, Bordeaux, 15–18 July. Polyphenols Commun. 1: 123–124.Google Scholar
  87. Melchior, F. and H. Kindl (1990) Grapevine stilbene synthase cDNA only slightly differing from chalcone synthase cDNA expressed in Escherichia coli into a catalytically active enzyme. FEBS Lett. 268: 17–20.PubMedCrossRefGoogle Scholar
  88. Melchior, F. and H. Kindl (1991) Coordinate-and elicitor-dependent expression of stilbene synthase and phenylalanine ammonia-lyase genes in Vitis cv Optima. Arch. Biochem. Bioph. 288 (2): 552–557.CrossRefGoogle Scholar
  89. Meredith, C.P. and B.I. Reisch (1996) The new tools of grapevine genetics, Proceedings of the 45 International Symposium on Cool Climate Viticulture and Enology, Rochester, New York (USA), 16–20 July, VIII, 12–18, pp. 12–18.Google Scholar
  90. Morales, M., Alcântara, J., and. A. Ros Barceló (1997) Oxidation of trans-resveratrol by a hypodermal peroxidase isoenzyme from Gamay rouge grape (V vinifera) berries. Am. J. Enol. Vitic. 48 (1): 33–38.Google Scholar
  91. Morales, M., Bru, R., García-Carmona, F., Ros Barceló, A., and M.A. Pedreflo (1998) Effect of dimethyl ßcyclodextrins on resveratrol metabolism in Gamay grapevine cell cultures before and after inoculation with Xylophilus ampelinus. Plant Cell Tiss. Org. Cult. 53: 179–187.Google Scholar
  92. Müller, K. and H. Borger (1940) Experimentelle Untersuchungen über die Phytophtora-Resistenz der Kartoffel. Arb. Biol. Reichsanst. Land Forstwirtsch 23: 189–231.Google Scholar
  93. Okuda, T. and K. Yokotsuka (1996) Trans-resveratrol concentration in berry skins and wines from grapes grown in Japan. Am. J. Enol. Vitic. 47: 93–99.Google Scholar
  94. Oshima, Y., Namao, K., Kamijou, A., Matsuoka, S., Nakano, M., Terao, K., and Y. Ohizumi (1995) Powerful hepatoprotective plant oligostilbenes -isolated from the Oriental medicinal plant Vitis coignetiae (Vitaceae). Experientia 51: 63–66.PubMedCrossRefGoogle Scholar
  95. Paxton, J. D. (1981) Phytoalexins: A working redefinition. Phytopath. Z. 101: 106–109.Google Scholar
  96. Paul, B., Chereyathmanjiyil, A., Masih, I., Chapuis, L., and A. Benoît (1998) Biological control of Botrytis cinerea causing grey mould disease of grapevine and elicitation of stilbene phytoalexin (resveratrol) by a soil bacterium. FEMS Microbiol. Lett. 165: 65–70.Google Scholar
  97. Paul, B., Masih, I., Deopujari, J., and C. Charpentier (1999) Occurrence of resveratrol and pterostilbene in age-old darakchasava, an ayurvedic medicine from India. J. Ethnopharm. 68: 71–76.CrossRefGoogle Scholar
  98. Pezet, R. and P. Cuenat (1996) Rcsveratrol in wine: Extraction from skin during fermentation and post-fermentation standing of must from Gamay grapes. Am: J. Enol. Vitic. 47: 287–290.Google Scholar
  99. Pezet, R. and V. Pont (1986) Infection florale et latence de Botrytis cinerea dans les grappes de V. vinifera (variété Gamay). Rev. Suis. Vitic. Arboric. Hortic. 18: 317–322.Google Scholar
  100. Pezet, R. and V. Pont (1988a) Mise en évidence de ptérostilbéne dans les grappes de V. vinifera. Plant Physiol. Biochem. 26: 603–607.Google Scholar
  101. Pezet, R. and V. Pont (1988b) Activité antifongique dans le baies de V. vinifera: effets d’acides organiques et du pterostilbène. Rev. Suis. Vitic. Arboric. Hortic. 20: 303–309.Google Scholar
  102. Pezet, R. and V. Pont (1995) Mode of toxic action of Vitaceae stilbenes on fungal cells. In: Handbook of Phytoalexin Metabolism and Action, M. Daniel and R.P. Purkayasta (Eds). Marcel Dekker Inc., New York, pp. 317–331.Google Scholar
  103. Pezet, R., Pont, V., and K. Hoang-Van (1991) Evidence for oxidative detoxification of pterostilbene and resveratrol by laccase-like stilbene oxidase produced by Botrytis cinerea. Physiol. Mol. Plant Pathol. 39: 441–450.Google Scholar
  104. Piennattei, B., Piva, A., Castellari, M, Arfelli, G., and A. Amati (1999) The phenolic composition of red grapes and wines as influenced by Oidium tuckeri development. Vitis 38: 85–86.Google Scholar
  105. Pool, R.M., Creasy, L.L., and A.S. Frackelton (1981) Resveratrol and the viniferins, their application to screening for disease resistance in grape breeding programs. Vitis 20: 136–145.Google Scholar
  106. Pryce, R.J. and P. Langcake (1977) a-Viniferin: an antifungal resveratrol trimer from grapevines. Phytochemistry 16: 1452–1454.Google Scholar
  107. Renaud, S. and M. De Lorgeril (1992) Wine, alcohol, platelets, and the French paradox for coronary heart disease. The Lancet 339: 1523–1526.CrossRefGoogle Scholar
  108. Reniero, F., Rudolph, M., Angioni, A., Bemreuther, A., Cabras, P., and F. Mattivi (1996) Identification of two stilbenoids from Vitis roots. Vitis 35: 125–127.Google Scholar
  109. Ribeiro de Lima, M.T., Waffo-Teguo, P., Teissedre, P.L., Pujolas, A., Vercauteren, J., Cabanis, J.C., and J.M. Mérillon (1999) Determination of stilbenes (trans-astringin, cis-and trans-piceid, and cis-and transresveratrol) in portuguese wines. J. Agric. Food Chem. 47: 2666–2670.Google Scholar
  110. Romero-Pérez, A.I., Ibem-Gómez, M., Lamuela Raventos, R.M., and M.C. De la Torre-Boronat (1999) Piceid, the major resveratrol derivative in grape juices. J. Agric. Food Chem. 47: 1533–1536.Google Scholar
  111. Rupprich, N. and H. Kindl (1978) Stilbene synthases and stilbenecarboxylate synthases, I. Enzymatic synthesis of 3,5,4’ -trihydroxystilbene from p-coumaroyl coenzyme A and malonyl coenzyme A. Hoppe-Seyler’s Z. Physiol. Chem. 359: 165: 172.Google Scholar
  112. Salamini, F., Uhrig, H., Tacke, E., Rohde, W., and C. Gebhardt (1997) Conventional and molecular plant breeding. Acta Hortic. 447: 251–263.Google Scholar
  113. Sang, P., Zahavi, T., Zutkhi, Y., Yannai, S., Lisker, N., and R. Ben-Arie (1996) Ozone for control of postharvest decay of table-grapes caused by Rhizopus stolonifer. Physiol. Mol. Plant Pathol. 48: 403–415.Google Scholar
  114. Sarig, P., Zutkhi, Y., Monjauze, A., Lisker, N., and R. Ben-Arie (1997) Phytoalexin elicitation in grape berries and their susceptibility to Rhizopus stolonifer. Physiol. Mol. Plant Pathol. 50: 337–347.Google Scholar
  115. Sbaghi, M., Jeandet, P., Faivre, B., Bessis R., and J.C. Fournioux (1995) Development of methods using phytoalexin (resveratrol) assessment as a selection criterion to screen grapevine in vitro cultures for resistance to grey mould (Botrytis cinerea). Euphytica 86: 41–47.CrossRefGoogle Scholar
  116. Sbaghi, M., Jeandet, P., Bessis, R., and P. Leroux (1996) Degradation of stilbene-type phytoalexins in relation to the pathogenicity of Botrytis cinerea to grapevine. Plant Pathol. 45: 139–144.CrossRefGoogle Scholar
  117. Schoeppner, A. and H. Kindl (1979) Stilbene synthase (pynosil-vine synthase) and its induction by ultraviolet light. FEBS Letters 108: 349.PubMedCrossRefGoogle Scholar
  118. Schrader, G., Brown, J.W.S., and J. Schröder (1988) Molecular analysis of resveratrol synthase: cDNA, genomic clones and relationship with chalconesynthase. Eur. J. Biochem. 172: 161–169.Google Scholar
  119. Schubert, R., Fischer, R., Hain, R., Schreier, P.H., Bahnweg, G., Ernst, D., and H. Sandermann Jr (1997) An ozone responsive region of the grapevine resveratrol synthase promoter differs from the basal pathogen-responsive sequence. Plant Mol. Biol. 34: 417–426.Google Scholar
  120. Schuerman, P.L. and A.M. Dandekar (1993) Transformation of temperate woody crops: Progress and potentials. ScientiaHotie. 55: 101–124.Google Scholar
  121. Seigneur, M., Bonnet, J., Dorian, B., Benchimil, D., Drouillet, F., Gouverneur, G., Larrue, J., Crockett, R., Boisseau, M., Ribéreau-Gayon, P., and H. Bricaud (1990) Effect of the consumption of alcohol, white wine and red wine on platelet function and serum lipids. J. Appl. Card. 5: 215–222.Google Scholar
  122. Siemann, E.H. and L.L. Creasy (1992) Concentration of phytoalexin resveratrol in wine. Am. J. Enol. Vitic. 43: 49–52.Google Scholar
  123. Soleas, G.J., Goldberg, D.M., Diamandis, E.P., Karumanchiri, A., Yan, J., and E. Ng (1995a) A derivatized gas chromatographic-mass spectrometric method for the analysis of both isomers of resveratrol in juice and wine. Am. J. Enol. Vitic. 46 (3): 346–352.Google Scholar
  124. Soleas, G.J., Goldberg, D.M., Karumanchiri, A., Diamandis, E.P., and E. Ng (1995b) Influences of viticultural and oenological factors on changes in cis-and trans-resveratrol in commercial wines. J. Wine Res. 6: 107–121.CrossRefGoogle Scholar
  125. Sparvoli, F., Martin, C., Scienza, A., Gavazzi, G., and C. Tonelli (1994) Cloning and molecular analysis of structural genes involved in flavonoid and stilbene biosynthesis in grape (V. vinifera L.). Plant Mol. Biol. 24: 743–755.Google Scholar
  126. Stark Lorenzen, P., Nelke, B., Hänßler, G., Mühlbach, H.P., and J.E. Thomzik (1997) Transfer of a grapevine stilbenc synthasc gene to rice (Oryza sativa L.). Plant Cell Repls 16: 668–673.CrossRefGoogle Scholar
  127. Stein, U. (1984) Untersuchungen über Biochemische und Morphologische Merkmale der Botrytisresistenz bei Vitaceen, Diss., Univ. Karslruhe.Google Scholar
  128. Stein, U. and G. Hoos (1984) Induktions-und Nachweismethoden für Stilbene bei Vitaceen. Vitis 23: 179–194. Tanaka, T., linuma, M., and H. Murata (1998a) Stilbene derivatives in the stem of Parthenocissus quinquefolia. Phytochemistry 48 (6): 1045–1049.Google Scholar
  129. Tanaka, T., Ohyama, M., Morimoto, K., Asai, F., and M. Iinuma (19986) A resveratrol dimer from Parthenocissus tricuspidata. Phytochemistry 48 (7): 1241–1243.Google Scholar
  130. Théodore, N., Bourhis, M., Ourtoule, J.C., and J. Vercauteren (1996) The first biciclo[6.6.0]tetradecane resveratrol tetramer from V. vinifera, XVIII’ Journée Int. Groupe Polyphénols, Bordeaux, 15–18 July. Polyphenols Commun. 1: 173–174.Google Scholar
  131. Thomzik, J.E. (1993) Transformation in oilseed rape Brassica napus L. In: Biotechnology in Agriculture and Forestry, Bajaj Y.P.S. (Ed.). 23, Springer, Berlin Heidelberg New York, pp. 171–182.Google Scholar
  132. Thomzik, J.E. (1995) Gene transfer in plants. Pflanzenschutz Nachrichten Bayer 48: 5–23.Google Scholar
  133. Thomzik, J.E. (1997) Synthesis of a grapevine phytolaexin in transgenic tomatoes (Lycopersicum esculentum Mill.) conditions resistance against Phytophtora infestans. Physiol. Mol. Plant. Pathol. 51: 265–278.Google Scholar
  134. Vrhovsek, U., Wendelin, S., and R. Eder (1997) Effects of various vinification techniques on the concentration of cis-and trans-resveratrol and resveratrol glucoside isomers in wine. Am. J. Enol. Vitic. 48 (2): 214–219.Google Scholar
  135. Waffo Teguo, P., Decedit, A., Krisa, S., Deffieux, G., Vercauteren, J., and J-M. Mérillon (1996a) The accumulation of stilbene glycosides in V. vinifera cell suspension cultures. J. Nat. Prod. 59: 1189–1191.Google Scholar
  136. Waffo Teguo, P., Decendit, A., Vercauteren, J., Deffieux, G., and J-M. Mérillon (1996b) Trans-resveratrol-3-O-ß-glucoside (piceid) in cell suspension cultures of V. vinifera. Phytochemistry 42: 1591–1593.CrossRefGoogle Scholar
  137. Waffo Teguo, P., Fauconneau, B., Deffieux, G., Huguet, F., Varecauteren, J., and J.M. Mérillon (1998) Isolation, identification, and antioxidant activity of three stilbene glucosides newly extracted from V vinifera cell cultures. J. Nat. Prod. 61: 655–657.Google Scholar
  138. Waterhouse, A.L. and R.M. Lamuela-Raventos (1994) The occurrence of piceid, a stilbene glucoside, in grape berries. Phytochemistry 37: 571–573.CrossRefGoogle Scholar
  139. Weber, J.F., Ourtoule, J.C., Bourhis, M., Castagnino, C., and J. Vercauteren (1996) Oligostilbenes isolated from stalks of V vinifera, XVIII’ Journée Int. Groupe Polyphénols, Bordeaux, 15–18 July. Polyphenols Commun. 1: 187–188.Google Scholar
  140. Wen-Wu, L., Li-Sheng, D., Bo-Gang, L., and C. Yao-Zu (1996) Oligostilbenes from Vitis heyneana. Phytochemistry 42: 1163–1165.CrossRefGoogle Scholar
  141. Wiese, W., Vornam, B., Krause, E., and H. Kindl (1994) Structural organization and differential expression of three stilbene synthase genes located on a 13 kb grapevine DNA fragment. Plant Mol. Biol. 26: 667–677.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • L. Bavaresco
    • 1
  • C. Fregoni
    • 1
  1. 1.Institute of Pomology and ViticultureSacred Heart Catholic UniversityPiacenzaItaly

Personalised recommendations